CN109748325B - FeSmO3纳米粉体的水热制备方法 - Google Patents

FeSmO3纳米粉体的水热制备方法 Download PDF

Info

Publication number
CN109748325B
CN109748325B CN201910162295.5A CN201910162295A CN109748325B CN 109748325 B CN109748325 B CN 109748325B CN 201910162295 A CN201910162295 A CN 201910162295A CN 109748325 B CN109748325 B CN 109748325B
Authority
CN
China
Prior art keywords
fesmo
solution
product
nano powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910162295.5A
Other languages
English (en)
Other versions
CN109748325A (zh
Inventor
唐培松
陈海锋
王永亚
丁杨彬
吕春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou University
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN201910162295.5A priority Critical patent/CN109748325B/zh
Publication of CN109748325A publication Critical patent/CN109748325A/zh
Application granted granted Critical
Publication of CN109748325B publication Critical patent/CN109748325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

FeSmO3纳米粉体的水热制备方法,涉及一种复合氧化物材料FeSmO3的制备。本发明以乙酸钐和草酸铁铵为原料,采用水热法在较低温度条件下一步制备了FeSmO3,FeSmO3近似球形颗粒,晶粒平均粒径为20‑30nm,并且具有优异的可见光催化性能。本发明为FeSmO3纳米粉体产品的制备开发了新工业,达到了操作简单、快速高效、能耗低、可工业化生产FeSmO3纳米粉体的目的。

Description

FeSmO3纳米粉体的水热制备方法
技术领域
本发明涉及一种复合氧化物材料的制备,特别是涉及一种FeSmO3纳米粉体的水热制备方法。
背景技术
FeSmO3是一种具有优异磁性能的永磁材料,正如文献(稀有金属,2007,31(3):316-319) 报道以Sm2O3和Fe(NO3)3为主要原料,采用共沉淀法经一系列反应过程制备得到沉淀物,将沉淀物于800℃至1000℃煅烧2h得到FeSmO3;文献(材料热处理学报,2005,26(4):22-24) 也报道以Sm2O3、HNO3和Fe(NO3)3为主要原料,采用溶胶-凝胶法经一系列反应过程制备得到干凝胶,将干凝胶于450℃煅烧5h,然后再升温至600℃煅烧1h得到FeSmO3。共沉淀法和溶胶-凝胶法都需高温煅烧过程,存在制备工艺较复杂、耗时长和能耗高等缺点,工业化应用前景堪忧。
水热法通常是指在密闭反应器(如反应釜)中,采用水作为反应体系,通过对反应体系加热,创造一个相对高温、高压的反应环境,使通常难溶或不溶的物质溶解并且反应或重结晶,从而合成产品的一种方法。水热法制备的纳米产品通常具有粉末细、纯度高、分散性好、分布窄、晶型好,工艺简单,易于工业化和节能高效等优点。水热法在纳米材料制备领域具有广泛的应用,但利用水热法来制备FeSmO3纳米粉体的研究还未见报道。
发明内容
本发明的目的在于克服现有技术的不足,提供一种水热法制备FeSmO3纳米粉体的方法。
本发明的目的是通过以下技术方案来实现的,具体步骤为:
(1)在室温条件下,将0.006mol乙酸钐溶于40毫升60%的乙醇溶液得到A溶液,将0.004mol草酸铁铵溶于50ml的蒸馏水中得到B溶液。
(2)在搅拌条件下,将一定量的A溶液缓慢加入到B溶液中,使Sm3+与Fe3+物质的量之比为1.2∶1至1.5∶1范围,持续搅拌10min,得到反应液。
(3)将80毫升反应液转移至100毫升高压反应釜中,将反应釜放入180℃-200℃的烘箱中恒温反应12h。
(4)待反应釜自然冷却至室温,取出产品洗涤3次,将产品于80℃烘干得到FeSmO3纳米粉体样品。
本发明的积极效果是:采用水热法于较低温度条件下一步制备得到FeSmO3纳米粉体产品,为FeSmO3纳米粉体产品的制备开发了新工业,达到了操作简单、快速高效、能耗低、可工业化生产FeSmO3纳米粉体的目的。
附图说明
图1:实施例1所得FeSmO3产品的XRD图;
图2:实施例1所得FeSmO3产品的扫描电镜照片;
图3:实施例1所得FeSmO3产品的漫反射吸收谱;
图4:实施例1所得FeSmO3产品可见光催化降解甲基橙的降解率随时间的变化曲线。
具体实施方式
实施例1
在室温条件下,将0.006mol乙酸钐溶于40毫升60%的乙醇溶液得到A溶液,将0.004mol 草酸铁铵溶于50毫升的蒸馏水中得到B溶液。在搅拌条件下,将32毫升的A溶液缓慢加入到50毫升B溶液中,使Sm3+与Fe3+物质的量之比为1.2∶1,持续搅拌10min,得到反应液。将80毫升反应液转移至100毫升高压反应釜中,将反应釜放入200℃的烘箱中恒温反应12h。待反应釜自然冷却至室温,取出产品洗涤3次,将产品于80℃烘干得到FeSmO3粉体样品。对得到的产品分别进行X射线衍射(XRD)分析、扫描电镜(SEM)观测和和漫反射吸收谱(DRS)测试,结果如图1、图2和图3所示。
图1是粉末法分析测定产品得到的XRD图。从图1可知,所得产品的XRD衍射峰与标准FeSmO3(PDF#39-1490)的衍射峰完全吻合,这表明制备得到的产品是FeSmO3
图2是采用日立S-3400N扫描电子显微镜测试得到的产品的扫描电镜照片。从图2可知, FeSmO3产品近似球形颗粒,晶粒平均粒径20-30nm,晶粒略有团聚,但总体均匀性好。
图3是采用带积分球的EV220型紫外-可见光谱仪,以标准的BaSO4作为参比,将FeSmO3粉末压片,然后进行测试得到的漫反射谱,并通过Kubelka-Munk方程转换为漫反射吸收谱。从图3可知,FeSmO3的吸收边波长λ为610nm。根据Kubelka-Munk理论,利用公式 E(eV)=1240/λ计算得到FeSmO3的带隙宽度为2.0eV,这为FeSmO3粉体的可见光催化活性奠定了基础。
为了表征FeSmO3粉体的可见光催化活性,光催化实验在北京中教金源科技有限公司的CEL-HXF300型光催化反应装置中进行,光源为150W氙灯。将20mg的FeSmO3粉体加入到10mg/L的模拟污水甲基橙溶液中避光10min后,进行光催化降解实验;降解所需时间后取出离心分离去除粉体,通过紫外-可见分光光度计(λ=464nm)对离心后的澄清溶液进行吸光度的测定,从而求得FeSmO3对甲基橙的降解率,实验结果如图4所示。从图4可知,FeSmO3对甲基橙的可见光催化降解速率非常快,30min时甲基橙的降解率就达到了80%左右,45min 时甲基橙的降解率达到了100%,这表明FeSmO3对甲基橙具有优异的可见光催化降解活性。
实施例2
在室温条件下,将0.006mol乙酸钐溶于40毫升60%的乙醇溶液得到A溶液,将0.004mol 草酸铁铵溶于50毫升的蒸馏水中得到B溶液。在搅拌条件下,将40毫升的A溶液缓慢加入到50毫升B溶液中,使Sm3+与Fe3+物质的量比为1.5∶1,持续搅拌10min,得到反应液。将 80毫升反应液转移至100毫升高压反应釜中,将反应釜放入200℃的烘箱中恒温反应12h。待反应釜自然冷却至室温,取出产品洗涤3次,将产品于80℃烘干得到FeSmO3粉体样品。按照实施例1相同的光催化实验方法,FeSmO3光催化降解10mg/L的甲基橙溶液45min时,甲基橙降解率达到了99.6%,FeSmO3对甲基橙表现出了优异的可见光催化降解活性。
实施例3
在室温条件下,将0.006mol乙酸钐溶于40毫升60%的乙醇溶液得到A溶液,将0.004mol 草酸铁铵溶于50毫升的蒸馏水中得到B溶液。在搅拌条件下,将36毫升的A溶液缓慢加入到50毫升B溶液中,使Sm3+与Fe3+物质的量比为1.35∶1,持续搅拌10min,得到反应液。将80毫升反应液转移至100毫升高压反应釜中,将反应釜放入180℃的烘箱中恒温反应12h。待反应釜自然冷却至室温,取出产品洗涤3次,将产品于80℃烘干得到FeSmO3粉体样品。按照实施例1相同的光催化实验方法,FeSmO3光催化降解10mg/L的甲基橙溶液45min时,甲基橙降解率达到了99.1%,FeSmO3对甲基橙表现出了优异的可见光催化降解活性。

Claims (2)

1.FeSmO3纳米粉体的水热制备方法,其特征在于包括以下步骤(1)在室温条件下,将0.006mol乙酸钐溶于40毫升60%的乙醇溶液得到A溶液,将0.004mol草酸铁铵溶于50ml蒸馏水中得到B溶液;(2)在搅拌条件下,将一定量的A溶液缓慢加入到B溶液中,持续搅拌10min,得到反应液;(3)将80毫升反应液转移至100毫升高压反应釜中,将反应釜放入180℃-200℃的烘箱中恒温反应12h;(4)待反应釜自然冷却至室温,取出产品洗涤3次,将产品于80℃烘干得到FeSmO3纳米粉体样品。
2.如权利要求1所述的FeSmO3纳米粉体的水热制备方法,其特征在于A溶液缓慢加入到B溶液中时,控制使Sm3+与Fe3+物质的量之比为1.2∶1至1.5∶1的范围。
CN201910162295.5A 2019-02-22 2019-02-22 FeSmO3纳米粉体的水热制备方法 Active CN109748325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910162295.5A CN109748325B (zh) 2019-02-22 2019-02-22 FeSmO3纳米粉体的水热制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910162295.5A CN109748325B (zh) 2019-02-22 2019-02-22 FeSmO3纳米粉体的水热制备方法

Publications (2)

Publication Number Publication Date
CN109748325A CN109748325A (zh) 2019-05-14
CN109748325B true CN109748325B (zh) 2021-02-26

Family

ID=66407906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910162295.5A Active CN109748325B (zh) 2019-02-22 2019-02-22 FeSmO3纳米粉体的水热制备方法

Country Status (1)

Country Link
CN (1) CN109748325B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557147A (zh) * 2011-11-22 2012-07-11 湖州师范学院 一种微波法制备铁酸钐纳米粉体的方法
CN104655690A (zh) * 2014-12-11 2015-05-27 任福生 一种纳米SmFeO3的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557147A (zh) * 2011-11-22 2012-07-11 湖州师范学院 一种微波法制备铁酸钐纳米粉体的方法
CN104655690A (zh) * 2014-12-11 2015-05-27 任福生 一种纳米SmFeO3的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Crystal Shape Tailoring in Perovskite Structure Rare-Earth Ferrites REFeO3 (RE = La, Pr, Sm, Dy, Er, and Y) and Shape-Dependent Magnetic Properties of YFeO3;Long Yuan等;《Cryst. Growth Des.》;20160929;6522-6530页 *
Hydrothermal Synthesis and Magnetic Properties of SmCr0.5M0.5O3(M=Fe and Mn) Micro-plates;ZHANG Jiaqi等;《Chem. Res. Chin. Univ.》;20180228;1-7页 *
Multiferroicity in SmFeO3 synthesized by hydrothermal method;Chenyang Zhang等;《Journal of Alloys and Compounds》;20160109;152-157页 *

Also Published As

Publication number Publication date
CN109748325A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
Sun et al. Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation
Siddiqui et al. One-step, template-free hydrothermal synthesis of CuO tetrapods
Zhai et al. Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant
Li et al. Visible light responsive Bi 7 Fe 3 Ti 3 O 21 nanoshelf photocatalysts with ferroelectricity and ferromagnetism
Zinatloo-Ajabshir et al. Novel poly (ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route
Karmaoui et al. Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing
Dong et al. Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole
Singh et al. Preparation, characterization, properties and applications of nano zinc ferrite
Horti et al. Photoluminescence properties of SnO2 nanoparticles: effect of solvents
Khademolhoseini et al. Green synthesis and characterization of cobalt aluminate nanoparticles and its photocatalyst application
Wang et al. Facile synthesis of hematite nanoparticles and nanocubes and their shape-dependent optical properties
Hao et al. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine
Parhizkar et al. Synthesis and characterization of nano CoFe 2 O 4 prepared by sol-gel auto-combustion with ultrasonic irradiation and evaluation of photocatalytic removal and degradation kinetic of reactive red 195
CN110694627A (zh) 一种三氧化二铁纳米环光催化剂及其制备方法
Habibi et al. Nanostructure composite ZnFe2O4–FeFe2O4–ZnO immobilized on glass: Photocatalytic activity for degradation of an azo textile dye F3B
CN102259935B (zh) 一种制备鸟巢形Co3O4的表面活性剂辅助的水热方法
CN101774652B (zh) 一种NiTiO3纳米粉体的微波水热制备方法
Chen et al. The effects of PVP surfactant in the direct and indirect hydrothermal synthesis processes of ceria nanostructures
CN106517130B (zh) 一种以富磷生物质制备羟基磷酸铁微纳米粉体材料的方法
CN102303911B (zh) 铁酸铈纳米粉体的微波制备方法
CN109748325B (zh) FeSmO3纳米粉体的水热制备方法
Pan et al. Synthesis of bismuth oxide nanoparticles by a templating method and its photocatalytic performance
Zhou et al. A facile method for preparation ZnO with different morphology and their optical property
CN102921418B (zh) 一种立方块状氧化亚铜可见光催化剂的合成方法
Rahnamaeiyan et al. Novel sol–gel method for synthesis of cobalt aluminate and its photocatalyst application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant