CN109740668B - 深度模型训练方法及装置、电子设备及存储介质 - Google Patents

深度模型训练方法及装置、电子设备及存储介质 Download PDF

Info

Publication number
CN109740668B
CN109740668B CN201811646736.0A CN201811646736A CN109740668B CN 109740668 B CN109740668 B CN 109740668B CN 201811646736 A CN201811646736 A CN 201811646736A CN 109740668 B CN109740668 B CN 109740668B
Authority
CN
China
Prior art keywords
model
training
image
training set
acquiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811646736.0A
Other languages
English (en)
Other versions
CN109740668A (zh
Inventor
李嘉辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sensetime Technology Development Co Ltd
Original Assignee
Beijing Sensetime Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sensetime Technology Development Co Ltd filed Critical Beijing Sensetime Technology Development Co Ltd
Priority to CN201811646736.0A priority Critical patent/CN109740668B/zh
Publication of CN109740668A publication Critical patent/CN109740668A/zh
Priority to KR1020217007097A priority patent/KR20210042364A/ko
Priority to SG11202103717QA priority patent/SG11202103717QA/en
Priority to JP2021537466A priority patent/JP7110493B2/ja
Priority to PCT/CN2019/114497 priority patent/WO2020134533A1/zh
Priority to TW108148214A priority patent/TWI747120B/zh
Application granted granted Critical
Publication of CN109740668B publication Critical patent/CN109740668B/zh
Priority to US17/225,368 priority patent/US20210224598A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20096Interactive definition of curve of interest
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Image Analysis (AREA)

Abstract

本发明实施例公开了一种深度模型训练方法及装置、电子设备及存储介质。所述深度学习模型训练方法,包括:获取第一模型输出的第n+1第一标注信息,所述第一模型已经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;将所述第二模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型的第n+1训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。

Description

深度模型训练方法及装置、电子设备及存储介质
技术领域
本发明涉及信息技术领域,尤其涉及一种深度模型训练方法及装置、电子设备及存储介质。
背景技术
深度学习模型可以通过训练集的训练之后,具有一定的分类或识别能力。所述训练集通常包括:训练数据及训练数据的标注数据。但是一般情况下,标注数据都需要人工进行手动标注。一方面纯手动标注所有的训练数据,工作量大、效率低,且标注过程中存在人工错误;另一方面,若需要实现高精度的标注,例如以图像领域的标注为例,需要实现像素级分割,纯人工标注要达到像素级分割,难度非常大且标注精度也难以保证。
故基于纯人工标注的训练数据进行深度学习模型的训练,会存在训练效率低、训练得到的模型因为训练数据自身精度低导致模型的分类或识别能力精度达不到预期。
发明内容
有鉴于此,本发明实施例期望提供一种深度模型训练方法及装置、电子设备及存储介质。
本发明的技术方案是这样实现的:
一种深度学习模型训练方法,包括:
获取第一模型输出的第n+1第一标注信息,所述第一模型经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;
基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;
将所述第一模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第二模型的第n+1训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
基于上述方案,所述方法包括:
确定n是否小于N,N为最大训练轮数;
所述获取第一模型输出的第n+1第一标注信息,以及,获取第二模型输出的第n+1第二标注信息;包括:
若n小于N,获取第一模型输出的第n+1第一标注信息,以及,获取第二模型输出的第n+1第二标注信息。
基于上述方案,所述获取所述训练数据及所述训练数据的初始标注信息,包括:
获取包含有多个分割目标的训练图像及所述分割目标的外接框;
所述基于所述初始标注信息,生成所述第一模型的第一训练集和所述第二模型的第一训练集,包括:
基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;
基于所述训练数据及所述标注轮廓,生成所述第一模型的第一训练集及所述第二模型的第一训练集。
基于上述方案,所述基于所述初始标注信息,生成所述第一模型的第一训练集和所述第二模型的第一训练集,还包括:
基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;
基于所述训练数据及所述分割边界,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
基于上述方案,所述基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓,包括:
基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
一种深度学习模型训练装置,包括:
标注模块,用于获取第一模型输出的第n+1第一标注信息,所述第一模型经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;
第一生成模块,用于基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;
训练模块,用于将所述第二模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型的第n+1训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
基于上述方案,所述装置包括:
确定模块,用于确定n是否小于N,N为最大训练轮数;
所述标注模块,用于若n小于N,获取第一模型输出的第n+1第一标注信息,以及,获取第二模型输出的第n+1第二标注信息。
基于上述方案,所述装置包括:
获取模块,用于获取所述训练数据及所述训练数据的初始标注信息;
第二生成模块,用于基于所述初始标注信息,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
基于上述方案,所述获取模块,具体用于获取包含有多个分割目标的训练图像及所述分割目标的外接框;
所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;基于所述训练数据及所述标注轮廓,生成所述第一模型的第一训练集及所述第二模型的第一训练集。
基于上述方案,所述第一生成模块,具体用于基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;基于所述训练数据及所述分割边界,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
基于上述方案,所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述任意一个技术方案提供的深度学习模型训练方法。
一种电子设备,包括:
存储器;
处理器,与所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令实现前述任意一个技术方案提供的深度学习模型训练方法。
本发明实施例提供的技术方案,会利用深度学习模型前一轮训练完成之后对训练数据进行标注获得标注信息,该标注信息用作另外一个模型的下一轮训练的训练样本,可以利用非常少的初始人工标注的训练数据进行模型训练,然后利用逐步收敛的第一模型和第二模型识别输出的标注数据作为另一个模型下一轮的训练样本。由于深度学习模型在前一轮训练过程中模型参数会依据大部分标注正确的数据生成,而少量标注不正确或者标注精度低的数据对深度学模型的模型参数影响小,如此反复迭代多次,深度学模型的标注信息会越来越精确。利用越来越精确的标注信息作为训练数据,则会使得深度学习模型的训练结果也越来越好。由于模型利用自身的标注信息构建训练样本,如此,减少了人工手动标注的数据量,减少了人工手动标注所导致的效率低及人工错误,具有模型训练速度快及训练效果好的特点,且采用这种方式训练的深度学习模型,具有分类或识别精确度高的特点。此外,在本实施例中同时训练至少两个模型,减少了单一模型在学习了一个错误的特征之后通过反复迭代导致最终深度学习模型的学习异常现象。在本实施例中会将一个模型的前一轮训练之后对训练数据进行标注的结果,用于另一个模型的下一轮学习,如此,可以利用两个模型为彼此准备下一轮训练数据导致的反复迭代加强某些错误,从而能够减少模型学习出错的现象,提升深度学习模型的训练效果。
附图说明
图1为本发明实施例提供的第一种深度学习模型训练方法的流程示意图;
图2为本发明实施例提供的第二种深度学习模型训练方法的流程示意图;
图3为本发明实施例提供的第三种深度学习模型训练方法的流程示意图;
图4为本发明实施例提供的一种深度学习模型训练装置的结构示意图;
图5为本发明实施例提供的一种训练集的变化示意图;
图6为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。
如图1所示,本实施例提供一种深度学习模型训练方法,包括:
步骤S110:获取第一模型输出的第n+1第一标注信息,所述第一模型已经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;
步骤S120:基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;
步骤S130:将所述第二模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型的第n+1训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
本实施例提供的深度学习模型训练方法可以用于各种电子设备中,例如,各种大数据模型训练的服务器中。
在本实施例中的步骤S110中,会利用已经完成n轮训练的第一模型对训练数据进行处理,此时第一模型会获得输出,该输出即为所述第n+1第一标注数据,该第n+1第一标注数据与训练数据对应起来,就形成了第二模型的第n+1训练集。
同样地,所述步骤S110还会利用已经完成n轮训练的第二模型对训练数据进行处理,此时第二模型会获得输出,该输出即为所述第n+1第二标注数据,该第n+1第二标注数据与训练数据对应起来,就形成了第一模型的第n+1训练集。
在本发明实施例中,所述第一标注数据均为第一模型对训练数据进行识别或分类得到的标注信息;所述第二标注信息为第二模型对训练数据进行识别或标识得到的标注信息。在本实施中,所述第n+1第一标注数据用于第二模型的第n+1轮训练,而第n+1第二标注数据用于第一模型的第n+1轮训练。
如此,本实施例中第n+1轮对第一模型和第二模型的训练样本就自动生成了,无需用户手动标注第n+1轮训练的训练集,减少了人工手动标注样本所消耗的时间,提升了深度学习模型的训练速率,且减少深度学习模型因为手动标注的不准确或不精确导致的模型训练后的分类或识别结果的不够精确的现象,提升了深度学习模型训练后的分类或识别结果的精确度。
此外,在本实施例中,第一模型的第一标注数据用于训练第二模型,而第二模型的第二标注数据用于训练第一模型,如此,抑制了第一模型自身的标注数据用于自身下一轮训练导致的模型训练中错误加强的现象,如此,可以提升所述第一模型和第二模型训练效果。
在一些实施例中,所述第一模型和第二模型指代的是两个独立的模型,但是这两个模型可以相同也可以不同。例如,所述第一模型和第二模型可以为同一类深度学习模型,或者为不同类的深度学习模型。
具体地如,所述第一模型和第二模型可为不同网络结构的深度学习模型,例如,所述第一模型为全连接卷积网络(FNN)、第二模型可为普通的卷积神经网络(CNN)。再例如,所述第一模型可为循环神经网络,第二模型可为FNN或CNN。再例如,所述第一模型可为V-NET,所述第二模型可为U-NET等。
若所述第一模型和第二模型不同,则所述第一模型和第二模型在进行训练时基于相同的第一训练集产生的相同错误的概率就大大降低了,可以进一步抑制在反复迭代过程中第一模型和第二模型因为相同的错误进行加强的现象,可以再一次提升训练结果。
在本实施例中完成一轮训练包括:第一模型和第二模型均对各自训练集中的每一个训练样本都完成了至少一次学习。
例如,以所述训练数据为S张图像为例,则第1训练样本可为S张图像及这S张图像的人工标注结果,若S张图像中有一张图像标注图像精确度不够,但是第一模型和第二模型在第一轮训练过程中,由于剩余S-1张图像的标注结构精确度达到预期阈值,则这S-1张图像及其对应的标注数据对第一模型和第二模型的模型参数影像更大。在本实施例中,所述深度学习模型包括但不限于神经网络;所述模型参数包括但不限于:神经网络中网络节点的权值和/或阈值。所述神经网络可为各种类型的神经网络,例如,U-net或V-net。所述神经网络可包括:对训练数据进行特征提取的编码部分和基于提取的特征获取语义信息的解码部分。例如,编码部分可以对图像中分割目标所在区域等进行特征提取,得到区分分割目标和背景的掩码图像,解码器基于掩码图像可以得到一些语义信息,例如,通过像素统计等方式获得目标的组学特征等,该组学特征可包括:目标的面积、体积、形状等形态特征,和/或,基于灰度值形成的灰度值特征等。所述灰度值特征可包括:直方图的统计特征等。
总之,在本实施例中,经过第一轮训练后的第一模型和第二模型在识别S张图像时,会自动度标注精度不够的哪一张图像,利用从其他S-1张图像上学习获得网络参数来进行标注,而此时标注精度是向其他S-1张图像的标注精度靠齐的,故这一张图像所对应的第2标注信息是会比原始的第1标注信息的精度提升的。如此,构成的第一模型的第2训练集包括:S张图像和第二模型生成的第1标注信息构成的训练数据。如此,第二模型的第2训练集包括:训练数据及第一模型的第1标注信息。若第一模型在第一轮训练时出现了错误A,但是第2轮训练时,使用的是训练数据及第二模型输出的第2标注信息,若第二模型未出现该错误A,则第2标注信息不会受到该错误A的影响,如此,利用第二模型的第2标注信息对第一模型训练进行第二轮训练就能够一直错误A在第一模型中的加强。故在本实施例中,可以利用第一模型和第二模型在训练过程中会基于大多数正确或高精度的标注信息进行学习,逐步抑制初始标注精度不够或不正确的训练样本的负面影响,且因为两个模型的标注数据的交叉用于下一轮训练,不仅能够实现训练样本的人工标注大大的减少,而且还会通过自身迭代的特性逐步提升训练精度,使得训练后的第一模型和第二模型的精确度达到预期效果。
在上述举例中所述训练数据以图像为例,在一些实施例中,所述训练数据还可以图像以外的语音片段、所述图像以外的文本信息等;总之,所述训练数据的形式有多种,不局限于上述任意一种。
在一些实施例中,如图2所示,所述方法包括:
步骤S100:确定n是否小于N,其中,N为最大训练轮数;
所述步骤S110可包括:
若n小于N,利用完成第n轮训练的第一模型对训练数据进行标注,获得第n+1第一标注信息,并利用完成第n轮训练的第二模型对所述训练数据进行标注,获得第n+1第二标注信息。
在本实施例中在构建第n+1训练集之前,首先会确定目前已训练轮数是否达到预定的最大训练轮数N,若未大达到才生成第n+1标注信息,以构建第一模型和第二模型的第n+1训练集,否则,则确定模型训练完成停止所述深度学习模型的训练。
在一些实施例中,所述N的取值可为4、5、6、7或8等经验值或者统计值。
在一些实施例中,所述N的取值范围可为3到10之间,所述N的取值可以是训练设备从人机交互接口接收的用户输入值。
在还有一些实施例中,确定是否停止训练还可包括:
利用测试集进行所述第一模型和第二模型的测试,若测试结果表明所述第一模型和第二模型的对测试集中测试数据的标注结果的精确度达到特定值,则停止所述第一模型和第二模型的训练,否则进入到所述步骤S110以进入下一轮训练。此时,所述测试集可为精确标注的数据集,故可以用于衡量一个第一模型和第二模型的每一轮的训练结果,以判定是否停止第一模型和第二模型的训练。
在一些实施例中,如图3所示,所述方法包括:
步骤S210:获取所述训练数据及所述训练数据的初始标注信息;
步骤S220:基于所述初始标注信息,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
在本实施例中,所述初始标注信息可为所述训练数据的原始标注信息,该原始标注信息可为人工手动标注的信息,也可以是其他设备标注的信息。例如,具有一定标注能力的其他设备标注的信息。
本实施例中,获取到训练数据及初始标注信息之后,会基于初始标注信息生成第1第一标注信息及第1第二标识信息。此处的第1第一标注信息及第1第一标识信息可直接包括:所述初始标注信息和/或根据所述初始标准信息生成的精细化的标注信息。
例如,若训练数据为图像,图像包含有细胞成像,所述初始标注信息可为大致标注所述细胞成像所在位置的标注信息,而精细化的标注信息可为精确指示所述细胞所在位置的位置标注,总之,在本实施例中,所述精细化的标注信息对分割对象的标注精确度可高于所述初始标注信息的精确度。
如此,即便由人工进行所述初始标注信息的标注,也降低了人工标注的难度,简化了人工标注。
例如,以细胞成像为例,细胞由于其椭圆球状态的形态,一般在二维平面图像内细胞的外轮廓都呈现为椭圆形。所述初始标注信息可为医生手动绘制的细胞的外接框。所述精细化的标注信息可为:训练设备基于手动标注的外接框生成的内接椭圆。在计算内接椭圆相对于外接框,减少细胞成像中不属于细胞成像的像素个数,故第一标注信息的精确度是高于所述初始标注信息的精确度的。
在一些实施例中,所述步骤S210可包括:获取包含有多个分割目标的训练图像及所述分割目标的外接框;
所述步骤S220可包括:基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;基于所述训练数据及所述标注轮廓,生成所述第一模型的第一训练集及所述第二模型的第一训练集。
在一些实施例中,所述与分割目标形状一致的标注轮廓可为前述椭圆形,还可以为圆形,或者,三角形或者其他对边形等于分割目标形状一致的形状,不局限于椭圆形。
在一些实施例中,所述标注轮廓为内接于所述外接框的。所述外接框可为矩形框。
在一些实施例中,所述步骤S220还包括:
基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;
基于所述训练数据及所述分割边界,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
在一些实施例中,所述基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓,包括:基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
在一些图像中,两个分割目标之间会有重叠,在本实施例中所述第一标注信息还包括:两个重叠分割目标之间的分割边界。
例如,两个细胞成像,细胞成像A叠在细胞成像B上,则细胞成像A被绘制出细胞边界之后和细胞B成像被绘制出细胞边界之后,两个细胞边界交叉形成一部分框出了两个细胞成像之间的交集。在本实施例中,可以根据细胞成像A和细胞成像B之间的位置关系,擦除细胞成像B的细胞边界位于细胞成像A内部的部分,并以细胞成像A的位于细胞成像B中的部分作为所述分割边界。
总之,在本实施例中,所述步骤S220可包括:利用两个分割目标的位置关系,在两者的重叠部分绘制分割边界。
在一些实施例中,在绘制分割边界时,可以通过修正两个具有重叠边界的分割目标其中一个的边界来实现。为了突出边界,可以通过像素膨胀的方式,可以加粗边界。例如,通过细胞成像A的细胞边界在所述重叠部分向细胞成像B方向上扩展预定个像素,例如,1个或多个像素,加粗重叠部分的细胞成像A的边界,从而使得该加粗边界被识别为分割边界。
在一些实施例中,所述基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓,包括:基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
在本本实施例中分割目标为细胞成像,所述标注轮廓包括所述细胞形状这一张的外接框的内接椭圆。
在本实施例中,所述第一标注信息包括以下至少之一:
所述细胞成像的细胞边界(对应于所述内接椭圆);
重叠细胞成像之间的分割边界。
若在一些实施例中,所述分割目标不是细胞而是其他目标,例如,分割目标为集体相中的人脸,人脸的外接框依然可以是矩形框,但是此时人脸的标注边界可能是鹅蛋形脸的边界,圆形脸的边界等,此时,所述形状不局限于所述内接椭圆。
当然以上仅是举例,总之在本实施例中,所述第一模型及第二模型利用另外一个模型前一轮的训练结果输出训练数据的标注信息,以构建下一轮的训练集,通过反复迭代多次完成模型训练,无需手动标注大量的训练样本,具有训练速率快及通过反复迭代可以提升训练精确度。
如图4所示,一种深度学习模型训练装置,包括:
标注模块110,用于获取第一模型输出的第n+1第一标注信息,所述第一模型经过n轮训练;以及,获取第二模型输出的第n+1第二标注信息,所述第二模型已经过n轮训练;n为大于1的整数;
第一生成模块120,用于基于所述训练数据及所述第n+1第一标注信息,生成第二模型的第n+1训练集,并基于所述训练数据及所述第n+1第二标注信息,生成所述第一模型的第n+1训练集;
训练模块130,用于将所述第二模型的第n+1训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将第一模型的所述第n+1训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
在一些实施例中,所述标注模块110,第一生成模块120及训练模块130可为程序模块,所述程序模块被处理器执行后,能够实现上述操作。
在还有一些实施例中,所述标注模块110,第一生成模块120及训练模块130可为软硬结合模型;所述软硬结合模块可为各种可编程阵列,例如,现场可编程阵列或复杂可编程阵列。
在另外一些实施例中,所述标注模块110,第一生成模块120及训练模块130可纯硬件模块,所述纯硬件模块可为专用集成电路。
在一些实施例中,所述装置包括:
确定模块,用于确定n是否小于N,其中,N为最大训练轮数;
所述标注模块,用于若n小于N,获取第一模型输出的第n+1第一标注信息;以及,获取第二模型输出的第n+1第二标注信息。
在一些实施例中,所述装置包括:
获取模块,用于获取所述训练数据及所述训练数据的初始标注信息;
第二生成模块,用于基于所述初始标注信息,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
在一些实施例中所述获取模块,具体用于获取包含有多个分割目标的训练图像及所述分割目标的外接框;
所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;基于所述训练数据及所述标注轮廓,生成所述第一模型的第一训练集及所述第二模型的第一训练集。
在一些实施例中所述第一生成模块,具体用于基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;基于所述训练数据及所述分割边界,生成所述第一模型的第一训练集和所述第二模型的第一训练集。
在一些实施例中所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
以下结合上述实施例提供一个具体示例:
示例1:
互相学习弱监督算法,以图中部分物体的包围矩形框作为输入,进行两个模型互相学习,能够输出其他未知图片中该物体的像素分割结果。
以细胞分割为例子,一开始有图中部分细胞的包围矩形标注。观察发现细胞大部分是椭圆,于是在矩形中画个最大内接椭圆,不同椭圆之间画好分割线,椭圆边缘也画上分割线。作为初始监督信号。训练两个分割模型。然后此分割模型在此图上预测,得到的预测图和初始标注图作并集,作为新的监督信号,两个模型使用彼此的整合结果,再重复训练该分割模型,于是发现图中的分割结果变得越来越好。
同样的使用该方法,对于未知的无标注新图片,第一次两个模型预测一份结果,然后使用彼此的预测重复上述过程。
如图5所示,对原始图像进行标注,第二模型得到一个掩膜图像构建第一模型的第一训练集和第二模型的第一训练集,利用第一训练集分别进行第一模型及第二模型进行第一轮训练。第一轮训练完之后,利用第一模型进行图像识别得到标注信息,基于该标注信息生成第二模型的第二训练集。并在第一轮训练之后,利用第二模型进行图像识别得到标注信息,该标注信息用于生成第一模型的第二训练集。分别进行第一模型和第二模型的第二轮训练;如此反复交叉形成训练集之后,进行迭代训练多轮之后停止训练。
在相关技术中,总是复杂的考虑第一次分割结果的概率图,做峰值、平缓区域等等的分析,然后做区域生长等,对于阅读者而言,复现工作量大,实现困难。本示例提供的深度学习模型训练方法,不对输出分割概率图做任何计算,直接拿来和标注图做并集,再继续训练模型,这个过程实现简单。
如图6示,本申请实施例提供了一种电子设备,包括:
存储器,用于存储信息;
处理器,与所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令,能够实现前述一个或多个技术方案提供的深度学习模型训练方法,例如,如图1至图3所示的方法中的一个或多个。
该存储器可为各种类型的存储器,可为随机存储器、只读存储器、闪存等。所述存储器可用于信息存储,例如,存储计算机可执行指令等。所述计算机可执行指令可为各种程序指令,例如,目标程序指令和/或源程序指令等。
所述处理器可为各种类型的处理器,例如,中央处理器、微处理器、数字信号处理器、可编程阵列、数字信号处理器、专用集成电路或图像处理器等。
所述处理器可以通过总线与所述存储器连接。所述总线可为集成电路总线等。
在一些实施例中,所述终端设备还可包括:通信接口,该通信接口可包括:网络接口、例如,局域网接口、收发天线等。所述通信接口同样与所述处理器连接,能够用于信息收发。
在一些实施例中,所述电子设备还包括摄像头,该摄像头可采集各种图像,例如,医疗影像等。
在一些实施例中,所述终端设备还包括人机交互接口,例如,所述人机交互接口可包括各种输入输出设备,例如,键盘、触摸屏等。
本申请实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行代码;所述计算机可执行代码被执行后,能够实现前述一个或多个技术方案提供的深度学习模型训练方法,例如,如图1至图3所示的方法中的一个或多个。
所述存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。所述存储介质可为非瞬间存储介质。
本申请实施例提供一种计算机程序产品,所述程序产品包括计算机可执行指令;所述计算机可执行指令被执行后,能够实现前述任意实施提供的深度学习模型训练方法,例如,如图1至图3所示的方法中的一个或多个。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (14)

1.一种深度学习模型训练方法,其特征在于,包括:
获取第一模型输出的第n+1第一图像标注信息,所述第一模型经过n轮训练;以及,获取第二模型输出的第n+1第二图像标注信息,所述第二模型已经过n轮训练;n为大于1的整数;所述第一图像标注信息和所述第二图像标注信息用于标注分割目标在训练图像数据中的位置;
基于所述训练图像数据及所述第n+1第一图像标注信息,生成第二模型的第n+1图像训练集,并基于所述训练图像数据及所述第n+1第二图像标注信息,生成所述第一模型的第n+1图像训练集;
将所述第二模型的第n+1图像训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型的第n+1图像训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
2.根据权利要求1所述的方法,其特征在于,所述方法包括:
确定n是否小于N,N为最大训练轮数;
所述获取第一模型输出的第n+1第一图像标注信息,以及,获取第二模型输出的第n+1第二图像标注信息,包括:
若n小于N,获取第一模型输出的第n+1第一图像标注信息,以及,获取第二模型输出的第n+1第二图像标注信息。
3.根据权利要求1或2所述的方法,其特征在于,所述方法包括:
获取所述训练图像数据及所述训练图像数据的初始图像标注信息;
基于所述初始图像标注信息,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集。
4.根据权利要求3所述的方法,其特征在于,
所述获取所述训练图像数据及所述训练图像数据的初始图像标注信息,包括:
获取包含有多个所述分割目标的训练图像及所述分割目标的外接框;
所述基于所述初始图像标注信息,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集,包括:
基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;
基于所述训练图像数据及所述标注轮廓,生成所述第一模型的第一图像训练集及所述第二模型的第一图像训练集。
5.根据权利要求4所述的方法,其特征在于,所述基于所述初始图像标注信息,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集,还包括:
基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;
基于所述训练图像数据及所述分割边界,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集。
6.根据权利要求4所述的方法,其特征在于,
所述基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓,包括:
基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
7.一种深度学习模型训练装置,其特征在于,包括:
标注模块,用于获取第一模型输出的第n+1第一图像标注信息,所述第一模型经过n轮训练;以及,获取第二模型输出的第n+1第二图像标注信息,所述第二模型已经过n轮训练;n为大于1的整数;
第一生成模块,用于基于训练图像数据及所述第n+1第一图像标注信息,生成第二模型的第n+1图像训练集,并基于所述训练图像数据及所述第n+1第二图像标注信息,生成所述第一模型的第n+1图像训练集;
训练模块,用于将所述第二模型的第n+1图像训练集输入至所述第二模型,对所述第二模型进行第n+1轮训练;将所述第一模型的第n+1图像训练集输入至所述第一模型,对所述第一模型进行第n+1轮训练。
8.根据权利要求7所述的装置,其特征在于,所述装置包括:
确定模块,用于确定n是否小于N,N为最大训练轮数;
所述标注模块,用于若n小于N,获取第一模型输出的第n+1第一图像标注信息,以及,获取第二模型输出的第n+1第二图像标注信息。
9.根据权利要求7或8所述的装置,其特征在于,所述装置包括:
获取模块,用于获取所述训练图像数据及所述训练图像数据的初始图像标注信息;
第二生成模块,用于基于所述初始图像标注信息,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集。
10.根据权利要求9所述的装置,其特征在于,
所述获取模块,具体用于获取包含有多个分割目标的训练图像及所述分割目标的外接框;
所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与所述分割目标形状一致的标注轮廓;基于所述训练图像数据及所述标注轮廓,生成所述第一模型的第一图像训练集及所述第二模型的第一图像训练集。
11.根据权利要求10所述的装置,其特征在于,所述第一生成模块,具体用于基于所述外接框,生成具有重叠部分的两个所述分割目标的分割边界;基于所述训练图像数据及所述分割边界,生成所述第一模型的第一图像训练集和所述第二模型的第一图像训练集。
12.根据权利要求10所述的装置,其特征在于,
所述第二生成模块,具体用于基于所述外接框,在所述外接框内绘制与细胞形状一致的所述外接框的内接椭圆。
13.一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令;所述计算机可执行指令被执行后,能够实现权利要求1至6任一项所述的方法。
14.一种电子设备,其特征在于,包括:
存储器;
处理器,与所述存储器连接,用于通过执行存储在所述存储器上的计算机可执行指令实现前述权利要求1至6任一项所述的方法。
CN201811646736.0A 2018-12-29 2018-12-29 深度模型训练方法及装置、电子设备及存储介质 Active CN109740668B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201811646736.0A CN109740668B (zh) 2018-12-29 2018-12-29 深度模型训练方法及装置、电子设备及存储介质
KR1020217007097A KR20210042364A (ko) 2018-12-29 2019-10-30 딥 러닝 모델의 트레이닝 방법, 장치, 전자 기기 및 저장 매체
SG11202103717QA SG11202103717QA (en) 2018-12-29 2019-10-30 Method and device for training deep model, electronic equipment, and storage medium
JP2021537466A JP7110493B2 (ja) 2018-12-29 2019-10-30 深層モデルの訓練方法及びその装置、電子機器並びに記憶媒体
PCT/CN2019/114497 WO2020134533A1 (zh) 2018-12-29 2019-10-30 深度模型训练方法及装置、电子设备及存储介质
TW108148214A TWI747120B (zh) 2018-12-29 2019-12-27 深度模型訓練方法及裝置、電子設備及儲存介質
US17/225,368 US20210224598A1 (en) 2018-12-29 2021-04-08 Method for training deep learning model, electronic equipment, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811646736.0A CN109740668B (zh) 2018-12-29 2018-12-29 深度模型训练方法及装置、电子设备及存储介质

Publications (2)

Publication Number Publication Date
CN109740668A CN109740668A (zh) 2019-05-10
CN109740668B true CN109740668B (zh) 2021-03-30

Family

ID=66362835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811646736.0A Active CN109740668B (zh) 2018-12-29 2018-12-29 深度模型训练方法及装置、电子设备及存储介质

Country Status (7)

Country Link
US (1) US20210224598A1 (zh)
JP (1) JP7110493B2 (zh)
KR (1) KR20210042364A (zh)
CN (1) CN109740668B (zh)
SG (1) SG11202103717QA (zh)
TW (1) TWI747120B (zh)
WO (1) WO2020134533A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740668B (zh) * 2018-12-29 2021-03-30 北京市商汤科技开发有限公司 深度模型训练方法及装置、电子设备及存储介质
CN110909688B (zh) * 2019-11-26 2020-07-28 南京甄视智能科技有限公司 人脸检测小模型优化训练方法、人脸检测方法及计算机系统
CN113515980B (zh) * 2020-05-20 2022-07-05 阿里巴巴集团控股有限公司 模型训练方法、装置、设备和存储介质
CN111738197B (zh) * 2020-06-30 2023-09-05 中国联合网络通信集团有限公司 一种训练图像信息处理的方法和装置
CN113591893A (zh) * 2021-01-26 2021-11-02 腾讯医疗健康(深圳)有限公司 基于人工智能的图像处理方法、装置和计算机设备
WO2022251684A1 (en) * 2021-05-28 2022-12-01 Visa International Service Association Metamodel and feature generation for rapid and accurate anomaly detection
CN113947771B (zh) * 2021-10-15 2023-06-27 北京百度网讯科技有限公司 图像识别方法、装置、设备、存储介质以及程序产品
EP4227908A1 (en) * 2022-02-11 2023-08-16 Zenseact AB Iterative refinement of annotated datasets
CN114764874B (zh) * 2022-04-06 2023-04-07 北京百度网讯科技有限公司 深度学习模型的训练方法、对象识别方法和装置
CN115600112B (zh) * 2022-11-23 2023-03-07 北京结慧科技有限公司 获取行为预测模型训练集的方法、装置、设备及介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB216635A (en) * 1923-04-12 1924-06-05 Reginald Mosley Tayler An improved amusement device
SG179302A1 (en) * 2010-09-16 2012-04-27 Advanced Material Engineering Pte Ltd Projectile with strike point marking
CN104346622A (zh) * 2013-07-31 2015-02-11 富士通株式会社 卷积神经网络分类器及其分类方法和训练方法
US9633282B2 (en) * 2015-07-30 2017-04-25 Xerox Corporation Cross-trained convolutional neural networks using multimodal images
CN105389584B (zh) * 2015-10-13 2018-07-10 西北工业大学 基于卷积神经网络与语义转移联合模型的街景语义标注方法
CN105550651B (zh) * 2015-12-14 2019-12-24 中国科学院深圳先进技术研究院 一种数字病理切片全景图像自动分析方法及系统
CN105931226A (zh) * 2016-04-14 2016-09-07 南京信息工程大学 基于深度学习的自适应椭圆拟合细胞自动检测分割方法
CN106096531B (zh) * 2016-05-31 2019-06-14 安徽省云力信息技术有限公司 一种基于深度学习的交通图像多类型车辆检测方法
CN106202997B (zh) * 2016-06-29 2018-10-30 四川大学 一种基于深度学习的细胞分裂检测方法
CN106157308A (zh) * 2016-06-30 2016-11-23 北京大学 矩形目标物检测方法
CN107392125A (zh) * 2017-07-11 2017-11-24 中国科学院上海高等研究院 智能模型的训练方法/系统、计算机可读存储介质及终端
CN107967491A (zh) * 2017-12-14 2018-04-27 北京木业邦科技有限公司 木板识别的机器再学习方法、装置、电子设备及存储介质
CN108021903B (zh) * 2017-12-19 2021-11-16 南京大学 基于神经网络的人工标注白细胞的误差校准方法及装置
CN108074243B (zh) * 2018-02-05 2020-07-24 志诺维思(北京)基因科技有限公司 一种细胞定位方法以及细胞分割方法
CN108615236A (zh) * 2018-05-08 2018-10-02 上海商汤智能科技有限公司 一种图像处理方法及电子设备
CN108932527A (zh) * 2018-06-06 2018-12-04 上海交通大学 使用交叉训练模型检测对抗样本的方法
CN109087306A (zh) * 2018-06-28 2018-12-25 众安信息技术服务有限公司 动脉血管图像模型训练方法、分割方法、装置及电子设备
CN109740668B (zh) * 2018-12-29 2021-03-30 北京市商汤科技开发有限公司 深度模型训练方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP7110493B2 (ja) 2022-08-01
SG11202103717QA (en) 2021-05-28
KR20210042364A (ko) 2021-04-19
US20210224598A1 (en) 2021-07-22
WO2020134533A1 (zh) 2020-07-02
CN109740668A (zh) 2019-05-10
TWI747120B (zh) 2021-11-21
JP2021536083A (ja) 2021-12-23
TW202042181A (zh) 2020-11-16

Similar Documents

Publication Publication Date Title
CN109740668B (zh) 深度模型训练方法及装置、电子设备及存储介质
CN109740752B (zh) 深度模型训练方法及装置、电子设备及存储介质
CN109558864B (zh) 人脸关键点检测方法、装置及存储介质
US11842487B2 (en) Detection model training method and apparatus, computer device and storage medium
WO2018108129A1 (zh) 用于识别物体类别的方法及装置、电子设备
CN110348294A (zh) Pdf文档中图表的定位方法、装置及计算机设备
CN111414946B (zh) 基于人工智能的医疗影像的噪声数据识别方法和相关装置
CN111798480A (zh) 基于单字符及文字间连接关系预测的文字检测方法及装置
CN112634369A (zh) 空间与或图模型生成方法、装置、电子设备和存储介质
CN113763348A (zh) 图像质量确定方法、装置、电子设备及存储介质
CN110705531A (zh) 缺失字符检测、缺失字符检测模型的建立方法及装置
CN114359932B (zh) 文本检测方法、文本识别方法及装置
CN112668710B (zh) 模型训练、管状物提取、数据识别方法及设备
CN112580584A (zh) 起立行为检测方法、装置、系统及存储介质
CN114330542A (zh) 一种基于目标检测的样本挖掘方法、装置及存储介质
CN110852102B (zh) 一种中文的词性标注方法、装置、存储介质及电子设备
CN115424250A (zh) 一种车牌识别方法及装置
CN111797737A (zh) 遥感目标检测方法及装置
CN117372286B (zh) 一种基于Python的图像噪声优化方法及系统
CN117274218B (zh) 基于脑灌注成像的血管关键点检测方法及装置、介质
CN112597328B (zh) 标注方法、装置、设备及介质
CN116012876A (zh) 生物特征关键点检测方法、装置、终端设备及存储介质
CN111815689A (zh) 一种半自动化标注方法、设备、介质及装置
CN107735800A (zh) 一种图像处理方法以及相关装置
CN117789275A (zh) 模型优化方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40006467

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Room 1101-1117, 11 / F, No. 58, Beisihuan West Road, Haidian District, Beijing 100080

Patentee after: BEIJING SENSETIME TECHNOLOGY DEVELOPMENT Co.,Ltd.

Address before: Room 710-712, 7th floor, No. 1 Courtyard, Zhongguancun East Road, Haidian District, Beijing

Patentee before: BEIJING SENSETIME TECHNOLOGY DEVELOPMENT Co.,Ltd.

CP02 Change in the address of a patent holder