CN109738854A - A Method for Estimating the Arrival Angle of the Arrival Direction of the Antenna Array - Google Patents
A Method for Estimating the Arrival Angle of the Arrival Direction of the Antenna Array Download PDFInfo
- Publication number
- CN109738854A CN109738854A CN201811529049.0A CN201811529049A CN109738854A CN 109738854 A CN109738854 A CN 109738854A CN 201811529049 A CN201811529049 A CN 201811529049A CN 109738854 A CN109738854 A CN 109738854A
- Authority
- CN
- China
- Prior art keywords
- arrival
- matrix
- array
- estimated value
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000011159 matrix material Substances 0.000 claims description 90
- 239000013598 vector Substances 0.000 claims description 25
- 238000003491 array Methods 0.000 claims description 16
- 230000009466 transformation Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 31
- 238000013461 design Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005562 fading Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及宽带无线通信的多天线领域,特别地,涉及一种天线阵列来波方向的到达角估计方法。The present invention relates to the multi-antenna field of broadband wireless communication, in particular, to a method for estimating the angle of arrival of the incoming wave direction of an antenna array.
背景技术Background technique
为了缓解微波频段的频谱资源紧张,毫米波通信技术成为下一代移动通信的关键技术。毫米波频段拥有丰富的频谱资源,可实现Gbps级别的无线传输速率;其波长短的特性使其可在较小的物理尺寸上使用大规模天线阵列实现波束赋形,从而获得高增益以弥补高频段上的严重路损和衰落。由于波束赋形技术需要精确的方位信息,因此天线阵列来波方向的到达角估计成为毫米波通信的前提和基础。受工艺水平的限制,实际的天线阵列普遍存在较大的阵元初始相位误差,这将严重影响到达角估计与波束赋形的性能。In order to alleviate the shortage of spectrum resources in the microwave frequency band, millimeter wave communication technology has become the key technology of next-generation mobile communication. The millimeter-wave frequency band has abundant spectrum resources and can achieve Gbps-level wireless transmission rates; its short wavelength makes it possible to use large-scale antenna arrays to achieve beamforming in a small physical size, so as to obtain high gain to compensate for the high gain. Severe path loss and fading on the frequency band. Because beamforming technology requires accurate azimuth information, the estimation of the angle of arrival of the incoming wave from the antenna array becomes the premise and foundation of millimeter wave communication. Limited by the technological level, the actual antenna array generally has a large initial phase error of the array element, which will seriously affect the performance of the angle of arrival estimation and beamforming.
为了解决阵元初始相位误差对到达角估计性能的影响,近年来许多的专家学者做了大量的研究工作。从各自着重点的不同,可以分为两个研究方向:一是对现有算法不做处理,寻找对阵列误差不敏感或敏感度极小的算法,从而降低阵列对到达角估计的影响。但是,这一类算法通常以增加算法的复杂度且损失算法性能为代价;二是设计算法对阵列误差进行估计,通过估计值对相位误差进行校准。In order to solve the influence of the initial phase error of the array element on the performance of the angle of arrival estimation, many experts and scholars have done a lot of research work in recent years. According to their different emphasis, they can be divided into two research directions: First, do not deal with existing algorithms, and find algorithms that are insensitive to array errors or have minimal sensitivity, thereby reducing the impact of arrays on the estimation of the angle of arrival. However, this kind of algorithm usually increases the complexity of the algorithm and loses the performance of the algorithm; the second is to design the algorithm to estimate the array error, and to calibrate the phase error through the estimated value.
在上述第二个研究方向中,阵列误差校准研究的方法有以下:In the second research direction above, the methods of array error calibration research are as follows:
1、有源校准法。1. Active calibration method.
有源校准法的核心思想是引入辅助定位源,借助此辅助定位源的精确到达角信息求解阵列误差,然后通过求得的误差值进行阵列误差校准,最后采用常规的到达角估计算法进行到达角估计。The core idea of the active calibration method is to introduce an auxiliary positioning source, use the accurate angle of arrival information of the auxiliary positioning source to solve the array error, then use the obtained error value to calibrate the array error, and finally use the conventional angle of arrival estimation algorithm to calculate the angle of arrival. estimate.
论文“贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校准方法[J].电子学报,1996,(03):47-52.”提出了一种适用于不同阵列形式误差的有源校准算法,当信号源到达角已知时,采用最小均方误差准则求解阵列校准误差。The paper "Jia Yongkang, Bao Zheng, Wu Huan. An active calibration method for the position, amplitude and phase errors of array antenna elements [J]. Journal of Electronics, 1996, (03): 47-52." proposed a The active calibration algorithm is suitable for the errors of different array forms. When the arrival angle of the signal source is known, the minimum mean square error criterion is used to solve the array calibration error.
论文“张铭,朱兆达.无需准确已知校准源方向的阵列通道不一致的单源校准法[J]. 电子科学学刊,2009,(01):20-25.”提出了一种利用已知信源构造代价函数、通过代价函数最小实现幅相误差校准的算法,该算法不受阵列形式影响。The paper "Zhang Ming, Zhu Zhaoda. Single-source calibration method for inconsistency of array channels without accurately known calibration source direction [J]. Journal of Electronic Science, 2009, (01): 20-25." The source constructs the cost function and realizes the amplitude and phase error calibration algorithm through the minimum cost function. The algorithm is not affected by the array form.
专利“孙奕髦,王立,樊荣,刘洋,胡泽鹏,邹麟,殷吉昊,万群.一种校准源位置未知的天线阵列幅相误差动中校方法.CN201610865202.1”利用外部环境中存在的信号源作为校准源,在校准源位置未知的情况下,利用天线阵列在空间位置精确已知的网格中重复测量校准源信号从而确定校准天线阵元幅相误差。Patent "Sun Yimao, Wang Li, Fan Rong, Liu Yang, Hu Zepeng, Zou Lin, Yin Jihao, Wan Qun. A method of calibrating the amplitude and phase error of antenna array with unknown source position. CN201610865202.1" using the signal source existing in the external environment As a calibration source, when the position of the calibration source is unknown, the antenna array is used to repeatedly measure the calibration source signal in a grid whose spatial position is accurately known to determine the amplitude and phase error of the calibration antenna array element.
这类基于辅助定位源的方法通常需要精确的辅助定位源位置或者接收阵列位置,同时已知位置的细微偏差会引起到达角估计性能的显著下降。因此,有源校准算法要达到较好的性能,对制作工艺或施工技术等提出了较高要求,在实际工程中难以推广应用。Such methods based on auxiliary positioning sources usually require precise auxiliary positioning source positions or receiving array positions, and slight deviations in known positions can cause significant degradation in the performance of AOA estimation. Therefore, in order to achieve better performance, the active calibration algorithm puts forward higher requirements on the manufacturing process or construction technology, and it is difficult to popularize and apply in practical engineering.
2、阵列自校准算法。2. Array self-calibration algorithm.
阵列自校准算法无需辅助定位源条件下完成天线阵列来波方向的到达角估计,但是阵列误差严重影响目标到达角估计,由于破坏了阵列流形的特性规律,使得到达角估计算法无法唯一辨识阵列误差信息和到达角信息。另外,联合估计方法通常对到达角、阵列误差的初始值敏感,导致算法性能不稳定。The array self-calibration algorithm completes the angle of arrival estimation of the incoming wave direction of the antenna array without an auxiliary positioning source, but the array error seriously affects the estimation of the target angle of arrival. Because the characteristic law of the array manifold is destroyed, the angle of arrival estimation algorithm cannot uniquely identify the array. Error information and angle of arrival information. In addition, the joint estimation method is usually sensitive to the initial value of the angle of arrival and the array error, resulting in unstable algorithm performance.
论文‘H.Liu,L.Zhao,Y.Li,X.Jing and T.K.Truong,"A Sparse-Based Approachfor DOA Estimation and Array Calibration in Uniform Linear Array,"in IEEESensors Journal, vol.16,no.15,pp.6018-6027,Aug.1,2016.’提出了一种可以解决阵列存在互耦效应、阵元位置偏差和阵元幅相误差的到达角估计算法,利用阵列矩阵的稀疏性进行凸优化搜索求解,当阵列的校准误差较大时性能差。Paper 'H.Liu,L.Zhao,Y.Li,X.Jing and T.K.Truong,"A Sparse-Based Approachfor DOA Estimation and Array Calibration in Uniform Linear Array,"in IEEESensors Journal, vol.16,no.15, pp.6018-6027, Aug.1, 2016. 'Proposed an angle of arrival estimation algorithm that can solve the mutual coupling effect of the array, the position deviation of the array element and the error of the amplitude and phase of the array element, using the sparseness of the array matrix for convex optimization Search solution, poor performance when the calibration error of the array is large.
专利“张弓,刘帅.基于遗传算法的MIMO雷达阵列位置误差自校准方法.CN200910264135.8”提出一种基于遗传算法的MIMO雷达阵列位置误差自校准方法。该发明构造一个对不同方向空间谱值进行加权求和的自适应权函数,再结合MUSIC 方法,构建个体适应度函数,基于遗传算法,实现了阵元位置误差与DOA的联合在线估计。算法需要较为准确的初始估计值,因此适用于具有较小校准误差的天线阵列。The patent "Zhang Gong, Liu Shuai. MIMO radar array position error self-calibration method based on genetic algorithm. CN200910264135.8" proposes a genetic algorithm-based MIMO radar array position error self-calibration method. The invention constructs an adaptive weight function for weighted summation of spatial spectral values in different directions, and then combines the MUSIC method to construct an individual fitness function. Based on the genetic algorithm, the joint online estimation of the array element position error and DOA is realized. The algorithm requires relatively accurate initial estimates, so it is suitable for antenna arrays with small calibration errors.
专利“曹祥.用于传感器阵列的信号波达方向自校准方法.CN201611243005.2”提出一种用于传感器阵列的信号波达方向自校准方法。初始化传感器阵列的阵列误差,由噪声子空间矩阵用MUSIC算法估计信号来波方向的初始值;通过拉格朗日乘子法最小化构造的Hermitian正定矩阵得到阵列误差的估计;再用MUSIC算法估计信号波达方向;重复迭代上述步骤直到满足迭代停止条件。该方法性能受限于初始估计值,且当阵列校准误差较大时估计性能恶化。The patent "Cao Xiang. Signal direction of arrival self-calibration method for sensor arrays. CN201611243005.2" proposes a signal direction of arrival self-calibration method for sensor arrays. Initialize the array error of the sensor array, use the MUSIC algorithm to estimate the initial value of the incoming wave direction of the signal from the noise subspace matrix; use the Lagrangian multiplier method to minimize the constructed Hermitian positive definite matrix to get the array error estimate; then use the MUSIC algorithm to estimate Direction of arrival of the signal; iterate the above steps repeatedly until the iteration stop condition is met. The performance of this method is limited by the initial estimation value, and the estimation performance deteriorates when the array calibration error is large.
从现有的各类自校准算法来看,主要存在以下几类问题:From the perspective of various existing self-calibration algorithms, there are mainly the following types of problems:
1)适用于校准误差较小的天线阵列。1) It is suitable for antenna arrays with small calibration errors.
2)低信噪比下性能不理想。2) The performance is not ideal under low signal-to-noise ratio.
3)性能不稳定,受初始值影响大。3) The performance is unstable and is greatly affected by the initial value.
因此,相位误差校准技术的研究重点主要为避免或减小算法对初始值的依赖,增强信噪比下的估计性能,在阵列校准误差较大时仍能保证估计性能。Therefore, the research focus of phase error calibration technology is to avoid or reduce the dependence of the algorithm on the initial value, enhance the estimation performance under the signal-to-noise ratio, and still ensure the estimation performance when the array calibration error is large.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种天线阵列来波方向的到达角估计方法,以在阵列校准误差较大时提高到达角估计的精确度。The invention provides a method for estimating the arrival angle of the incoming wave direction of the antenna array, so as to improve the accuracy of the arrival angle estimation when the array calibration error is large.
本发明提供的一种天线阵列来波方向的到达角估计方法,包括,A method for estimating the angle of arrival of the incoming wave direction of an antenna array provided by the present invention includes:
一种天线阵列来波方向的到达角估计方法,其特征在于,该方法包括,A method for estimating the angle of arrival of the incoming wave direction of an antenna array, characterized in that the method comprises:
从每个符号周期的接收信号中消除导频符号,得到第一接收信号矢量;Eliminate pilot symbols from the received signal of each symbol period to obtain a first received signal vector;
将至少一个以上符号周期的第一接收信号矢量拼接为M×K维第一接收信号矩阵,其中,M为接收天线阵列的阵元数量,K为信号源数量;The first received signal vector of at least one symbol period is spliced into an M×K-dimensional first received signal matrix, where M is the number of elements of the receiving antenna array, and K is the number of signal sources;
将第一接收信号矩阵分成两个具有最大重合度的子阵,将所述两个子阵的每行对应元素分别进行相消处理,得到各行包含来波方向信息的第一最大重合子阵;The first received signal matrix is divided into two sub-arrays with the maximum degree of coincidence, and the corresponding elements of each row of the two sub-arrays are respectively subjected to cancellation processing to obtain the first maximum coincident sub-arrays containing incoming wave direction information in each row;
对所述第一最大重合子阵所有行向量的相位求平均值,得到各信号源来波方向到达角的初始估计值;Average the phases of all the row vectors of the first maximum coincident sub-array to obtain the initial estimated value of the arrival angle of each signal source wave direction;
根据所述到达角的初始估计值,消除第一最大重合子阵中的到达角分量,得到第二最大重合子阵;基于第二最大重合子阵,计算得到除第一根天线阵元之外其他各阵元与第一根天线阵元的相位校准误差之差的初始估计值;According to the initial estimated value of the angle of arrival, the angle of arrival component in the first maximum coincident sub-array is eliminated to obtain the second maximum coincident sub-array; based on the second maximum coincident sub-array, it is calculated that all elements except the first antenna array element are obtained. The initial estimated value of the difference between the phase calibration errors of the other array elements and the first antenna element;
按照如下步骤进行迭代:Iterate as follows:
归一化第一接收信号矩阵中第一根天线的随机误差,得到第二接收信号;Normalizing the random error of the first antenna in the first received signal matrix to obtain the second received signal;
对第二接收信号的协方差矩阵进行奇异值分解,得到信号子空间特征向量矩阵、和噪声子空间特征向量矩阵;Perform singular value decomposition on the covariance matrix of the second received signal to obtain a signal subspace eigenvector matrix and a noise subspace eigenvector matrix;
基于所述信号子空间特征向量矩阵与噪声子空间特征向量矩阵正交,根据各阵元的相位校准误差初始估计值,构造当前代价函数,并根据各信号源来波方向到达角的初始估计值求解变换阵;Based on the orthogonality between the eigenvector matrix of the signal subspace and the eigenvector matrix of the noise subspace, the current cost function is constructed according to the initial estimated value of the phase calibration error of each array element, and the initial estimated value of the angle of arrival of the direction of arrival of each signal source is used. solve the transformation matrix;
根据所述变换阵最小化当前代价函数,求解各阵元的相位校准误差第一估计值;Minimize the current cost function according to the transformation matrix, and solve the first estimated value of the phase calibration error of each array element;
通过对信号子空间特征向量矩阵的结构分解,得到两个信号子空间特征向量子矩阵;By decomposing the structure of the signal subspace eigenvector matrix, two signal subspace eigenvector submatrices are obtained;
根据所述两个信号子空间特征向量子矩阵和各阵元的相位校准误差第一估计值,求解各信号源来波方向到达角第一估计值;According to the two signal subspace eigenvector submatrices and the first estimated value of the phase calibration error of each array element, solve the first estimated value of the arrival angle of each signal source wave direction;
根据所述各阵元的相位校准误差第一估计值、和各信号源来波方向到达角第一估计值,计算第一代价函数;Calculate the first cost function according to the first estimated value of the phase calibration error of each array element and the first estimated value of the angle of arrival of the direction of arrival of each signal source;
判断第一代价函数与第二代价函数之差的绝对值是否小于预设的阈值,其中,第一次迭代时所述第二代价函数为零,Determine whether the absolute value of the difference between the first cost function and the second cost function is less than a preset threshold, wherein the second cost function is zero in the first iteration,
如果是,则停止迭代,并将所述各阵元的相位校准误差第一估计值、和各信号源来波方向到达角第一估计值作为估计结果输出,If yes, stop the iteration, and output the first estimated value of the phase calibration error of each array element and the first estimated value of the arrival angle of each signal source direction of arrival as the estimation result,
否则,将所述各阵元的相位校准误差第一估计值作为各阵元的相位校准误差初始估计值,将各信号源来波方向到达角第一估计值作为各信号源来波方向到达角初始估计值,将所述第一代价函数作为第二代价函数,进行下一次迭代。Otherwise, the first estimated value of the phase calibration error of each array element is used as the initial estimated value of the phase calibration error of each array element, and the first estimated value of the arrival angle of each signal source direction of arrival is used as the angle of arrival of each signal source. For the initial estimated value, the first cost function is used as the second cost function, and the next iteration is performed.
本发明通过基于子空间的自校准,根据接收天线阵列第一个阵元的相位中仅包含校准误差信息、相邻阵元的校准误差相互独立、且相位差中包含来波方向的到达角信息分量,构建最大重合子阵,并获得阵列相位校准误差、到达角较为准确的初始估计值,然后利用信号子空间与噪声子空间的正交性,设计迭代优化算法,实现到达角、相位校准误差的迭代更新估计,获得精确的角度估计。该发明可在阵元存在较大的相位校准误差时仍获得优异的角度估计性能。According to the self-calibration based on subspace, the present invention only includes calibration error information in the phase of the first array element of the receiving antenna array, the calibration errors of adjacent array elements are independent of each other, and the phase difference includes the arrival angle information of the incoming wave direction. components, construct the maximum coincident subarray, and obtain relatively accurate initial estimates of the phase calibration error and angle of arrival of the array, and then use the orthogonality of the signal subspace and the noise subspace to design an iterative optimization algorithm to achieve the angle of arrival and phase calibration errors. Iteratively update the estimate to obtain an accurate angle estimate. The invention can still obtain excellent angle estimation performance when the array element has a large phase calibration error.
附图说明Description of drawings
图1是为毫米波通信系统的一种系统框图示意图;FIG. 1 is a schematic diagram of a system block diagram of a millimeter wave communication system;
图2为本发明实施例天线阵列来波方向到达角估计方法的一种流程示意图。FIG. 2 is a schematic flowchart of a method for estimating the angle of arrival of an incoming wave of an antenna array according to an embodiment of the present invention.
图3为本发明实施例中分别采用传统角度估计方法(ESPRIT算法)和本发明估计方法的到达角的估计误差RMSE的仿真对比图。FIG. 3 is a simulation comparison diagram of the estimation error RMSE of the angle of arrival using the traditional angle estimation method (ESPRIT algorithm) and the estimation method of the present invention respectively in the embodiment of the present invention.
图4为是本发明实施例中分别采用未校正的角度估计方法和本发明的到达角估计方法的阵元相位校准误差RMSE的仿真对比图。FIG. 4 is a simulation comparison diagram of the RMSE of the phase calibration error of the array element using the uncorrected angle estimation method and the angle of arrival estimation method of the present invention respectively in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本申请的目的、技术手段和优点更加清楚明白,以下结合附图对本申请做进一步详细说明。In order to make the objectives, technical means and advantages of the present application more clear, the present application will be further described in detail below with reference to the accompanying drawings.
本发明根据均匀线性天线阵列的接收信号的结构特性,将接收信号矩阵分成两个具有最大重合度的子矩阵,两个子阵逐行的进行对应元素点除后的矩阵所包含的相位信息具有重复规律,对其进行相消处理获得来波方向的初始估计值,该估计值在阵元数较大时逼近真实值。由来波方向初始估计值可进一步获得阵元相位校准误差初始估计值,该估计值精度高,精确的初始估计值保证了后续迭代处理的估计性能稳定。According to the structure characteristics of the received signal of the uniform linear antenna array, the present invention divides the received signal matrix into two sub-matrices with the maximum degree of coincidence, and the phase information contained in the matrix after the corresponding elements are divided by the two sub-arrays row by row has repetition. According to the law, the initial estimated value of the incoming wave direction is obtained by canceling it, and the estimated value is close to the true value when the number of array elements is large. The initial estimated value of the direction of origin can further obtain the initial estimated value of the phase calibration error of the array element. The estimated value has high precision, and the accurate initial estimated value ensures the stable estimation performance of the subsequent iterative processing.
并且,基于信号子空间与噪声子空间的正交性,设计了迭代更新来波方向到达角估计值与相位校准误差估计值的迭代算法,实现了精确的来波方向到达角与相位校准误差的估计。In addition, based on the orthogonality of the signal subspace and the noise subspace, an iterative algorithm is designed to iteratively update the estimated value of the arrival angle of the incoming wave direction and the estimated value of the phase calibration error, and realize the accurate calculation of the arrival angle of the incoming wave direction and the phase calibration error. estimate.
参见图1所示,图1为毫米波通信系统的一种系统框图示意图。一个采用大规模天线阵列的毫米波通信系统由包括K个信号源的发送端和一个接收机构成;接收端采用有M个阵元的均匀线性阵列接收来自发送端的K个信号源,并且,在毫米波通信系统中,Referring to FIG. 1, FIG. 1 is a schematic diagram of a system block diagram of a millimeter wave communication system. A millimeter-wave communication system using a large-scale antenna array consists of a transmitter including K signal sources and a receiver; the receiver adopts a uniform linear array with M array elements to receive K signal sources from the transmitter, and, at the In millimeter wave communication systems,
1)信号源发射的无线信号到达接收机天线阵列时可看作平面波,即,远场通信;1) When the wireless signal emitted by the signal source reaches the receiver antenna array, it can be regarded as a plane wave, that is, far-field communication;
2)信号源的信号之间相互独立;2) The signals of the signal source are independent of each other;
3)天线阵元数M大于信号源数K;3) The number M of antenna array elements is greater than the number K of signal sources;
4)天线阵元的相位校准误差是独立的、且具有均匀的、相同的分布;4) The phase calibration errors of the antenna array elements are independent and have a uniform and identical distribution;
5)接收信号叠加了零均值、方差为σ2的高斯白噪声。噪声之间以及信号与噪声之间相互独立。5) The received signal is superimposed with Gaussian white noise with zero mean and variance σ2 . The noise and the signal are independent of each other.
6)信道为慢衰落信道,即在一帧时间内信道基本保持不变。6) The channel is a slow fading channel, that is, the channel basically remains unchanged within a frame time.
基带接收信号模型为:The baseband received signal model is:
Y=GAS+n (1)Y=GAS+n (1)
其中,是由阵元相位校准误差构成的M维对角矩阵,diag(·)表示对角矩阵,φm为第m个阵元上的相位校准误差; A=[a(θ1),a(θ2),...,a(θK)]是M×K维的阵元导引矢量构成的导引矩阵,其中导引矢量为信号导引矢量,θk为第k个信号源的到达角,d与λ分别是阵元间距与波长,且d=λ/2;S是能量归一化的导频信号矩阵,不同信号源的信号相互正交,即有E{SSH}=IK;n是白噪声矢量,且有 in, is an M-dimensional diagonal matrix composed of the phase calibration errors of the array elements, diag(·) represents the diagonal matrix, and φ m is the phase calibration error on the mth array element; A=[a(θ 1 ), a(θ 2 ),...,a(θ K )] is the steering matrix composed of M×K-dimensional array element steering vectors, where the steering vector is the signal steering vector, θ k is the arrival angle of the kth signal source, d and λ are the array element spacing and wavelength, respectively, and d=λ/2; S is the energy-normalized pilot signal matrix, different signals The signals of the source are orthogonal to each other, that is, E{SS H }=I K ; n is the white noise vector, and there is
参见图2所示,图2为本发明实施例天线阵列来波方向到达角估计方法的一种流程示意图。Referring to FIG. 2 , FIG. 2 is a schematic flowchart of a method for estimating the angle of arrival in the direction of arrival of an antenna array according to an embodiment of the present invention.
步骤201,从基带接收信号中按照式(2)消除导频信号,得到已消除导频信号的第一接收信号 Step 201: Eliminate the pilot signal from the baseband received signal according to equation (2) to obtain the first received signal from which the pilot signal has been eliminated
步骤202,根据接收天线阵列中第一个阵元的相位中仅包含相位校准误差、相邻阵元的校准误差相互独立、且相邻阵元之间的相位差中包含的来波方向的到达角信息,构建第一最大重合子阵;由于第一接收信号矩阵相邻列包含相同来波方向到达角和不同的相位校准误差,故将所述第一接收信号矩阵分成具有最大重合度、且与第一接收信号矩阵具有相同维度的两个子矩阵,该两个子矩阵的行数相同,将两个子矩阵中的对应行的各元素进行逐行点除,得到第一最大重合子阵,即,将第一接收信号矩阵的第一行到第M-1行、K维作为第一接收信号矩阵的第一子阵;将第二行到第M行、K维作为第一接收信号矩阵的第二子阵,将第二子阵中的每行元素与第一子阵中的每行元素分别对应进行点除,得到(M-1)×K维第一最大重合子阵:Step 202, according to the arrival of the incoming wave direction included in the phase of the first array element in the receiving antenna array, only the phase calibration error is included, the calibration errors of adjacent array elements are independent of each other, and the phase difference between adjacent array elements is included. angle information, construct the first maximum coincident sub-array; due to the first received signal matrix Adjacent columns contain the same arrival angle of arrival and different phase calibration errors, so the first received signal matrix is divided into two sub-matrices with the maximum degree of coincidence and the same dimension as the first received signal matrix. The number of rows of the matrix is the same, and the elements of the corresponding rows in the two sub-matrices are divided row by row to obtain the first maximum coincident sub-matrix, that is, the first row of the first received signal matrix to the M-1th row, The K dimension is used as the first sub-array of the first received signal matrix; the second row to the M-th row and the K dimension are used as the second sub-array of the first received signal matrix, and the elements of each row in the second sub-array are compared with the first The elements of each row in the sub-array are divided correspondingly to obtain the (M-1)×K-dimensional first largest coincident sub-matrix:
其中表示的第m行至第n行构成的子矩阵。则(M-1)×K维矩阵R的第 n行为:in express The submatrix consisting of the mth row to the nth row of . Then the nth row of the (M-1)×K-dimensional matrix R:
步骤203,获取K个信号源来波方向的到达角初始估计:Step 203, obtain the initial estimates of the arrival angles of the K signal sources in the direction of arrival:
从公式(4)可见,第一最大重合子阵R各行都包含了相同的来波方向的到达角信息。对R所有行向量的相位进行相加并平均,由此可获得来波方向的到达角初始估计值 It can be seen from formula (4) that each row of the first maximum coincident sub-array R contains the same arrival angle information of the incoming wave direction. Add and average the phases of all row vectors of R to obtain the initial estimate of the angle of arrival in the direction of the incoming wave
当天线数M较大时,K个信号源的来波方向到达角初始估计值分别约为:When the number of antennas M is large, The initial estimated values of the arrival angles of the incoming waves of the K signal sources are respectively about:
步骤204,由上述来波方向到达角估计值,可从公式(4)中消除来波方向到达角信息,得到消除来波方向到达角信息的第二最大重合子阵R′:Step 204, by the above-mentioned estimated value of the angle of arrival of the direction of arrival, can eliminate the angle of arrival information of the direction of arrival from formula (4), obtain the second maximum coincidence sub-array R ′ that eliminates the angle of arrival information of the direction of arrival:
步骤205,对第二最大重合子阵R′进行相加求相位运算,可从R′估计出除第一根天线阵元之外其他各阵元与第一根天线阵元的相位校准误差之差的初始估计值:Step 205: Perform addition and phase calculation on the second largest coincident sub-array R', and from R', it is possible to estimate the difference between the phase calibration errors of the other array elements except the first antenna array element and the first antenna array element. Bad initial estimate:
以下基于上述步骤所获得的各信号源k的来波方向的到达角初始估计值,进行迭代更新来得到来波方向的到达角估计值、相位校准误差估计值。The following is an iterative update based on the initial estimated value of the angle of arrival in the direction of arrival of each signal source k obtained in the above steps, to obtain the estimated value of the angle of arrival in the direction of arrival and the estimated value of the phase calibration error.
步骤206,归一化第一接收信号矩阵中第一根天线接收信号的随机误差,即第一接收信号矩阵各行元素除以第一行的对应元素,得到第二接收信号:Step 206, normalize the random error of the received signal of the first antenna in the first received signal matrix, that is, divide the elements of each row of the first received signal matrix by the corresponding elements of the first row to obtain the second received signal:
其中./是点除运算。where ./ is the dot division operation.
步骤207,对第二接收信号的协方差矩阵进行奇异值(SVD)分解,得到信号子空间对应的特征向量矩阵Es、噪声子空间对应的特征向量矩阵Εn:Step 207, for the second received signal The covariance matrix of is carried out singular value (SVD) decomposition, and the eigenvector matrix E s corresponding to the signal subspace and the eigenvector matrix E n corresponding to the noise subspace are obtained:
其中,Es是信号特征向量构成的信号子空间矩阵,En是噪声特征向量构成的噪声子空间矩阵,∑s和∑n分别是信号子空间特征值和噪声子空间特征值构成的对角阵,由此计算出En。where E s is the signal subspace matrix composed of the signal eigenvectors, E n is the noise subspace matrix composed of the noise eigenvectors, ∑ s and ∑ n are the diagonals composed of the signal subspace eigenvalues and the noise subspace eigenvalues, respectively matrix, from which E n is calculated.
步骤208,基于信号子空间与噪声子空间正交的原理,按照公式12构造当前代价函数J,Step 208, based on the principle that the signal subspace and the noise subspace are orthogonal, construct the current cost function J according to formula 12,
其中,由公式10获得,是由阵元相位校准误差构成的M维对角矩阵,A=[a(θ1),a(θ2),...,a(θK)]是M×K维的阵元导引矢量构成的导引矩阵;in, Obtained by Equation 10, is the M-dimensional diagonal matrix composed of the phase calibration errors of the array elements, A=[a(θ 1 ), a(θ 2 ), ..., a(θ K )] is the M×K-dimensional array element guidance Steering matrix composed of vectors;
由于because
由此可得到: From this we get:
式中,是以导引矢量a(θk)为对角线元素的对角阵,为相位校准误差初始估计值矢量;In the formula, is a diagonal matrix with steering vector a(θ k ) as its diagonal elements, is the initial estimated value vector of the phase calibration error;
故而,基于公式11-1、以及步骤208计算的到的En来求得变换阵T(θ):Therefore, the transformation matrix T(θ) is obtained based on Equation 11-1 and the En calculated in step 208:
步骤209,对所构造的代价函数进行最小化,得到各天线阵列相位校准误差矢量第一估计值:具体为,按照式12进行代价函数最小化,Step 209: Minimize the constructed cost function to obtain the first estimated value of the phase calibration error vector of each antenna array: Specifically, the cost function is minimized according to Equation 12,
其中,argmin表示使得代价函数J取得最小值的所有相位校准误差估计值的集合;Among them, argmin represents the set of all phase calibration error estimates that make the cost function J achieve the minimum value;
将步骤208求得的变换阵T(θ)代入公式12,由此得到各天线阵列的相位校准误差第一估计值 Substitute the transformation matrix T(θ) obtained in step 208 into formula 12, thereby obtaining the first estimated value of the phase calibration error of each antenna array
步骤210,由奇异值分解得到第一接收信号矩阵两个信号子空间对应的特征向量矩阵,其中,第一接收信号矩阵的两个信号子空间分别为步骤202所构造的第一接收信号的第一子阵和第二子阵。Step 210: Obtain eigenvector matrices corresponding to the two signal subspaces of the first received signal matrix by singular value decomposition, wherein the two signal subspaces of the first received signal matrix are respectively the first received signal constructed in step 202. A subarray and a second subarray.
ES1=P1Es (13)E S1 = P 1 E s (13)
ES2=P2Es (14)E S2 =P 2 E s (14)
ES1和ES2分别为信号子空间特征向量矩阵的第一子阵列和第二子阵列, P1=[IM-10],P2=[0 IM-1],,其中,I为单位矩阵;是包含来波方向到达角信息的旋转矩阵。E S1 and E S2 are the first sub-array and the second sub-array of the signal subspace eigenvector matrix, respectively, P 1 =[I M-1 0], P 2 =[0 I M-1 ], where I is the unit matrix; is the rotation matrix containing the arrival angle information in the direction of arrival.
步骤211,由ES1和ES2、以及各阵元的相位校准误差第一估计值,求解达到角第一估计值Θ:Step 211, by E S1 and E S2 , and the first estimated value of the phase calibration error of each array element, solve the first estimated value Θ of the reaching angle:
由于有: Due to:
故而:Therefore:
其中, in,
步骤212,将所述相位校准误差第一估计值、到达角第一估计值代入公式11-1,求得第一代价函数。Step 212: Substitute the first estimated value of the phase calibration error and the first estimated value of the angle of arrival into Formula 11-1 to obtain a first cost function.
步骤213,判断第一代价函数与第二代价函数之差的绝对值是否小于预设的阈值,其中,第一次迭代时,所述第二代价函数为0;Step 213, judging whether the absolute value of the difference between the first cost function and the second cost function is less than a preset threshold, wherein, in the first iteration, the second cost function is 0;
当第一代价函数与第二代价函数的绝对值小于预设的阈值时,则执行步骤214,停止迭代,并将所述相位校准误差第一估计值、到达角第一估计值作为最终的估计结果输出,否则,执行步骤215,将所述相位校准误差第一估计值作为相位校准误差初始值、到达角第一估计值作为到达角初始值,将所述第一代价函数作为第二代价函数,返回步骤206,进行下一次迭代。When the absolute value of the first cost function and the second cost function is smaller than the preset threshold, step 214 is executed, the iteration is stopped, and the first estimated value of the phase calibration error and the first estimated value of the angle of arrival are used as the final estimate The result is output, otherwise, go to step 215, take the first estimated value of the phase calibration error as the initial value of the phase calibration error, the first estimated value of the angle of arrival as the initial value of the angle of arrival, and take the first cost function as the second cost function , return to step 206, and proceed to the next iteration.
本发明提供的一种天线阵列来波方向到达角的估计方法,当阵元存在较大相位校准误差时基于阵列自校准的来波方向准确估计到达角。其优势在于:The invention provides a method for estimating the arrival angle of the incoming wave direction of an antenna array, when the array element has a large phase calibration error, the arrival angle is accurately estimated based on the incoming wave direction of the array self-calibration. Its advantages are:
1、根据信号结构特征来估计的相位校准误差与来波方向到达角初始值精度高,大大提高了算法性能的稳定性。1. The phase calibration error estimated according to the signal structure characteristics and the initial value of the arrival angle of the incoming wave have high precision, which greatly improves the stability of the algorithm performance.
2、阵元相位校准误差很大时,估计精度高且稳定。2. When the phase calibration error of the array element is large, the estimation accuracy is high and stable.
3、在具有大规模天线阵列的毫米波通信系统中,克服了现有到达角估计方法复杂度高,只适用于较小范围相位误差的问题,故具有很好的推广应用前景。3. In a millimeter-wave communication system with a large-scale antenna array, it overcomes the problem of high complexity of the existing angle of arrival estimation method and is only suitable for a small range of phase errors, so it has a good prospect of popularization and application.
参见图3和图4,图3是本发明实施例中分别采用传统角度估计方法(ESPRIT 算法)和本发明估计方法的到达角的估计误差RMSE的仿真对比图。图4是本发明实施例中分别采用未校正的角度估计方法和本发明的到达角估计方法的阵元相位校准误差RMSE的仿真对比图。Referring to FIG. 3 and FIG. 4 , FIG. 3 is a simulation comparison diagram of the estimation error RMSE of the angle of arrival using the traditional angle estimation method (ESPRIT algorithm) and the estimation method of the present invention respectively in the embodiment of the present invention. FIG. 4 is a simulation comparison diagram of the RMSE of the phase calibration error of the array element using the uncorrected angle estimation method and the angle of arrival estimation method of the present invention respectively in the embodiment of the present invention.
本发明方法所进行的仿真:在加性白高斯噪声信道状况下,随机生成迭代次i 为1000次的仿真实施试验图,其中信号源数K=2,接收阵列的阵元数M=100,接收信噪比为20dB,阵元相位校准误差独立同分布且服从标准差为σφ的均匀分布,即在之间均匀分布。仿真中标准差σφ从0度变化至10 度。两个信号源的到达角分别为θ1=10°和θ2=15°;J(0)=100,Th=10-6。估计性能度量采用估计误差标准差,即:其中表示第n次仿真中第m根天线的相位校准误差估计值,其中表示第n次仿真中第m个到达角的估计值。从仿真结果可见,本发明实施例中到达角与阵元相位校准误差的估计性能远优于经典的ESPRIT算法,说明接收天线阵列存在较大相位校准误差时,本发明依然能准确估计到达角与阵元相位校准误差值。The simulation performed by the method of the present invention: under the condition of the additive white Gaussian noise channel, the simulation implementation test diagram with the iteration number i of 1000 times is randomly generated, wherein the number of signal sources K=2, the number of elements of the receiving array M=100, The received signal-to-noise ratio is 20dB, and the phase calibration error of the array element is independent and identically distributed and obeys a uniform distribution with standard deviation σ φ , that is, in evenly distributed among them. The standard deviation σφ varies from 0 to 10 degrees in the simulation. The arrival angles of the two signal sources are θ 1 =10° and θ 2 =15°, respectively; J (0) =100, Th=10 −6 . The estimated performance measure uses the estimated error standard deviation, namely: in represents the estimated value of the phase calibration error of the mth antenna in the nth simulation, in represents the estimated value of the mth angle of arrival in the nth simulation. It can be seen from the simulation results that the estimation performance of the angle of arrival and the phase calibration error of the array element in the embodiment of the present invention is far superior to the classical ESPRIT algorithm, which indicates that the present invention can still accurately estimate the angle of arrival and the phase calibration error when the receiving antenna array has a large phase calibration error. Element phase calibration error value.
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。In this document, relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such existence between these entities or operations. The actual relationship or sequence. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811529049.0A CN109738854B (en) | 2018-12-14 | 2018-12-14 | Arrival angle estimation method for arrival direction of antenna array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811529049.0A CN109738854B (en) | 2018-12-14 | 2018-12-14 | Arrival angle estimation method for arrival direction of antenna array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109738854A true CN109738854A (en) | 2019-05-10 |
CN109738854B CN109738854B (en) | 2020-07-10 |
Family
ID=66359436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811529049.0A Active CN109738854B (en) | 2018-12-14 | 2018-12-14 | Arrival angle estimation method for arrival direction of antenna array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109738854B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110687500A (en) * | 2019-10-28 | 2020-01-14 | 武汉大学 | Identification and positioning method and system for acquiring arrival angle of wireless signal by intelligent antenna |
CN111413668A (en) * | 2020-04-15 | 2020-07-14 | 南京航空航天大学 | A DOA Estimation Method Based on DFT Enhancement in Large Scale Arrays |
CN111983556A (en) * | 2020-08-19 | 2020-11-24 | 杭州电子科技大学 | Device and method for estimating angle of arrival |
CN112285641A (en) * | 2020-09-16 | 2021-01-29 | 西安空间无线电技术研究所 | A method and device for estimating direction of arrival DOA based on ICA |
CN112305494A (en) * | 2020-10-23 | 2021-02-02 | 北京邮电大学 | A sensor position calibration method and device |
WO2021063520A1 (en) * | 2019-10-04 | 2021-04-08 | Huawei Technologies Co., Ltd. | Low complexity angle of arrival (aoa) array calibration |
CN112904321A (en) * | 2019-12-03 | 2021-06-04 | 复旦大学 | Method for calibrating uniform linear array cross coupling and array element gain-phase error |
CN112986935A (en) * | 2021-02-24 | 2021-06-18 | 湖北中南鹏力海洋探测系统工程有限公司 | Multi-element array channel passive calibration method based on landform conformal arrangement |
CN113114390A (en) * | 2021-04-30 | 2021-07-13 | 网络通信与安全紫金山实验室 | Array OTA (over the air) array form calibration method and calibration system based on broadband signals |
CN113242099A (en) * | 2021-03-19 | 2021-08-10 | 天津科畅慧通信息技术有限公司 | Phased array antenna installation parameter calibration method based on gradient descent algorithm |
CN113821907A (en) * | 2021-08-19 | 2021-12-21 | 南京理工大学 | Amplitude and phase automatic calibration method for large planar antenna array system |
CN114339991A (en) * | 2022-01-14 | 2022-04-12 | 网络通信与安全紫金山实验室 | AoA estimation method, apparatus, base station, storage medium, and computer program product |
CN114609579A (en) * | 2022-03-23 | 2022-06-10 | 电子科技大学 | A Defocus Direction Finding Error Correction Method |
WO2024146385A1 (en) * | 2023-01-06 | 2024-07-11 | 网络通信与安全紫金山实验室 | Antenna phase error correction method and device, base station and storage medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583502A (en) * | 1993-11-04 | 1996-12-10 | Mitsubishi Denki Kabushiki Kaisha | A-D converter testing circuit and D-A converter testing circuit |
GB2347036A (en) * | 1999-01-06 | 2000-08-23 | Nec Corp | Estimating arrival direction of a repeatedly transmitted signal, using cross-correlation |
SU1840427A1 (en) * | 1986-02-20 | 2007-03-20 | Нижегородский научно-исследовательский институт радиотехники | Adaptive antenna array |
CN104375133A (en) * | 2014-11-11 | 2015-02-25 | 西北大学 | Estimation method for space two-dimensional DOA |
CN104407335A (en) * | 2014-10-24 | 2015-03-11 | 哈尔滨工业大学深圳研究生院 | DOA estimation method of 3-axis cross array |
CN104698430A (en) * | 2015-03-27 | 2015-06-10 | 北京邮电大学 | Virtual array antenna based angle estimation method for improving accuracy |
CN105246086A (en) * | 2015-10-08 | 2016-01-13 | 北京邮电大学 | A method and device for determining antenna angle |
CN105891771A (en) * | 2016-04-06 | 2016-08-24 | 北京邮电大学 | Continuous distribution-based angle estimation method and device for improving estimation precision |
CN108872930A (en) * | 2018-08-28 | 2018-11-23 | 天津大学 | Extend aperture two dimension Joint diagonalization DOA estimation method |
-
2018
- 2018-12-14 CN CN201811529049.0A patent/CN109738854B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1840427A1 (en) * | 1986-02-20 | 2007-03-20 | Нижегородский научно-исследовательский институт радиотехники | Adaptive antenna array |
US5583502A (en) * | 1993-11-04 | 1996-12-10 | Mitsubishi Denki Kabushiki Kaisha | A-D converter testing circuit and D-A converter testing circuit |
GB2347036A (en) * | 1999-01-06 | 2000-08-23 | Nec Corp | Estimating arrival direction of a repeatedly transmitted signal, using cross-correlation |
CN104407335A (en) * | 2014-10-24 | 2015-03-11 | 哈尔滨工业大学深圳研究生院 | DOA estimation method of 3-axis cross array |
CN104375133A (en) * | 2014-11-11 | 2015-02-25 | 西北大学 | Estimation method for space two-dimensional DOA |
CN104698430A (en) * | 2015-03-27 | 2015-06-10 | 北京邮电大学 | Virtual array antenna based angle estimation method for improving accuracy |
CN105246086A (en) * | 2015-10-08 | 2016-01-13 | 北京邮电大学 | A method and device for determining antenna angle |
CN105891771A (en) * | 2016-04-06 | 2016-08-24 | 北京邮电大学 | Continuous distribution-based angle estimation method and device for improving estimation precision |
CN108872930A (en) * | 2018-08-28 | 2018-11-23 | 天津大学 | Extend aperture two dimension Joint diagonalization DOA estimation method |
Non-Patent Citations (2)
Title |
---|
YUEXING PENG ET AL.: "An Enhanced Channel Estimation Method for Millimeter Wave Systems With Massive Antenna Arrays", 《IEEE COMMUNICATIONS LETTERS》 * |
王维新 等: "基于抵消干扰信号相关阵的DOA估计", 《东南大学学报(自然科学版)》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021063520A1 (en) * | 2019-10-04 | 2021-04-08 | Huawei Technologies Co., Ltd. | Low complexity angle of arrival (aoa) array calibration |
CN114391229B (en) * | 2019-10-04 | 2023-04-11 | 华为技术有限公司 | Low complexity angle of arrival (AOA) array calibration |
CN114391229A (en) * | 2019-10-04 | 2022-04-22 | 华为技术有限公司 | Low complexity angle of arrival (AOA) array calibration |
US12199685B2 (en) | 2019-10-04 | 2025-01-14 | Huawei Technologies Co., Ltd. | Low complexity angle of arrival (AOA) array calibration |
CN110687500A (en) * | 2019-10-28 | 2020-01-14 | 武汉大学 | Identification and positioning method and system for acquiring arrival angle of wireless signal by intelligent antenna |
CN112904321A (en) * | 2019-12-03 | 2021-06-04 | 复旦大学 | Method for calibrating uniform linear array cross coupling and array element gain-phase error |
CN112904321B (en) * | 2019-12-03 | 2023-01-17 | 复旦大学 | A Method for Calibrating Mutual Coupling and Gain-Phase Errors of Uniform Linear Arrays |
CN111413668A (en) * | 2020-04-15 | 2020-07-14 | 南京航空航天大学 | A DOA Estimation Method Based on DFT Enhancement in Large Scale Arrays |
CN111413668B (en) * | 2020-04-15 | 2022-04-01 | 南京航空航天大学 | DOA estimation method based on DFT enhancement in large-scale array |
CN111983556A (en) * | 2020-08-19 | 2020-11-24 | 杭州电子科技大学 | Device and method for estimating angle of arrival |
CN111983556B (en) * | 2020-08-19 | 2023-01-24 | 杭州电子科技大学 | Apparatus and method for estimating angle of arrival |
CN112285641A (en) * | 2020-09-16 | 2021-01-29 | 西安空间无线电技术研究所 | A method and device for estimating direction of arrival DOA based on ICA |
CN112285641B (en) * | 2020-09-16 | 2023-12-29 | 西安空间无线电技术研究所 | ICA-based DOA (direction of arrival) estimation method and device |
CN112305494B (en) * | 2020-10-23 | 2023-12-12 | 北京邮电大学 | Sensor position calibration method and device |
CN112305494A (en) * | 2020-10-23 | 2021-02-02 | 北京邮电大学 | A sensor position calibration method and device |
CN112986935A (en) * | 2021-02-24 | 2021-06-18 | 湖北中南鹏力海洋探测系统工程有限公司 | Multi-element array channel passive calibration method based on landform conformal arrangement |
CN113242099A (en) * | 2021-03-19 | 2021-08-10 | 天津科畅慧通信息技术有限公司 | Phased array antenna installation parameter calibration method based on gradient descent algorithm |
CN113114390A (en) * | 2021-04-30 | 2021-07-13 | 网络通信与安全紫金山实验室 | Array OTA (over the air) array form calibration method and calibration system based on broadband signals |
CN113821907A (en) * | 2021-08-19 | 2021-12-21 | 南京理工大学 | Amplitude and phase automatic calibration method for large planar antenna array system |
CN113821907B (en) * | 2021-08-19 | 2024-03-19 | 南京理工大学 | Amplitude and phase automatic calibration method for large planar antenna array system |
CN114339991A (en) * | 2022-01-14 | 2022-04-12 | 网络通信与安全紫金山实验室 | AoA estimation method, apparatus, base station, storage medium, and computer program product |
CN114339991B (en) * | 2022-01-14 | 2024-02-02 | 网络通信与安全紫金山实验室 | AoA estimation method, device, base station, storage medium and computer program product |
CN114609579A (en) * | 2022-03-23 | 2022-06-10 | 电子科技大学 | A Defocus Direction Finding Error Correction Method |
WO2024146385A1 (en) * | 2023-01-06 | 2024-07-11 | 网络通信与安全紫金山实验室 | Antenna phase error correction method and device, base station and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN109738854B (en) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109738854B (en) | Arrival angle estimation method for arrival direction of antenna array | |
CN109765519B (en) | An Angle Estimation Method for Modular-Digital Hybrid Antenna Array | |
CN106054123B (en) | A kind of sparse L battle arrays and its arrival direction estimation method | |
Randazzo et al. | Direction of arrival estimation based on support vector regression: Experimental validation and comparison with MUSIC | |
CN106610483B (en) | MIMO radar angle estimation algorithm based on tensor subspace and spectrum peak search | |
CN105445709B (en) | A kind of thinning array near field passive location amplitude and phase error correction method | |
CN112255629B (en) | Sequential ESPRIT two-dimensional incoherent distribution source parameter estimation method based on joint UCA | |
Ateşavcı et al. | Doa estimation in the presence of mutual coupling using root-music algorithm | |
CN111239677A (en) | Multi-beam passive monopulse angle measurement method based on digital array | |
Li et al. | Joint calibration algorithm for gain-phase and mutual coupling errors in uniform linear array | |
Qian et al. | Localization of coherent signals without source number knowledge in unknown spatially correlated Gaussian noise | |
Kikuchi et al. | Autocalibration algorithm for robust Capon beamforming | |
CN108594165A (en) | A kind of narrow band signal Wave arrival direction estimating method based on expectation-maximization algorithm | |
Mondal | Studies of different direction of arrival (DOA) estimation algorithm for smart antenna in wireless communication | |
Peng et al. | An improved gain-phase error self-calibration method for robust DOA estimation | |
Dai et al. | Central direction-of-arrival estimation of coherently distributed sources for antenna arrays with gain-phase errors | |
Qin et al. | DOA estimation and mutual coupling calibration algorithm for array in plasma environment | |
Elbir et al. | NEAT-MUSIC: Auto-calibration of DOA estimation for terahertz-band massive MIMO systems | |
Hu et al. | Adaptive beamforming based on compressed sensing with gain/phase uncertainties | |
Elbir et al. | Terahertz-band direction finding with beam-split and mutual coupling calibration | |
Zhang et al. | Simultaneous estimation of mutual coupling matrix and DOAs for UCA and ULA | |
CN114966523A (en) | DOA Estimation Method Based on Power Iteration Algorithm in Massive MIMO Direction Finding | |
Ping et al. | Study of 2D DOA estimation for uniform circular array in wireless location system | |
CN113325376A (en) | Method for correcting electromagnetic cross coupling error of phase control array under color noise | |
Dai et al. | A calibration method for linear arrays in the presence of gain-phase errors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |