CN109742971B - Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material - Google Patents
Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material Download PDFInfo
- Publication number
- CN109742971B CN109742971B CN201811592649.1A CN201811592649A CN109742971B CN 109742971 B CN109742971 B CN 109742971B CN 201811592649 A CN201811592649 A CN 201811592649A CN 109742971 B CN109742971 B CN 109742971B
- Authority
- CN
- China
- Prior art keywords
- thermal energy
- magnetic phase
- permanent magnet
- phase change
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 76
- 230000008859 change Effects 0.000 title claims abstract description 37
- 239000000463 material Substances 0.000 title claims abstract description 26
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 66
- 239000000956 alloy Substances 0.000 claims abstract description 66
- 230000007704 transition Effects 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 11
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 10
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 10
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229920005570 flexible polymer Polymers 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 4
- 239000003302 ferromagnetic material Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 241001124569 Lycaenidae Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 229920000314 poly p-methyl styrene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 206010063401 primary progressive multiple sclerosis Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及一种基于磁相变合金/柔性压电材料的热能收集器,属于热能收集领域。热能收集器包括固定台,柔性压电膜,磁相变合金片,永磁体,悬梁臂,加热台;悬梁臂上方粘接柔性压电膜,悬梁臂一端下方设置固定台并固定在固定台上,悬梁臂另一端下表面粘有磁相变合金片,磁相变合金片下方放置加热台,所述永磁体悬置于磁相变合金片上方。本申请采用反铁磁‑铁磁相变合金片和永磁体,使合金片受热温度升高时,发生弱磁马氏体到铁磁奥氏体的磁性相变,合金片被吸引起来,使得永磁体不用和热源相粘接,避免了永磁体因接触热源而受热退磁的现象,也使得不需要额外的散热器来保证器件的工作,节省能源。
The invention relates to a thermal energy collector based on a magnetic phase change alloy/flexible piezoelectric material, belonging to the field of thermal energy collection. The thermal energy collector includes a fixed table, a flexible piezoelectric film, a magnetic phase change alloy sheet, a permanent magnet, a cantilever arm, and a heating table; the flexible piezoelectric film is bonded above the cantilever arm, and a fixed table is set under one end of the cantilever arm and fixed on the fixed table , a magnetic phase change alloy sheet is adhered to the lower surface of the other end of the cantilever arm, a heating table is placed under the magnetic phase change alloy sheet, and the permanent magnet is suspended above the magnetic phase change alloy sheet. The application uses antiferromagnetic-ferromagnetic phase change alloy sheets and permanent magnets, so that when the heating temperature of the alloy sheets increases, a magnetic phase transition from weak magnetic martensite to ferromagnetic austenite occurs, and the alloy sheets are attracted, so that the The permanent magnet does not need to be bonded to the heat source, which avoids the phenomenon that the permanent magnet is thermally demagnetized due to contact with the heat source, and also makes it unnecessary to use an additional radiator to ensure the operation of the device and save energy.
Description
技术领域technical field
本发明属于热能收集领域,特别是一种基于磁相变合金-柔性压电材料的热能收集器。The invention belongs to the field of thermal energy collection, in particular to a thermal energy collector based on a magnetic phase change alloy-flexible piezoelectric material.
背景技术Background technique
热能收集器可以代替一些传统电池为传感器持续供电,在废热、自然热收集等领域具有很高的应用价值。目前常用的热能收集器利用的是材料的热电性、热释电性、热弹性和热磁性,而这些类型的热能收集器存在工艺复杂、成本较高、适用条件受限等一系列问题,这些问题使得热能收集器与磁性材料的联系开始受到更广泛的关注。The thermal energy collector can replace some traditional batteries to continuously supply power to the sensor, and has high application value in the fields of waste heat and natural heat collection. At present, the commonly used thermal energy collectors utilize the thermoelectricity, pyroelectricity, thermoelasticity and thermomagnetism of materials, and these types of thermal energy collectors have a series of problems such as complex process, high cost and limited application conditions. The problem is that the connection of thermal energy harvesters to magnetic materials has begun to receive wider attention.
目前现有利用磁性材料制作热能收集器的技术正在不断提高,在2011年R.D.James等人通过加热Ni45Co5Mn40Sn10合金直接利用线圈将热能转换为电能,利用的是法拉第电磁感应定律,其峰值电压可以达到0.6mV。但是该热能收集器存在一些问题,只能单次转换热能,不能重复转换,同时也受到线圈匝数和磁场强度影响。为了克服只能单次转换热能,在2015年Marcel Gueltig等人利用悬梁臂结构,在悬梁臂末端粘接Ni50.4Co3.7Mn32.8In13.1和在其周围缠绕线圈来实现不断重复的将热能转换为电能。但是小型器件的能量收集效率受切割磁感线运动速度,线圈匝数,磁通量大小的限制,转换效率低。人们为了克服这些问题和更好的利用磁性材料,2017年Chun等人利用聚偏氟乙烯(PVDF)悬梁臂和钆(Gd)合金实现将热能转换为电能,当钆低于其居里温度时,它变为铁磁性并被永磁体吸引,而当它接触热源后,其温度升高至居里温度之上并变为顺磁态,然后Gd被弹簧拉回原位置与散热器接触,随后它的温度低于居里温度时开始恢复其磁性。当磁力大于弹簧力时永磁体将Gd拉向热源,循环继续,在来回往复运动中,利用悬梁臂将机械能转换为电能80℃的温差下达到158μW的输出功率,其单个双压电晶片悬臂的峰值电压可达到2.8V。但是该技术存在一些问题,首先Gd金属片的居里温度点在室温附近,并且磁铁粘在热端上容易减弱磁铁的磁性使得器件失效,同时也需要一个稳定的散热器来保证冷端的温度维持在-10℃,需要消耗更多的能源来维持器件正常工作。At present, the existing technology of using magnetic materials to make thermal energy collectors is constantly improving. In 2011, RDJames et al. directly used coils to convert thermal energy into electrical energy by heating Ni 45 Co 5 Mn 40 Sn 10 alloy, using Faraday's law of electromagnetic induction, Its peak voltage can reach 0.6mV. However, the thermal energy collector has some problems. It can only convert thermal energy once, and cannot be converted repeatedly. It is also affected by the number of coil turns and the strength of the magnetic field. In 2015, Marcel Gueltig et al. used the cantilever arm structure, bonding Ni 50.4 Co 3.7 Mn 32.8 In 13.1 at the end of the cantilever arm and winding coils around it to achieve the continuous and repeated conversion of heat energy into electrical energy. However, the energy collection efficiency of small devices is limited by the speed of the cutting magnetic field line, the number of coil turns, and the size of the magnetic flux, and the conversion efficiency is low. In order to overcome these problems and make better use of magnetic materials, in 2017 Chun et al. used polyvinylidene fluoride (PVDF) cantilevers and gadolinium (Gd) alloys to convert thermal energy into electricity, when gadolinium is lower than its Curie temperature. , it becomes ferromagnetic and is attracted by the permanent magnet, and when it contacts the heat source, its temperature rises above the Curie temperature and becomes paramagnetic, then Gd is pulled back by the spring to contact the heat sink, and then It begins to regain its magnetic properties when its temperature falls below the Curie temperature. When the magnetic force is greater than the spring force, the permanent magnet pulls Gd towards the heat source, and the cycle continues. In the reciprocating motion, the cantilever arm is used to convert the mechanical energy into electrical energy, and the output power of the single bimorph cantilever reaches 158 μW under the temperature difference of 80 °C. The peak voltage can reach 2.8V. However, there are some problems with this technology. First of all, the Curie temperature of the Gd metal sheet is near room temperature, and the magnet sticking to the hot end will easily weaken the magnetism of the magnet and cause the device to fail. At the same time, a stable heat sink is also required to ensure that the temperature of the cold end is maintained. At -10°C, more energy needs to be consumed to maintain the normal operation of the device.
发明内容SUMMARY OF THE INVENTION
本发明所解决的技术问题在于提供一种基于磁相变合金/柔性压电材料的热能收集器,以实现热能到电能的持续转换。The technical problem solved by the present invention is to provide a thermal energy collector based on a magnetic phase change alloy/flexible piezoelectric material, so as to realize the continuous conversion of thermal energy into electrical energy.
实现本发明目的的技术解决方案为:The technical solution that realizes the purpose of the present invention is:
一种基于磁相变合金-柔性压电材料的热能收集器,热能收集器包括固定台,柔性压电膜,磁相变合金片,永磁体,悬梁臂,加热台;A thermal energy collector based on magnetic phase change alloy-flexible piezoelectric material, the thermal energy collector comprises a fixed table, a flexible piezoelectric film, a magnetic phase change alloy sheet, a permanent magnet, a cantilever arm, and a heating table;
所述悬梁臂上方粘接柔性压电膜,悬梁臂一端下方设置固定台并固定在固定台上,悬梁臂另一端下表面粘有磁相变合金片,磁相变合金片下方放置加热台,所述永磁体悬置于磁相变合金片上方。A flexible piezoelectric film is bonded above the cantilever arm, a fixing table is arranged under one end of the cantilever arm and is fixed on the fixing table, a magnetic phase change alloy sheet is stuck on the lower surface of the other end of the cantilever arm, and a heating table is placed under the magnetic phase change alloy sheet, The permanent magnet is suspended above the magnetic phase change alloy sheet.
所述的磁相变合金片为反铁磁-铁磁相变合金,在温度升高时发生弱磁马氏体到铁磁奥氏体的磁性相变,合金的相变温度在40℃到200℃之间。The magnetic phase transition alloy sheet is an antiferromagnetic-ferromagnetic phase transition alloy, which undergoes a magnetic phase transition from weak magnetic martensite to ferromagnetic austenite when the temperature increases, and the phase transition temperature of the alloy is between 40°C and 40°C. between 200°C.
所述反铁磁-铁磁相变合金为NiMnInCo合金。The antiferromagnetic-ferromagnetic phase change alloy is a NiMnInCo alloy.
所述柔性压电膜为PVDF膜,膜的厚度为20-40μm。The flexible piezoelectric film is a PVDF film, and the thickness of the film is 20-40 μm.
所述悬梁臂的材料为柔性聚合物。The material of the cantilever arm is a flexible polymer.
所述柔性聚合物为具有较低弹性模量的聚酰亚胺。The flexible polymer is a polyimide with a lower elastic modulus.
所述永磁体距离悬梁臂上表面5-20mm,永磁体的尺寸为50~1000mm×20~50mm×5~10mm,永磁体周围磁场强度在1000Oe以上。The permanent magnet is 5-20mm away from the upper surface of the cantilever arm, the size of the permanent magnet is 50-1000mm×20-50mm×5-10mm, and the magnetic field intensity around the permanent magnet is above 1000Oe.
所述永磁体采用支架悬置,永磁体在支架上的位置可调,从而实现永磁体高度可调。The permanent magnet is suspended by a bracket, and the position of the permanent magnet on the bracket can be adjusted, so that the height of the permanent magnet can be adjusted.
一种采用上述的热能收集器收集热能的方法,当磁相合金片接触到加热台的热源时,温度升高,磁相合金片发生弱磁马氏体到铁磁奥氏体的磁性相变;A method for collecting thermal energy using the above-mentioned thermal energy collector, when the magnetic phase alloy sheet contacts the heat source of the heating table, the temperature rises, and the magnetic phase alloy sheet undergoes a magnetic phase transition from weak magnetic martensite to ferromagnetic austenite ;
由于永磁体对铁磁材料的吸引力,磁相合金片被吸起,进而使得悬梁臂以及柔性压电膜弯曲;Due to the attraction of the permanent magnet to the ferromagnetic material, the magnetic phase alloy sheet is attracted, which in turn makes the cantilever arm and the flexible piezoelectric film bend;
柔性压电膜上下表面间产生电压,实现了热能到电能的转换;A voltage is generated between the upper and lower surfaces of the flexible piezoelectric film, which realizes the conversion of thermal energy to electric energy;
由于被吸起的磁相合金片远离热源,温度降低,转变回弱磁态,吸引力消失,悬梁臂伸直,磁相合金片回到初始位置继续进行换热;Since the magnetic phase alloy sheet that is attracted is far away from the heat source, the temperature decreases, and it changes back to a weak magnetic state, the attractive force disappears, the cantilever arm straightens, and the magnetic phase alloy sheet returns to the initial position to continue heat exchange;
上述周期不断重复,热能被不断转换为电能。The above cycle is repeated continuously, and thermal energy is continuously converted into electrical energy.
本发明与现有技术相比,其显著优点如下:Compared with the prior art, the present invention has the following significant advantages:
(1)本申请采用反铁磁-铁磁相变合金片和永磁体,使合金片受热温度升高时,发生弱磁马氏体到铁磁奥氏体的磁性相变,合金片被吸引起来,使得永磁体不用和热源相粘接,避免了永磁体因接触热源而受热退磁的现象,也使得不需要额外的散热器来保证器件的工作,节省能源。(1) The application adopts an antiferromagnetic-ferromagnetic phase transition alloy sheet and a permanent magnet, so that when the heating temperature of the alloy sheet increases, a magnetic phase transition from weak magnetic martensite to ferromagnetic austenite occurs, and the alloy sheet is attracted In this way, the permanent magnet does not need to be bonded to the heat source, which avoids the phenomenon that the permanent magnet is thermally demagnetized due to contact with the heat source, and also makes it unnecessary to use an additional radiator to ensure the operation of the device and save energy.
(2)本申请的热能收集器,利用将PVDF膜粘接在悬梁臂上使得更好的将形变转换为电能,可以有更高的输出电压。(2) The thermal energy collector of the present application can better convert the deformation into electric energy by bonding the PVDF film on the cantilever arm, and can have a higher output voltage.
(3)本发明具有更高的转换效率,工作温度范围可控,不会受到线圈匝数、磁场强度等因素的限制,不需要存在温度梯度,同时本发明的热能收集器可以持续不断地实现热能到电能的转换,满足实际应用,结构简单、制备便捷以及具有节能高效的特点。(3) The present invention has higher conversion efficiency, controllable working temperature range, is not limited by factors such as the number of coil turns, magnetic field strength, etc., and does not require temperature gradients, and the thermal energy collector of the present invention can be continuously realized The conversion of thermal energy to electric energy meets practical application, and has the characteristics of simple structure, convenient preparation and energy saving and high efficiency.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
图1是基于磁相变合金-柔性压电材料的热能收集器的示意图。Figure 1 is a schematic diagram of a thermal energy harvester based on a magnetic phase change alloy-flexible piezoelectric material.
图2是基于磁相变合金/柔性压电材料的热能收集器的工作原理图。Figure 2 is a schematic diagram of the working principle of a thermal energy harvester based on a magnetic phase change alloy/flexible piezoelectric material.
图3是实施例中基于磁相变合金/柔性压电材料的热能收集器的实物图。FIG. 3 is a physical view of a thermal energy harvester based on magnetic phase change alloy/flexible piezoelectric material in an embodiment.
图4是实施例中Ni45Mn36.91In13.09Co5合金在0.1T外磁场下的热磁曲线图。FIG. 4 is a thermomagnetic curve diagram of Ni 45 Mn 36.91 In 13.09 Co 5 alloy in an example under a 0.1T external magnetic field.
图5是实施例中基于磁相变合金/柔性压电材料的热能收集器的电压-时间关系图。FIG. 5 is a voltage-time graph of a magnetic phase change alloy/flexible piezoelectric material based thermal energy harvester in an embodiment.
附图标记说明:Description of reference numbers:
1-固定台,2-柔性压电膜,3-磁相变合金片,4-永磁体,5-悬梁臂,6-加热台。1-Fixed stage, 2-Flexible piezoelectric film, 3-Magnetic phase change alloy sheet, 4-Permanent magnet, 5-Cantilever arm, 6-Heating stage.
具体实施方式Detailed ways
本发明公开了一种基于磁相变合金/柔性压电材料的热能收集器,所述的热能收集器包括柔性压电膜2、悬梁臂5、永磁体4以及磁相变合金片3。The present invention discloses a thermal energy collector based on a magnetic phase change alloy/flexible piezoelectric material. The thermal energy collector includes a flexible
本发明的热能收集器制备过程是:先把柔性压电膜2用环氧树脂粘接在悬梁臂5上,随后将悬梁臂5末端粘接上反铁磁-铁磁相变合金片并将未粘接合金片的一端固定在固定台1(或任意能固定住悬臂的物件)上,最后在合金片上方固定一个永磁体4。The preparation process of the thermal energy collector of the present invention is as follows: firstly, the flexible
本发明涉及热能收集器的工作原理是:当反铁磁-铁磁相变合金接触热源时,温度升高,发生弱磁马氏体到铁磁奥氏体的磁性相变;由于永磁体4对铁磁材料的吸引力,合金片3被吸起,进而造成悬臂以及柔性压电材料的弯曲;由于柔性压电材料是一种压电材料,此时其上下表面间产生电压,即实现了热能到电能的转换;此后,由于被吸起的合金片远离热源,温度降低,转变回弱磁态,磁铁的吸引力消失,悬臂伸直,合金片回到初始位置继续进行换热。上述周期不断重复,热能被不断转换为电能。The present invention relates to the working principle of the heat energy collector: when the antiferromagnetic-ferromagnetic phase change alloy contacts the heat source, the temperature rises, and the magnetic phase transition from weak magnetic martensite to ferromagnetic austenite occurs; due to the
进一步地,所述的磁相变合金为反铁磁-铁磁相变合金,其会在温度升高时发生弱磁马氏体到铁磁奥氏体的磁性相变,同时合金的相变温度在40℃到200℃之间。Further, the magnetic phase transition alloy is an antiferromagnetic-ferromagnetic phase transition alloy, which will undergo a magnetic phase transition from weak magnetic martensite to ferromagnetic austenite when the temperature increases, and the phase transition of the alloy will occur simultaneously. The temperature is between 40°C and 200°C.
进一步地,柔性压电材料优选为PVDF膜,膜的厚度为28μm,PVDF膜的制备已经有成熟的制备工艺,可以方便得到,同时具有稳定的压电性能。Further, the flexible piezoelectric material is preferably a PVDF film with a thickness of 28 μm. The PVDF film has a mature preparation process, can be easily obtained, and has stable piezoelectric properties.
进一步地,悬梁臂所用材料为柔性聚合物,优选为聚酰亚胺,聚酰亚胺具有较低的弹性模量,可以更好地使柔性压电材料产生形变。Further, the material used for the cantilever arm is a flexible polymer, preferably polyimide, which has a lower elastic modulus and can better deform the flexible piezoelectric material.
进一步地,永磁体是由支架台固定,支架是常用的铁架台,可以通过调节螺母位置来自由控制永磁体高度(永磁体尺寸为50~1000mm×20~50mm×5~10mm,永磁体周围磁场强度在1000Oe以上)。Further, the permanent magnet is fixed by a bracket, and the bracket is a commonly used iron bracket, and the height of the permanent magnet can be freely controlled by adjusting the position of the nut (the size of the permanent magnet is 50-1000mm × 20-50mm × 5-10mm, the magnetic field around the permanent magnet is The intensity is above 1000Oe).
实施例1:Example 1:
在具体实施例中,本发明涉及热能收集器使用的反铁磁-铁磁相变合金为Heusler(赫斯勒)型NiMnInCo合金,成分为Ni45Mn36.91In13.09Co5。所述的反铁磁-铁磁相变合金以高纯金属单质Ni、Co、Mn和In为原料,按照合金表达式精确配比各金属单质,通过电弧熔炼法制备;熔炼在高纯氩气氛围保护下进行;熔炼后的合金在850℃退火72小时,随后淬火并通过线切割进行尺寸调整;最后,根据设计图搭建能量收集器。所制备的热能收集器可以实现对恒定热源80℃的热能收集。In a specific embodiment, the present invention relates to the antiferromagnetic-ferromagnetic phase change alloy used in the thermal energy collector is a Heusler type NiMnInCo alloy with a composition of Ni 45 Mn 36.91 In 13.09 Co 5 . The antiferromagnetic-ferromagnetic phase change alloy uses high-purity metal elements Ni, Co, Mn and In as raw materials, and accurately proportions each metal element according to the alloy expression, and is prepared by an arc melting method; smelting in high-purity argon gas. carried out under the protection of atmosphere; the smelted alloy was annealed at 850 °C for 72 hours, then quenched and sized by wire cutting; finally, the energy harvester was built according to the design drawing. The prepared thermal energy collector can realize thermal energy harvesting at 80°C for a constant heat source.
如图1所示,为基于磁相变合金/柔性压电材料的热能收集器的理论模型图。如图2所示,是基于磁相变合金/柔性压电材料的热能收集器的工作原理图。其工作原理是:当合金接触热源时,温度升高,发生弱磁性到铁磁性的磁性转变;由于永磁体对铁磁材料的吸引力,合金片被吸起,进而造成悬臂以及柔性压电材料的弯曲;由于PVDF膜是一种柔性压电材料,此时其上下表面间产生电压,即实现了热能到电能的转换;此后,由于被吸起的合金片远离热源,温度降低,转变回弱磁态,磁铁的吸引力消失,悬臂伸直,合金片回到初始位置继续进行换热。上述周期不断重复,热能被不断转换为电能。As shown in Figure 1, it is a theoretical model diagram of a thermal energy harvester based on a magnetic phase change alloy/flexible piezoelectric material. As shown in Figure 2, it is the working principle diagram of the thermal energy harvester based on the magnetic phase change alloy/flexible piezoelectric material. Its working principle is: when the alloy contacts the heat source, the temperature rises, and the magnetic transition from weak magnetism to ferromagnetism occurs; due to the attraction of the permanent magnet to the ferromagnetic material, the alloy sheet is attracted, which in turn causes the cantilever and flexible piezoelectric material. Since the PVDF film is a flexible piezoelectric material, a voltage is generated between its upper and lower surfaces at this time, that is, the conversion of thermal energy to electric energy is realized; after that, since the sucked alloy sheet is far away from the heat source, the temperature decreases, and the transition back to weak In the magnetic state, the attractive force of the magnet disappears, the cantilever is straightened, and the alloy sheet returns to the initial position to continue heat exchange. The above cycle is repeated continuously, and thermal energy is continuously converted into electrical energy.
图3是实施例中基于磁相变合金/柔性压电材料的热能收集器的实物图。在实施例中悬梁臂选用聚酰亚胺,尺寸为7mm×5mm。PVDF膜厚度为28μm,尺寸为5mm×4mm。磁性合金成分为Ni45Mn36.91In13.09Co5,尺寸为5mm×5mm×1mm。热源保持在80℃。FIG. 3 is a physical view of a thermal energy harvester based on magnetic phase change alloy/flexible piezoelectric material in an embodiment. In the embodiment, the cantilever arm is selected from polyimide, and the size is 7mm×5mm. The PVDF film thickness is 28 μm and the size is 5 mm × 4 mm. The magnetic alloy composition is Ni 45 Mn 36.91 In 13.09 Co 5 , and the size is 5 mm×5 mm×1 mm. The heat source was kept at 80°C.
图4是实施例中Ni45Mn36.91In13.09Co5合金在0.1T外磁场下的热磁曲线图。数据通过综合物性测量系统(Physical Property Measurement System:PPMS)得到。合金马氏体相变温度为338K,奥氏体相变温度为355K。在发生马氏体相变时,合金由高温铁磁性转变为低温弱磁性,与之相反的是发生奥氏体相变时合金由低温弱磁性转变为高温铁磁性。这种磁性变化配合永磁的吸引力会导致悬臂梁周期性的弯曲/恢复。FIG. 4 is a thermomagnetic curve diagram of Ni 45 Mn 36.91 In 13.09 Co 5 alloy in an example under a 0.1T external magnetic field. The data were obtained by a comprehensive physical property measurement system (Physical Property Measurement System: PPMS). The martensitic transformation temperature of the alloy is 338K, and the austenite transformation temperature is 355K. When the martensitic transformation occurs, the alloy changes from high-temperature ferromagnetic to low-temperature weak magnetic, on the contrary, when the austenite transformation occurs, the alloy changes from low-temperature weak magnetic to high-temperature ferromagnetic. This magnetic change combined with the attractive force of the permanent magnet causes the cantilever to bend/recover periodically.
图5是实施例中基于磁相变合金/柔性压电材料的热能收集器的电压-时间曲线。测试前,PVDF膜两边被接上导线,PVDF弯曲引起的电压信号会经过导线被电荷放大器和示波器采集到。如图所示,测得的峰值电压可达到29V。Figure 5 is a voltage-time curve of a magnetic phase change alloy/flexible piezoelectric material based thermal energy harvester in an example. Before the test, both sides of the PVDF film are connected with wires, and the voltage signal caused by PVDF bending will be collected by the charge amplifier and oscilloscope through the wires. As shown, the measured peak voltage can reach 29V.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811592649.1A CN109742971B (en) | 2018-12-25 | 2018-12-25 | Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811592649.1A CN109742971B (en) | 2018-12-25 | 2018-12-25 | Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109742971A CN109742971A (en) | 2019-05-10 |
CN109742971B true CN109742971B (en) | 2020-11-13 |
Family
ID=66361139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811592649.1A Active CN109742971B (en) | 2018-12-25 | 2018-12-25 | Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109742971B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119436245B (en) * | 2025-01-09 | 2025-04-22 | 大连恒宝四达科技发展有限公司 | Steel plate type hydroelectric integrated electric heater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172491A (en) * | 2006-10-31 | 2008-05-07 | 通用汽车环球科技运作公司 | Active material actuated flow trips |
US8552617B2 (en) * | 2010-01-11 | 2013-10-08 | Samsung Electronics Co., Ltd. | Energy harvesting device using pyroelectric material |
CN106655891A (en) * | 2016-10-17 | 2017-05-10 | 湖北民族学院 | Pyroelectric/piezoelectric energy collector and integration system thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107702575B (en) * | 2017-09-30 | 2019-06-28 | 华北电力大学 | The campaign-styled design method of the round-trip hot and cold side of magnetic phase transition microcapsule and radiator |
CN108023502A (en) * | 2018-01-08 | 2018-05-11 | 华中科技大学 | A kind of beam type negative stiffness device for collecting piezoelectric vibration energy |
-
2018
- 2018-12-25 CN CN201811592649.1A patent/CN109742971B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172491A (en) * | 2006-10-31 | 2008-05-07 | 通用汽车环球科技运作公司 | Active material actuated flow trips |
US8552617B2 (en) * | 2010-01-11 | 2013-10-08 | Samsung Electronics Co., Ltd. | Energy harvesting device using pyroelectric material |
CN106655891A (en) * | 2016-10-17 | 2017-05-10 | 湖北民族学院 | Pyroelectric/piezoelectric energy collector and integration system thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109742971A (en) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7800278B2 (en) | Energy harvesting by means of thermo-mechanical device utilizing bistable ferromagnets | |
JP2014014269A (en) | Thermodynamic cycle and method for power generation | |
Kishore et al. | Low-grade waste heat recovery using the reverse magnetocaloric effect | |
CN113380941B (en) | An out-of-plane thermoelectric device with stretchable porous structure | |
CN109742971B (en) | Heat energy collector based on magnetic phase change alloy-flexible piezoelectric material | |
CN204103733U (en) | A kind of hand presses self-generating device | |
WO2008049124A9 (en) | Magnetomechanical transducer, and apparatus and methods of harvesting energy | |
CN102072125A (en) | One-way shape memory effect-based two-way linear driver and method thereof | |
JP2016083018A5 (en) | ||
CN109742970B (en) | Thermal energy harvester based on magnetic phase change alloy-pyroelectric material | |
CN109474203B (en) | Magnetostrictive film type vibration collecting and generating device capable of converting multi-impact low frequency into high frequency | |
Kanomata et al. | Magnetic properties of quaternary Heusler alloys Ni 2− x Co x MnGa | |
Deepak et al. | Figure of merit and improved performance of a hybrid thermomagnetic oscillator | |
CN209151028U (en) | A composite vibration energy harvester based on piezoelectric and electromagnetic coupling | |
US20100253181A1 (en) | Special Thermo Magnetic Motor Device | |
CN106191616B (en) | A kind of magnetic phase transition alloy | |
CN110034653A (en) | Miniature diamagnetic suspension vibrating energy collecting device and acquisition method for rail traffic | |
CN113224974A (en) | Bidirectional vibration energy collecting device | |
KR101273491B1 (en) | Micro magnetostrictive actuator by energy harvesting | |
CN105958865A (en) | Isosceles trapezoid cantilever beam-based piezoelectric-electromagnetic energy capture device | |
Chung et al. | Design, fabrication, and testing of a thermal/mechanical/magnetic hybrid energy micro-harvester | |
Sakon et al. | Magnetic field-induced strain of Ni–Co–Mn–In alloy in pulsed magnetic field | |
Li et al. | Magnetoelectric and Enhanced Magneto-Mechano-Electric Cantilever Beam Devices for Harvesting Weak Magnetic Fields | |
CN106160575A (en) | A kind of low frequency magnetic field energy collecting device using Piezoelectric anisotropy tuning fork | |
Belo et al. | Near room-temperature thermomagnetic energy harvesting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |