CN109735556A - The purposes of Priming Glycosyltransferase Gene Involved - Google Patents
The purposes of Priming Glycosyltransferase Gene Involved Download PDFInfo
- Publication number
- CN109735556A CN109735556A CN201910132259.4A CN201910132259A CN109735556A CN 109735556 A CN109735556 A CN 109735556A CN 201910132259 A CN201910132259 A CN 201910132259A CN 109735556 A CN109735556 A CN 109735556A
- Authority
- CN
- China
- Prior art keywords
- cps
- gene
- bacterial strain
- knock
- lactobacillus plantarum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108700023372 Glycosyltransferases Proteins 0.000 title claims abstract description 14
- 230000037452 priming Effects 0.000 title claims abstract description 12
- 240000006024 Lactobacillus plantarum Species 0.000 claims abstract description 30
- 235000013965 Lactobacillus plantarum Nutrition 0.000 claims abstract description 29
- 229940072205 lactobacillus plantarum Drugs 0.000 claims abstract description 29
- 238000002703 mutagenesis Methods 0.000 claims abstract description 5
- 231100000350 mutagenesis Toxicity 0.000 claims abstract description 5
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 230000001580 bacterial effect Effects 0.000 abstract description 49
- 108090000623 proteins and genes Proteins 0.000 abstract description 28
- 150000004676 glycans Chemical class 0.000 abstract description 17
- 229920001282 polysaccharide Polymers 0.000 abstract description 17
- 239000005017 polysaccharide Substances 0.000 abstract description 17
- 238000003209 gene knockout Methods 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 239000013612 plasmid Substances 0.000 abstract description 10
- 238000011160 research Methods 0.000 abstract description 7
- 238000010276 construction Methods 0.000 abstract description 4
- 230000006801 homologous recombination Effects 0.000 abstract description 2
- 238000002744 homologous recombination Methods 0.000 abstract description 2
- 230000008676 import Effects 0.000 abstract description 2
- 230000006798 recombination Effects 0.000 abstract description 2
- 238000005215 recombination Methods 0.000 abstract description 2
- 239000001117 sulphuric acid Substances 0.000 abstract description 2
- 241000894006 Bacteria Species 0.000 description 28
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 22
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 238000012216 screening Methods 0.000 description 12
- 229960003276 erythromycin Drugs 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 230000029087 digestion Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 230000003115 biocidal effect Effects 0.000 description 9
- 239000004310 lactic acid Substances 0.000 description 9
- 235000014655 lactic acid Nutrition 0.000 description 9
- 230000009182 swimming Effects 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 235000015097 nutrients Nutrition 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 241000186660 Lactobacillus Species 0.000 description 5
- 229940039696 lactobacillus Drugs 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 235000021107 fermented food Nutrition 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 229920002444 Exopolysaccharide Polymers 0.000 description 2
- 102000051366 Glycosyltransferases Human genes 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000010009 beating Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 102100040004 Gamma-glutamylcyclotransferase Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101000886680 Homo sapiens Gamma-glutamylcyclotransferase Proteins 0.000 description 1
- 101150062031 L gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002844 continuous effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021472 generally recognized as safe Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- -1 saccharide compound Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention discloses a kind of purposes of Priming Glycosyltransferase Gene Involved, i.e. Priming Glycosyltransferase Gene Involvedcps2E、cps4E is improving the application in lactobacillus plantarum transposon mutagenesis;It willcps2E、cps4E gene and temperature-sensitive plasmid pFED760 recombination to construct knockout carrier, and import in food-borne lactobacillus plantarum competent cell, and then pass through homologous recombination constructioncps2E、cps4E gene knock-out bacterial strain YM 4-3- Δcps2E、YM 4‑3‑Δcps4E and YM 4-3- Δcps2E-4E;The extracellular polysaccharide ability of bacterial strain is measured by phend-sulphuric acid, the discovery extracellular polysaccharide ability of knock-out bacterial strain is below wild-type strain, and double knock-out bacterial strain yield of extracellular polysaccharide are extremely low, thereforecps2E、cps4E gene plays a crucial role in transposon mutagenesis, and the present invention has great potential in exocellular polysaccharide biosynthesis research and application field.
Description
Technical field
The invention belongs to the function of gene and application fields, and in particular to Priming Glycosyltransferase Gene Involvedcps2E、cps4E
Improving the application in lactobacillus plantarum YM 4-3 exocellular polysaccharide biosynthesis.
Background technique
Microbial exopolysaccharides (exopolysaccharide, EPS) are to secrete during its biosynthetic metabolism to thin
It is extracellular and it is normal seep in a kind of saccharide compound of culture medium, compared to plant source and animal sources polysaccharide its with it is with short production cycle,
It is not limited by conditions such as season, pest and disease damage, diseases, so that it is with the stronger market competitiveness and being widely applied property.
Lactic acid bacteria is because of food peculiar flavour corresponding to the correlation of traditional fermented food and its imparting, quality, secure context
Characteristic and it is well-known, growth characteristics make in terms of the preservation of food have original charm.The acid crossed by lactobacillus-fermented
Dish and fermented soya bean become the regular guest of life dining table gradually with the development of the times, and evolution over time makes plus the wisdom of compatriots
Obtaining them gives food richer taste.
The combination of lactic acid bacteria and soybean is the performance of Chinese's wisdom, this is dexterously sent out different from the another of bean curd
It is bright.It allows soybean no longer to make one ventosity under the continuous effect of lactic acid bacteria, people is made to be easier to absorb the nutrition such as sugar therein
Substance.Belong to main kind in lactic acid bacteria lactobacillus plantarum ( Lactobacillus plantarum) it is in Yunnan tradition
The most common strain in fermented food fermented soya bean,Lb. plantarumYM 4-3 is exactly one plant and is isolated from Yunnan traditional fermented food
The lactobacillus lactic acid bacteria of fermented soya bean, produced EPS are one kind by glucose, mannose, fructose, lactose, galactolipin, sandlwood
Sugar, arabinose composition heteroglycan, according to we have discovered that,Lb. plantarumThe produced EPS of bacterial strain YM 4-3 has good
Good anti-oxidant and anti-tumor activity.
With the progress and development of modern society, the health of food becomes the level that people are more concerned about.Lactic acid bacteria is generally acknowledged
The food-grade microorganisms of safety (GRAS, Generally Recognized as Safe), generated EPS have it is natural,
The small characteristic of safety, toxic side effect, the research and development of lactic acid bacteria EPS meet people's health demand just and are concerned.
Can most of lactic acid bacteria EPS yield with excellent physiological activity be not able to satisfy industrial demand, although from culture item
It optimizes also available raising in terms of part, but the uncertainty of its condition of culture and is related to experiment condition and industry is sent out
Research is very few in terms of the changing effect of ferment mode, therefore goes forward side by side from the function that gene level sets about studying EPS synthesis related gene
One step understands its Regulation Mechanism to understand influence of the related gene to lactic acid bacteria EPS biosynthesis, then with improve fermentation condition
This mode is combined with stronger application value.
Summary of the invention
For the deficiency of present Research, the present invention provides a kind of purposes of Priming Glycosyltransferase Gene Involved, i.e. guidance glycosyl
Transferase genecps2E、cps4E improve lactobacillus plantarum (Lactobacillus plantarum) in transposon mutagenesis
Application, the genecpsThe nucleotide sequence of 2E is as shown in SEQ ID NO:1, genecpsThe nucleotide sequence of 4E such as SEQ
Shown in ID NO:2;The present invention willcps2E、cps4E gene and temperature-sensitive plasmid pFED760 recombination to construct knockout carrier
pFED760-Δcps2E、pFED760-Δcps4E、pFED760-Δcps2E-4E, be conducted into lactobacillus plantarum competence into
And pass through homologous recombination constructioncps2E、cps4E gene list knock-out bacterial strain Δcps2E、Δcps4E and double knock-out bacterial strain Δscps2E-4E;By comparing the different proofs of wild-type strain and the Physiology and biochemistry difference of knock-out bacterial strain and EPS yieldcps2E
Withcps4E gene plays a crucial role in EPS synthesis, and the present invention has very big in the research of EPS biosynthesis and application field
Potentiality.
In order to realize above-mentioned purpose of the invention, technical scheme is as follows:
1, Priming Glycosyltransferase Gene Involvedcps2E、cpsThe preparation of 4E knockout carrier, the knockout carrier obtain by the following method
It arrives: using food-borne lactobacillus plantarum genome as template, utilizing primer pair (up-2EF+up-2ER;up-4EF + up-4ER;
down-2EF + down-2ER;Down-4EF+down-4ER) upstream and downstream homology arm is expanded respectively, PCR product is used as template,
Utilize primer pair (up-2EF+down-2ER;Up-4EF+down-4ER) amplification obtain knock out segment, the fragment purification
Afterwards, restriction enzyme is used respectively with temperature-sensitive plasmid pFED760xhoI HeEcoR I andHinIII He of dEcoRI is synchronous
Digestion, digestion products are attached experiment after gel extraction, and connection product imported into bacillus coli DH 5 alpha competent cell
In, it extracts plasmid and obtainscps2E、cps4E gene knockout carrier pFED760- Δcps2E、pFED760-Δcps4E, wherein drawing
Object sequence is as follows:
up-2EF: 5’-CCGGAATTCTGAACAGAT CGATACTGGTG-3 ',
up-2ER: 5'-ACATTTCTCATCTGGCGCGTTTGTGGTTGTACATGAC- 3';
Down-2EF:5 '-GTCATGTACAACCACAAACGCGCCAGATGAGAAA TGT-3 ',
down-2ER: 5’-CCCTCGAGCATTTTTGCGACTCTCAT-3';
up-4EF: 5’-CCGGAATTCGGGTTCATTGGC TCGCACTTGGT-3 ',
Up-4ER:5 '-CGTAGCCGTT TCGGAAAATCTCACAGTGTTGTTCGTC AGC-3 ',
Down-4EF:5 '-GCTGACGAACAACACTGTGAGATTTTCCGAAACGGCTACG- 3 ',
down-4ER: 5’-CCCAAG CTTGGGCACATAACTACTGCTCCAA-3 ', underscore are restriction enzyme site.
In the present inventioncps2E、cps4E gene and its upstream and downstream homology arm sequence such as SEQ ID NO:3 and SEQ ID NO:4
It is shown, from food-borne lactobacillus plantarum (Lactobacillus plantarum);Lactobacillus plantarum is safe and harmless etc. because of its
Feature, is widely used in the fields such as food, drug, thus its gene be also it is safe to the human body harmless, this will be for the invention in the future
Theoretical safety guarantee is provided in the application of exocellular polysaccharide production field.
2, Priming Glycosyltransferase Gene Involvedcps2E、cps4E knock-out bacterial strain construction and screening, including above-mentioned guidance glycosyl turn
Move enzyme genecps2E、cpsThe building of 4E knockout carrier and the conversion of later period knockout carrier and knock-out bacterial strain screening, steps are as follows:
(1) knockout carrier pFED760- Δcps2E and pFED760- ΔcpsThe conversion of 4E: in 90 ~ 100 μ L lactobacillus plantarum senses
By 10 μ L knockout carrier pFED760- Δs are added in statecps2E and pFED760- Δcps4E is mixed gently, and is transferred to after ice bath 5min
In pre-cooling electric shock cup, according to 1.25 kv/cm, the parameter of 200 Ω shocks by electricity, and is added into electric revolving cup rapidly after the completion of electric shock
Mixed liquor is transferred in sterile 1.5mL centrifuge tube, 28 DEG C by the fresh MRS culture solution of 900 μ L after gently blowing and beating mixing with pipette tips
2.5 ~ 3 h of static gas wave refrigerator makes cell recovery.8000 ~ 10000 rpm of bacterium solution is centrifuged 3 min after culture, abandons 900 μ L supernatants, uses
Thallus is resuspended in remaining supernatant, is coated on containing on 5 μ g/mL erythromycin MRS solid plates, 28 DEG C of stationary cultures.
(2)cps2E、cpsThe screening of 4E gene knock-out bacterial strain: the single colonie switching grown in step (1) is in containing 5 μ g/mL
In the MRS fluid nutrient medium of erythromycin, bacterium solution is transferred to 37 DEG C until when bacterium solution OD600 is 0.2 ~ 0.3 by 28 DEG C of stationary cultures
Continue stationary culture to stay overnight, culture bacterium solution dilution 103~105The MRS solid plate containing 5 μ g/mL erythromycin is coated on after times
On, for 24 hours, picking monoclonal is seeded to 1mL and contains in the MRS fluid nutrient medium of 5 μ g/mL erythromycin 37 DEG C 37 DEG C of stationary cultures
Stationary culture is stayed overnight, which is seeded in not antibiotic MRS fluid nutrient medium by 1%, 28 DEG C of stationary culture mistakes
Night, then bacterium solution dilution 103~105It is coated on the MRS solid plate of antibiotic-free after times, 37 DEG C of stationary cultures are to growing Dan Ke
Grand, picking smaller single colonie one-to-one correspondence is lined containing 5 μ g/mL erythromycin and not antibiotic MRS solid plate, and 37 DEG C
For 24 hours, picking can not be grown stationary culture on antibiotic MRS agar plate, and can be on not antibiotic plate
The bacterium colony of growth carries out bacterium solution PCR verifying, to obtain lactobacillus plantarum YM 4-3- Δcps2E and lactobacillus plantarum YM 4-3-
ΔcpsThe mono- knock-out bacterial strain of 4E;What the screening technique improved knock-out bacterial strain sifts out efficiency.
In heretofore described bacterium solution PCR verifying using positioned at upstream homology arm upstream gene group preceding primer (cps2E-
Uu-F:5 '-GGGTCTTGGCACAGGTTACGG- 3 ',cps4E-uu-F:5 '-TATGATTTAGTGCAGCAGGG- 3 '), position
In downstream homology arm downstream gene group rear primer (cps2E-uu-R:5 '-CAACAGCACGAAACCAATAC- 3 ',cps4E-
Dd-R:5 '-CTTACGAAGAACTTCTAGCC-3 ');Wild-type strain PCR fragment ratiocpsThe big 502bp of 2E knock-out bacterial strain, ratiocpsThe big 421bp of 4E knock-out bacterial strain.
(3)cps2E、cpsThe construction method of the bis- knock-out bacterial strains of 4E is identical as single knock-out bacterial strain, will as shown in step (1)
pFED760-Δcps2E knockout carrier electricity is transferred to lactobacillus plantarum YM 4-3- ΔcpsIn 4E competence, plate is carried out after recovery
Coating, is screened according still further to method shown in step (2), the primer and lactobacillus plantarum YM 4-3- ΔcpsThe mono- knockout bacterium of 2E
Strain is identical.
3, food-borne lactobacillus plantarum is demonstrated using the successful knock-out bacterial strain of buildingcps2E、cps4E gene and plant
It plays a crucial role in lactobacillus EPS synthesis.
One of features of the present invention is to study gene from food-borne food lactobacillus, has safety, can be used for
Later period field of food fermentation.
The two of the features of the present invention are that the method for gene knock-out bacterial strain screening improves the screening efficiency of knock-out bacterial strain.
The three of feature of the present invention are, it was demonstrated that research gene of the present inventioncps2E、cps4E gene is in transposon mutagenesis
In key effect, provide certain theoretical basis for the EPS research and development for synthesizing functional food, and it has further been discovered that this gene exists
Effect in cellular morphology and strain growth.
Compared with prior art present invention has the advantage that 1) research gene source has peace in food-grade microorganisms
Quan Xing;2) present invention research genecps2E、cps4E gene plays key effect in EPS synthesis.
Detailed description of the invention
Fig. 1 is knock-out bacterial strain bacterium solution PCR of the present invention verifying, wherein figure A:YM 4-3- Δcps4E bacterial strain screening, M are
2000bp DNA molecular Marker, swimming lane 1-6 are YM 4-3- Δcps4E bacterial strain, swimming lane 7 are YM 4-3 strain control, swimming lane 8
For blank control (sterile ddH2O) PCR product compares;Scheme B:YM 4-3- Δ cps 2E bacterial strain screening, M is 2000bp DNA points
Sub- Marker, swimming lane 1-3 are YM 4-3- Δcps2E bacterial strain, swimming lane 4 are YM 4-3 strain control;Scheme C:YM 4-3- Δcps2E-4E bacterial strain screening, M are 2000bp DNA molecular Marker, and swimming lane 4 is YM 4-3- Δcps2E-4E bacterial strain, swimming lane 1-
3 be YM 4-3 strain control, and swimming lane 5-7 is failed control;
Fig. 2 is that wild type of the present invention and knockout type bacterial strain yield of extracellular polysaccharide compare, and wherein WT indicates wild type YM 4-3 bacterial strain;
Qc2E is indicatedcps2E gene knock-out bacterial strain YM 4-3- Δcps2E;Qc4E is indicatedcps4E gene knock-out bacterial strain YM 4-3- Δcps4E;Qc2E-4E is indicatedcps2E andcpsDouble knock-out bacterial strain YM 4-3- Δs of 4E genecps2E-4E。
Specific embodiment
Invention is further described in detail with reference to the accompanying drawings and examples, but the scope of the present invention is not limited to
The content, reagent and method used in embodiment are all made of conventional reagent and use conventional method unless otherwise specified;
Temperature-sensitive plasmid pPED760 is given by University of Illinois Michael J doctor Federle;In following embodiments
As a result unless otherwise instructed, it is duplicate average value three times.
Embodiment 1: Priming Glycosyltransferase Gene Involved (cps2E、cps4E) knock out homology arm clone
1, PCR amplification upstream and downstream homology arm
Food-borne lactobacillus plantarum is extracted using TAKARA bacterial genomes DNA extraction kit (precious bioengineering Co., Ltd)
YM 4-3 genome, concrete operations are carried out according to kit specification.For genecps2E, to extract genome as template, divide
Not with up-2EF (CCGGAATTCTGAACAGATCG ATACTGGTG, underscore are restriction enzyme siteEcoRⅠ)、up-2ER(ACA
) and down-2EF (GTCATGTACAACCACAAACGCGCCAGATG TTTCTCATCTGGCGCGTTTGTGGTTGTACATGAC
AGAAATGT)、down-2ER(CCCTCGAGCATT TTTGCGACTCTCAT, underscore are restriction enzyme sitexhoI) it is expanded
Obtain upstream and downstream homology arm cps2E-up(1066bp), cps2E-down(1048bp).For genecps4E, to extract gene
Group is template, respectively with primer pair up-4EF (CCGGAATTCGGGTTCATTGGCTCGCACTTGGT, underscore are digestion position
PointEcoR I), up-4ER (CGTAGCCGTTTCGGAAAATCTCACAGTGTTGTTCGTCAGC) and down-4EF (GCTG ACG
AACAACACTGTGAGATTTTCCGAAACGGCTACG)、down-4ER (CCCAAGCTTGGGC
ACATAACTACTGCTCCAA, underscore are restriction enzyme siteHinD III) amplification upstream and downstream homology arm cps4E-up(922bp),
Cps4E-down(1174b), PCR reaction system and amplification condition are as follows:
(1) PCR reaction system
;
(2) PCR amplification condition
95 DEG C of 3 min of initial denaturation;95 DEG C of 15 s of denaturation;55 DEG C of 15 s of annealing;72 DEG C of 50 s of extension;Circulation 30 times;72 DEG C extend 5
Min, 12 DEG C of preservations.5 μ L are taken after the reaction was completed, and electrophoretic analysis is carried out in 1% Ago-Gel.
2, gene knockout segment clone building and sequencing
Using each 1 μ L of upstream and downstream homology arm PCR product as template, up-2EF and down-2ER and up-4EF and down-4ER are to draw
Object carries out over-lap PCR according to above-mentioned PCR reaction system and amplification condition (extension of time is changed to 2 min);Gel extraction is expected big
Small PCR product (i.e. gene knockout segment), according to Dalian treasured bioengineering Co., Ltd TA Cloning Kit specification, by PCR
Product is connected in pMD19-T carrier;Connection product is imported in bacillus coli DH 5 alpha competent cell by heat-shock transformed method,
It is coated on Amp-LB plate;After 37 DEG C are incubated overnight, 10~15 single colonies are randomly selected, extract plasmid in its cell, and divide
It does not useEcoRⅠ、xhoI HeEcoRⅠ、HinD III carries out digestion verification, and positive plasmid send sequencing company to be sequenced.
Embodiment 2:cps2E、cpsThe building of 4E gene list knockout carrier
Use restriction enzymeEcoRⅠ、xhoI HeEcoRⅠ、HinD III is respectively to the correct gene knockout segment of sequencing and temperature
Degree responsive type plasmid pFED760 synchronizes digestion.cps2E digestion system are as follows:EcoR I, 2 μ L;xhoI, 2 μ L;1×H
Buffer, 4 μ L;Gene knockout segment or pFED760,10 ~ 16 μ L;Add sterile deionized water to 20 μ L.cps4E digestion body
System are as follows:EcoR I, 1 μ L;HinD III, 1 μ L;1 × M buffer, 4 μ L;Gene knockout segment or pFED760,30 μ L;Add
Sterile deionized water is to 40 μ L.Digestion products are recycled after 37 DEG C of 4 h of digestion, according to target gene: carrier=4:1~2:1(rubs
Your ratio) after sample-adding, T4 DNA ligase is added in 16 DEG C of 12~16 h of connection;Connection product is imported greatly using heat-shock transformed method
In enterobacteria DH5 α competent cell, then it is coated on erythromycin-LB solid plate;After 28 DEG C are incubated overnight, extraction 10~
Plasmid in 15 single colonie cells, and double digestion verifying is carried out with corresponding restriction endonuclease to obtain positive plasmid, it is named as pFED760-
Δ cps2E and pFED760- Δ cps4E.
Embodiment 3:cps2E、cpsThe building of 4E gene list knock-out bacterial strain
1、cps2E、cps4E gene knockout carrier imports lactobacillus plantarum competent cell
It is thin that lactobacillus plantarum competence is prepared referring to Fei Yongtao (2015, South China Science & Engineering University's master thesis) report method
Born of the same parents;10 μ L gene knockout carrier pFED760- Δ cps2E and pFED760- are added in 90 ~ 100 μ L lactobacillus plantarum competence
Δ cps4E, mixes gently, and is transferred in pre-cooling electric shock cup after ice bath 5min, and according to 12.5kv/cm, the parameter of 200 Ω carries out electricity
It hits;The fresh MRS culture solution of 900 μ L is added after the completion of electric shock into electric revolving cup rapidly, after gently blowing and beating mixing with pipette tips, will mix
It closes liquid to be transferred in sterile 1.5mL centrifuge tube, 28 DEG C of 2.5 ~ 3 h of static gas wave refrigerator make cell recovery.8000 rpm of bacterium solution after culture
3 min are centrifuged, 900 μ L supernatants are abandoned, thallus is resuspended with remaining supernatant, are coated on flat containing 5 μ g/mL erythromycin MRS solids
On plate, 28 DEG C of stationary cultures.
2、cps2E、cpsThe screening and verifying of 4E gene knock-out bacterial strain
2~3 single colonies are randomly selected, are transferred in the MRS fluid nutrient medium containing 5 μ g/mL erythromycin, 28 DEG C of stationary cultures
Until bacterium solution OD600When being 0.2 ~ 0.3, bacterium solution is transferred to 37 DEG C of continuation stationary cultures and is stayed overnight, culture bacterium solution dilution 103~105
It is coated on the MRS solid plate containing 5 μ g/mL erythromycin after times, for 24 hours, picking monoclonal is seeded to 37 DEG C of stationary cultures
1mL contains 37 DEG C of stationary cultures in the MRS fluid nutrient medium of 5 μ g/mL erythromycin and stays overnight, which is seeded to not by 1%
In antibiotic MRS fluid nutrient medium, 28 DEG C of stationary cultures are stayed overnight, then bacterium solution dilution 103~105No antibiosis is coated on after times
The MRS solid plate of element, 37 DEG C of stationary cultures are lined to monoclonal, the smaller single colonie one-to-one correspondence of picking is grown containing 5 μ g/
ML erythromycin and not antibiotic MRS solid plate, 37 DEG C of 24 h of stationary culture, picking are flat in antibiotic MRS agar
The bacterium colony that can not be grown on plate, and can grow on not antibiotic plate carries out bacterium solution PCR verifying.cps2E knocks out strain
Bacterium solution PCR verifying: preceding primer (cps2E-uu-F:5 '-GGGTCTTGGCACAGGTTACGG -3 ') it is located on the homology arm of upstream
It swims on genome, rear primer (cps2E-dd-R:5 '-CAACAGCACGAAACCAATAC-3 ') it is located at downstream homology arm downstream base
Because in group;Wild-type strain PCR fragment is 502bp bigger than knock-out bacterial strain, obtains knock-out bacterial strain YM 4-3- Δcps2E。cps4E strikes
Except strain bacterium solution PCR is verified: preceding primer (cps4E-uu-F:5 '-TATGATTTAGTGCAGCAGGG -3 ') it is located at upstream homology arm
In upstream gene group, rear primer (cps4E-dd-R:5 '-CTTACGAAGAACTTCTAGCC -3 ') it is located under the homology arm of downstream
It swims on genome;Wild-type strain PCR fragment is 421bp bigger than knock-out bacterial strain, obtains single knock-out bacterial strain YM 4-3- Δcps4E;It should
Screening technique improves the efficiency of sifting out of knock-out bacterial strain, the result is shown in Figure 1.
Embodiment 4: double knock-out bacterial strain buildings
Referring to the method for step 1 in embodiment 3, preparationcps4E gene list knock-out bacterial strain YM 4-3 Δcps4E competence, and will
Knockout carrier pFED760- Δ cps2E point is transferred to YM 4-3- ΔcpsIn 4E competent cell, it is coated with after 28 DEG C of cultures, centrifugation
In containing on 5 μ g/mL erythromycin MRS solid plates, then at 28 DEG C of stationary cultures;Referring to step 2 in embodiment 3 forcps2E
The screening technique that gene list knocks out filters out knockout, to obtaincps2E、cpsThe bis- knock-out bacterial strain YM 4-3- Δs of 4Ecps2E-
4E。
Embodiment 5: knock-out bacterial strain yield of extracellular polysaccharide detection
1, the extraction of exocellular polysaccharide
Activate wild-type plant lactobacillus strain YM 4-3 and knockout type lactobacillus plantarum strain YM 4-3 Δcps2E、YM 4-
3Δcps4E and YM 4-3- Δcps2E-4E is inoculated in MRS fluid nutrient medium respectively according to 2% inoculum concentration, 37 DEG C of cultures
24h;12000 rpm/min are centrifuged 10min, take supernatant, and 4% trichloroacetic acid (TCA) is added and removes removing protein, and rotor is added in magnetic
30min is stirred on power blender;12000rpm/min is centrifuged 10min, takes supernatant, 3 times of volume dehydrated alcohols, -20 DEG C of items are added
Precipitates overnight under part;12000rpm/min is centrifuged 15min, removes supernatant, and precipitating is dissolved with appropriate distilled water, is packed into pre-treatment
It dialyses in bag filter, it is primary that every 12h changes water, dialyses 2 days;Gained dialyzate in bag filter is dispensed, -80 DEG C of sufficiently freezings
Afterwards, vacuum freeze drying obtains EPS.
2, yield of extracellular polysaccharide detects
Phend-sulphuric acid measurement referring to Kanmani Paulraj et al. (Bioresour Technol, 2011) is extracellular more
Sugared content, wild-type plant lactobacillus strain YM 4-3 exocellular polysaccharide content is 122.642 ± 0.781 to Fig. 2 as the result is shown
Mg/L, and single knockout type bacterial strain YM 4-3- Δ cps2E exocellular polysaccharide content is 61.49 ± 1.41 mg/L, single knock-out bacterial strain
YM 4-3- Δ cps4E exocellular polysaccharide content is 110.22 ± 2.42 mg/L, double knock-out bacterial strain YM 4-3- Δ cps 2E-4E
Exocellular polysaccharide polyoses content only has 17.72 ± 1.35 mg/L;It is lower than wild-type strain, and imitated under the conditions of double knockouts
Fruit becomes apparent from, and thus proves Priming Glycosyltransferase Gene Involvedcps2E、cps4E is extracellular more in lactobacillus plantarum YM 4-3 bacterial strain
It plays a key effect in sugared synthesis process, and the synthesis of the possible coordinated regulation exocellular polysaccharide of the two.Therefore, subsequent to pass through
The mode of amount expression guidance glycosyl transferase improves its yield of extracellular polysaccharide, is plant cream bar to achieve the purpose that expanding production
The application of bacterium YM 4-3 bacterial strain industrially is provided fundamental basis.
Sequence table
<110>Kunming University of Science and Technology
<120>purposes of Priming Glycosyltransferase Gene Involved
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 678
<212> DNA
<213>lactobacillus plantarum YM 4-3 (Lactobacillus plantarum YM 4-3)
<400> 1
gtgaagcaag tcgaaattaa tgaaacagtt aaagttggtc atgtacaacc acaaacggat 60
tatcgttttc caactatgat tggaaagcca gttacaggct ggaaactatt tgtaaaacgg 120
atttttgacc ttactgttgg gttaatcggg acggttttga gttcgccaat tgtcctagtg 180
tttgccattc ttgtaaaact gacttctaaa ggaccagcat tttataagca agaacgggtt 240
ggcctaatgg gaaagagttt caatgtaatt aagctgcgat ctatgtatca ggatgccgaa 300
gcgcgaacag gtgcggtttg ggctcaaaag aatgatccgc gaattacgcc cattggtcgg 360
tttatgcgta aaactcgagt agacgaacta ccgcaatttt ggaatgtgtt aaaaggtgat 420
atgagtttgg taggaccgcg accagaacgg ccagtgctga cagaggagtt tagtcggcaa 480
ttttcagatt tccctaaacg gttacgtatt attcctggta ttacagggta tgcacaaatt 540
aatggtggct acgatattac gccagatgag aaatgtaagc tggataatta ctatattgaa 600
catttttcgg tttggttcga tattaagatg ttattaggaa cagtcaaaat tgtgtttacc 660
ggagatggag cccgatga 678
<210> 2
<211> 672
<212> DNA
<213>lactobacillus plantarum YM 4-3 (Lactobacillus plantarum YM 4-3)
<400> 2
gtgagcatgc acgaagttga gattaatgaa tcaatcgtgg ctgacgaaca acactgtgaa 60
tttattagca aaattggtgt tccggtcacc ggctggaaga tggatctaaa gcggtgtttc 120
gatctagcag tcggcttatt gggcacactg ctcagcgttc ccatcgtaat tgtgtttgcc 180
atacttatca agttgacttc tgacggtccc gttttctaca agcaggagcg agtcggttgg 240
atggggacga cctttgacgt gattaagctg cgatcaatgt atcaggacgc tgaggcgcag 300
acgggtgcga tctgggcaca aaaaaatgat cctcgggtga cgccggttgg acgctggatg 360
cgcaaaactc ggatcgatga gttaccacaa ttttggaatg ttttgaaggg cgatatgagt 420
ttggtcggac ctcgcccgga acggccagaa ctaaccgaac aattcagtga acgctatcct 480
gattttccga aacggctacg aatcattcct ggcattaccg gctatgcgca gatcaatggt 540
ggctatgata ttacaccggg tgccaagtgt cagtacgata actattacat tgagcacttt 600
tcgatttggt ttgatatcaa gatgctgatg ggaacggtta gggtgattat ttccggggat 660
ggtgcgcggt ag 672
<210> 3
<211> 2616
<212> DNA
<213>artificial sequence (Artificial)
<400> 3
tgaacagatc gatactggtg agattgtgat gcctagaaaa cagcgaaagc actggttgtt 60
ttaaaagaag gagcgagtta aatgaaagca ttagtaactg gaggagcggg atttattggt 120
tcccaccttg tggatcactt ggtctcagaa ggtttggacg ttgtcgtagt tgataacttg 180
tccatggggg acttacataa tattaagtat caggatgaag tcactattta tgttgaagat 240
gtccgcaacg aaaaattcat gcaacaattg ctacaggaag aacagcctga ttatatttac 300
tttttagcag ctgttgctag tgttgccgat tcgattgaac gtccagctga aacccattca 360
gtgaatcaaa ctgcagtatt caatatgttg gaatatattc ggaagactaa tttaccaatt 420
aaacagttcc tatttacgtc ttcggcagct gtttacggta atcttccaga attgcctaag 480
aaagaagact cacgagtcga tccattatca ccatatgcga ttgataagta tgcgacggaa 540
cgttttgtac tagcatatgg tgaactttat gatttaccaa ctgtctgtgt gcgcttcttc 600
aacgtttatg gtcccggtca aaaccccagc tcgccatatt caggggtact gtcgattttg 660
accgattgtc tcaataataa gaagccattt acattgtacg gagatgggag tcagacacga 720
gattttgtgt atgttgaaga tgttatccaa gcattatggc tgataactaa gagtaatacg 780
gagcatgaag tctttaatat tgccaatggt aatgaaacca gtttaagtgc cattatcgaa 840
acgtacgaga aagttgcggg gacttcatta caggttaaga aagcgccggg tcgtgaaggg 900
gaagttaagc gttcggtggc taacattggt aaattaatta agttgggata cacgacgagg 960
tggtcgttag aagcgggttt gagcaaatat tgggaagggg cgcaacgacg tgaagcaagt 1020
cgaaattaat gaaacagtta aagttggtca tgtacaacca caaacggatt atcgttttcc 1080
aactatgatt ggaaagccag ttacaggctg gaaactattt gtaaaacgga tttttgacct 1140
tactgttggg ttaatcggga cggttttgag ttcgccaatt gtcctagtgt ttgccattct 1200
tgtaaaactg acttctaaag gaccagcatt ttataagcaa gaacgggttg gcctaatggg 1260
aaagagtttc aatgtaatta agctgcgatc tatgtatcag gatgccgaag cgcgaacagg 1320
tgcggtttgg gctcaaaaga atgatccgcg aattacgccc attggtcggt ttatgcgtaa 1380
aactcgagta gacgaactac cgcaattttg gaatgtgtta aaaggtgata tgagtttggt 1440
aggaccgcga ccagaacggc cagtgctgac agaggagttt agtcggcaat tttcagattt 1500
ccctaaacgg ttacgtatta ttcctggtat tacagggtat gcacaaatta atggtggcta 1560
cgatattacg ccagatgaga aatgtaagct ggataattac tatattgaac atttttcggt 1620
ttggttcgat attaagatgt tattaggaac agtcaaaatt gtgtttaccg gagatggagc 1680
ccgatgaatg gggtgtatta atacatgaac aggatagaag tttcaattat attgcctgta 1740
tataatagcc aaaaattcat tcgtgagaca attaattccg ttttgagtca atcatttaaa 1800
ctatttgaat tgctcattat caacgatgca tcaactgatg atactgaaaa aatcattcaa 1860
tcgtataacg atccacgaat tgtttataag aaattttcaa ggaatcgtgg cgttgcaaat 1920
gctcgtaatt atggtattaa tctggctgag ggtgaatttg ttgcatttat tgatagcgat 1980
gacatctgga atagcgataa gttacaacaa caattgcaag aaatgcaggc aaaatgcata 2040
aattttagtt attcaaatta cgagcttgta aatgaatctg ggagaacaat caagtatatt 2100
gaaaatttac ctaaatggaa cacgtataaa agcttattaa tgaccaatag cattccgttg 2160
ctaactgtaa ttataaaaaa aaatctgatt aagggtaatc agtttataaa tattcgtcat 2220
gaggattatg ctacatggtt acaaatacta agaaagtctg atgaaaaggc gtggcttttt 2280
ccagaaataa ccgctaaata tcgagtaagg gatgattcga taagcagtaa taagttgaaa 2340
tcattaagtt ggacatggaa cgtttatcga aacagtgaac acttatcact cattaagtcg 2400
gcttattatt tgggatgcaa tgcattacat ggacttttaa agcatcaaca gattttcaag 2460
agcgtataaa tgaaagacaa tatccaaagg agtggttgag gttgaaagtt agcttcccaa 2520
ttgattttgt tgtgacttgg gtcaatagta atgatactat ttggcaacaa aagaaagaac 2580
attacgaatt gagcgaaaat gagagtcgca aaaatg 2616
<210> 4
<211> 2347
<212> DNA
<213>artificial sequence (Artificial)
<400> 4
tggctttgag gtggtggtag acgatctgtc aatgggggcc atcagcaata tcaagcattg 60
ggaacagatt acgatatacg tcgcggatgt ctgtgacgat aaattcatgc aacaattgtt 120
agcagacgaa cggccagact atatttattt tctggcagcg attgcgagtg tggcggattc 180
gattgagcgg ccggcagaaa cgcatgctgt caatcatacc gcggtattta acttgctcga 240
acatattcgc caaattcgct tgcctattaa gcaatttcta ttcacttctt cggcggcggt 300
ttatggcaat ctacctgaat taccaaaacg cgaggattcg cgcgtcgcac ccgtgtcacc 360
gtatgctatt gataagtatg cgactgaacg ttttgtattg gcatacggtg agttgtacga 420
tttgccgacc gtttgtgtgc ggttcttcaa cgtttatgga ccgcgtcaga atccaagctc 480
accgtattcg ggggttttgt cgattttgac ggattgtttg aaaacacagc gaccatttac 540
attattcggt gatggaacgc agacccgtga ttttgtatat gtaagtgatg ttatcaaggc 600
attatggttg attacagaac atcaagtgca acatgaagtg atcaatattg ccaatggctt 660
agaaactagt ttaaatggca ttattcagat gtatcaagag attgctggtc aacaacttga 720
aatcaaacgg gccgagcagc ggggtggtga agttgatcat tcagttgcaa gtattggcaa 780
gttggcacgc ttaaattatg aatcagagtg gccgttgaga agaggattaa ctaagtactg 840
ggaaggggaa tgtgagcatg cacgaagttg agattaatga atcaatcgtg gctgacgaac 900
aacactgtga atttattagc aaaattggtg ttccggtcac cggctggaag atggatctaa 960
agcggtgttt cgatctagca gtcggcttat tgggcacact gctcagcgtt cccatcgtaa 1020
ttgtgtttgc catacttatc aagttgactt ctgacggtcc cgttttctac aagcaggagc 1080
gagtcggttg gatggggacg acctttgacg tgattaagct gcgatcaatg tatcaggacg 1140
ctgaggcgca gacgggtgcg atctgggcac aaaaaaatga tcctcgggtg acgccggttg 1200
gacgctggat gcgcaaaact cggatcgatg agttaccaca attttggaat gttttgaagg 1260
gcgatatgag tttggtcgga cctcgcccgg aacggccaga actaaccgaa caattcagtg 1320
aacgctatcc tgattttccg aaacggctac gaatcattcc tggcattacc ggctatgcgc 1380
agatcaatgg tggctatgat attacaccgg gtgccaagtg tcagtacgat aactattaca 1440
ttgagcactt ttcgatttgg tttgatatca agatgctgat gggaacggtt agggtgatta 1500
tttccgggga tgtggcgcgg tagtgaagat tgtttacatc attactcaag cgacttgggg 1560
tggggcccag gcgcatctat atagtttgat caaagcgcaa gtgatgcgtg gcaatgccgt 1620
tgccttagta tacggcgttg aaggacgcct gagtgcaagc gtcgcgaaag aatttcaaga 1680
cgtgcaagtt gtcagagttg ccagcctggt acatccgatt gcaccgctga gtgatttgaa 1740
agcaatctac acgttaagga aattagtaaa aaattggcag ccagatatta ttcatttgca 1800
ttcttcgaag gctggtatga ttgggattgt cggcgatggt agcttgagcg cacacatcgc 1860
taaacagatt gcagccaccc cgcaaatacg gtggttaggg tttaaaagta acccttacaa 1920
atacatgcgg catgcaaaag ttgtgctgtc gacgtccaaa tcagacgcgt ttggattgac 1980
catggtcgag gcagccttat tgggtgcgat tccgtttgcc ccccgcattg ggggcatctc 2040
tcaaacggcc gcaagggtaa atggcctggt ttatgcgagt gatgctgaat tattggcagt 2100
actgacacgt ctcttttcgg atgggaaatt ttatcaggaa accaaggcta aaatagcagc 2160
ggtcgatttt agtgactatg aacaaaggca attcattcag cggatccagc aagtttataa 2220
aggagtaatg gaacgatgac tgcagtaaat cgtcagattg gtgggccatt cttaagacta 2280
ggactattga ttgccggatt ttacctgatt taccaaccca acttttggag cagtagttat 2340
gtgcccc 2347
<210> 5
<211> 29
<212> DNA
<213>artificial sequence (Artificial)
<400> 5
ccggaattct gaacagatcg atactggtg 29
<210> 6
<211> 37
<212> DNA
<213>artificial sequence (Artificial)
<400> 6
acatttctca tctggcgcgt ttgtggttgt acatgac 37
<210> 7
<211> 37
<212> DNA
<213>artificial sequence (Artificial)
<400> 7
gtcatgtaca accacaaacg cgccagatga gaaatgt 37
<210> 8
<211> 26
<212> DNA
<213>artificial sequence (Artificial)
<400> 8
ccctcgagca tttttgcgac tctcat 26
<210> 9
<211> 32
<212> DNA
<213>artificial sequence (Artificial)
<400> 9
ccggaattcg ggttcattgg ctcgcacttg gt 32
<210> 10
<211> 40
<212> DNA
<213>artificial sequence (Artificial)
<400> 10
cgtagccgtt tcggaaaatc tcacagtgtt gttcgtcagc 40
<210> 11
<211> 40
<212> DNA
<213>artificial sequence (Artificial)
<400> 11
gctgacgaac aacactgtga gattttccga aacggctacg 40
<210> 12
<211> 31
<212> DNA
<213>artificial sequence (Artificial)
<400> 12
cccaagcttg ggcacataac tactgctcca a 31
<210> 13
<211> 21
<212> DNA
<213>artificial sequence (Artificial)
<400> 13
gggtcttggc acaggttacg g 21
<210> 14
<211> 20
<212> DNA
<213>artificial sequence (Artificial)
<400> 14
caacagcacg aaaccaatac 20
<210> 15
<211> 20
<212> DNA
<213>artificial sequence (Artificial)
<400> 15
tatgatttag tgcagcaggg 20
<210> 16
<211> 20
<212> DNA
<213>artificial sequence (Artificial)
<400> 16
cttacgaaga acttctagcc 20
Claims (1)
1. Priming Glycosyltransferase Gene Involvedcps2E、cps4E improve lactobacillus plantarum (Lactobacillus plantarum)
Application in transposon mutagenesis, the genecpsThe nucleotide sequence of 2E is as shown in SEQ ID NO:1, genecpsThe core of 4E
Nucleotide sequence is as shown in SEQ ID NO:2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910132259.4A CN109735556A (en) | 2019-02-22 | 2019-02-22 | The purposes of Priming Glycosyltransferase Gene Involved |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910132259.4A CN109735556A (en) | 2019-02-22 | 2019-02-22 | The purposes of Priming Glycosyltransferase Gene Involved |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109735556A true CN109735556A (en) | 2019-05-10 |
Family
ID=66368053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910132259.4A Pending CN109735556A (en) | 2019-02-22 | 2019-02-22 | The purposes of Priming Glycosyltransferase Gene Involved |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109735556A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235169A (en) * | 2020-02-03 | 2020-06-05 | 昆明理工大学 | GTP cyclohydrolase I gene folE and application thereof |
CN112280795A (en) * | 2020-11-17 | 2021-01-29 | 昆明理工大学 | Use of glycosyltransferase genes |
CN112795527A (en) * | 2021-03-05 | 2021-05-14 | 昆明理工大学 | Use of dihydropterin aldolase gene |
CN112813085A (en) * | 2021-03-05 | 2021-05-18 | 昆明理工大学 | Use of pyrophosphatase gene |
CN112852844A (en) * | 2021-03-05 | 2021-05-28 | 昆明理工大学 | Application of hydroxymethyl dihydropterin pyrophosphokinase gene folK |
CN112961878A (en) * | 2021-03-08 | 2021-06-15 | 昆明理工大学 | Application of gene of lactobacillus plantarum in folic acid biological generation |
CN113832167A (en) * | 2021-11-01 | 2021-12-24 | 昆明理工大学 | Gene and application thereof in improving yield of phenethyl alcohol and tryptophol |
CN114634938A (en) * | 2022-03-06 | 2022-06-17 | 昆明理工大学 | Application of lactobacillus plantarum gene fol KE in folic acid biosynthesis |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004031389A1 (en) * | 2002-10-03 | 2004-04-15 | Genesis Research And Development Corporation Limited | Polynucleotides and polypeptides derived from lactobacillus rhamnosus hn001 |
CN1761752A (en) * | 2003-03-17 | 2006-04-19 | 达尼斯科法国公司 | Texturizing lactic bacteria |
WO2006096269A2 (en) * | 2005-02-04 | 2006-09-14 | Cp Kelco U.S., Inc. | Targeted gene deletions for polysaccharide slime formers |
NZ537499A (en) * | 2002-08-06 | 2007-01-26 | Danisco | Use of lactobacillus to produce exopolysaccharides in food and pharmaceutical compositions |
CN101120013A (en) * | 2004-12-16 | 2008-02-06 | 食品和营养托浦研究所基金会 | Novel efficient production process for capsular polysaccharides of pathogenic grampositive bacteria by heterologous expression and secretion of complex polysaccharides in non-pathogenic, non-invasive |
CN102695420A (en) * | 2009-09-01 | 2012-09-26 | 科·汉森有限公司 | Lactic bacterium with modified galactokinase expression for texturizing food products by overexpression of exopolysaccharide |
CN102695791A (en) * | 2009-09-04 | 2012-09-26 | 伦敦卫生及热带医学学院 | Protein glycosylation |
WO2013082916A1 (en) * | 2011-12-06 | 2013-06-13 | 光明乳业股份有限公司 | Strain of exopolysaccharide-secreting lactobacillus plantarum and application thereof |
CN103409434A (en) * | 2013-06-14 | 2013-11-27 | 中国农业大学 | Bifidobacterium animalis EPS (Exopolysaccharide) biosynthetic gene cluster |
CN108135946A (en) * | 2015-08-27 | 2018-06-08 | 宝洁公司 | Bifidobacterium longum |
KR101883148B1 (en) * | 2017-10-11 | 2018-07-30 | 롯데푸드 주식회사 | Novel lactobacillus plantarum LRCC5310 having inhibitory activity against Rota virus and Exopolysaccharide derived from the same |
US10626428B2 (en) * | 2015-09-15 | 2020-04-21 | Societe Des Produits Nestle S.A. | Branched alpha glucans |
-
2019
- 2019-02-22 CN CN201910132259.4A patent/CN109735556A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ537499A (en) * | 2002-08-06 | 2007-01-26 | Danisco | Use of lactobacillus to produce exopolysaccharides in food and pharmaceutical compositions |
WO2004031389A1 (en) * | 2002-10-03 | 2004-04-15 | Genesis Research And Development Corporation Limited | Polynucleotides and polypeptides derived from lactobacillus rhamnosus hn001 |
CN1761752A (en) * | 2003-03-17 | 2006-04-19 | 达尼斯科法国公司 | Texturizing lactic bacteria |
CN101120013A (en) * | 2004-12-16 | 2008-02-06 | 食品和营养托浦研究所基金会 | Novel efficient production process for capsular polysaccharides of pathogenic grampositive bacteria by heterologous expression and secretion of complex polysaccharides in non-pathogenic, non-invasive |
WO2006096269A2 (en) * | 2005-02-04 | 2006-09-14 | Cp Kelco U.S., Inc. | Targeted gene deletions for polysaccharide slime formers |
CN102695420A (en) * | 2009-09-01 | 2012-09-26 | 科·汉森有限公司 | Lactic bacterium with modified galactokinase expression for texturizing food products by overexpression of exopolysaccharide |
CN102695791A (en) * | 2009-09-04 | 2012-09-26 | 伦敦卫生及热带医学学院 | Protein glycosylation |
WO2013082916A1 (en) * | 2011-12-06 | 2013-06-13 | 光明乳业股份有限公司 | Strain of exopolysaccharide-secreting lactobacillus plantarum and application thereof |
CN103409434A (en) * | 2013-06-14 | 2013-11-27 | 中国农业大学 | Bifidobacterium animalis EPS (Exopolysaccharide) biosynthetic gene cluster |
CN108135946A (en) * | 2015-08-27 | 2018-06-08 | 宝洁公司 | Bifidobacterium longum |
US10626428B2 (en) * | 2015-09-15 | 2020-04-21 | Societe Des Produits Nestle S.A. | Branched alpha glucans |
KR101883148B1 (en) * | 2017-10-11 | 2018-07-30 | 롯데푸드 주식회사 | Novel lactobacillus plantarum LRCC5310 having inhibitory activity against Rota virus and Exopolysaccharide derived from the same |
Non-Patent Citations (5)
Title |
---|
ILAGAN,M.F.C.等: ""Lactiplantibacillus plantarum subsp. plantarum strain LB1-2 chromosome, complete genome"", 《GENBANK DATABASE》 * |
LIPING BAI等: ""Purification, characterization and functional analysis of asparagines synthetase encoding by ste10 gene in Ebosin biosynthesis of Streptomyces sp. 139"", 《ENZYME AND MICROBIAL TECHNOLOGY》 * |
NAM,Y.-D.等: ""Lactiplantibacillus plantarum strain DSR_M2 chromosome, complete genome"", 《GENBANK DATABASE》 * |
司天昭: ""引导糖基转移酶在植物乳杆菌YM-4-3菌株胞外多糖生物合成中的分子调控机理研究"", 《中国优秀硕士学位论文全文数据库基础科学辑》 * |
赵玉娟等: ""植物乳杆菌C88 胞外多糖生物合成基因的克隆及序列比对"", 《基因组学与应用生物学》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235169A (en) * | 2020-02-03 | 2020-06-05 | 昆明理工大学 | GTP cyclohydrolase I gene folE and application thereof |
CN112280795A (en) * | 2020-11-17 | 2021-01-29 | 昆明理工大学 | Use of glycosyltransferase genes |
CN112795527A (en) * | 2021-03-05 | 2021-05-14 | 昆明理工大学 | Use of dihydropterin aldolase gene |
CN112813085A (en) * | 2021-03-05 | 2021-05-18 | 昆明理工大学 | Use of pyrophosphatase gene |
CN112852844A (en) * | 2021-03-05 | 2021-05-28 | 昆明理工大学 | Application of hydroxymethyl dihydropterin pyrophosphokinase gene folK |
CN112961878A (en) * | 2021-03-08 | 2021-06-15 | 昆明理工大学 | Application of gene of lactobacillus plantarum in folic acid biological generation |
CN112961878B (en) * | 2021-03-08 | 2023-04-25 | 昆明理工大学 | Application of lactobacillus plantarum gene in folic acid biological generation |
CN113832167A (en) * | 2021-11-01 | 2021-12-24 | 昆明理工大学 | Gene and application thereof in improving yield of phenethyl alcohol and tryptophol |
CN113832167B (en) * | 2021-11-01 | 2023-04-21 | 昆明理工大学 | Gene and application thereof in increasing yield of phenethyl alcohol and tryptophane |
CN114634938A (en) * | 2022-03-06 | 2022-06-17 | 昆明理工大学 | Application of lactobacillus plantarum gene fol KE in folic acid biosynthesis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109735556A (en) | The purposes of Priming Glycosyltransferase Gene Involved | |
CN104894047B (en) | The construction method of the recombined bacillus subtilis of the epimerase of expression D psicoses 3 based on D alanine deficiency selection markers | |
CN101948794A (en) | Engineering lactobacilli for producing plant flavonoid to synthesize related enzymes, construction and application thereof | |
CN112280795A (en) | Use of glycosyltransferase genes | |
CN113621631A (en) | Mevalonate kinase gene RKMK and application thereof | |
CN105420154A (en) | Double knockout recombinant rhodococcus as well as construction method and application thereof | |
CN102191208A (en) | Gene engineering bacteria capable of highly producing pleocidin and preparation method thereof | |
CN106191077A (en) | A kind of mibemycin positive regulating gene milR and process LAN genetic engineering bacterium, preparation method and application | |
US5733765A (en) | Lactic bacteria producing exopolysaccharides | |
CN111621454B (en) | Gene engineering high-yield strain streptomyces diastatochromogenes, production method and application of epsilon-polylysine | |
CN109022476A (en) | A kind of bacillus licheniformis CRISPR-Cas9 gene editing system and its application | |
CN111235083A (en) | Pseudomonas fluorescens biocontrol recombinant engineering bacterium for expressing chitinase coding gene and construction method and application thereof | |
CN107881140A (en) | The Leuconostoc mesenteroides mutant strain of one plant height production mannitol and its application process | |
CN106636141B (en) | A kind of biological synthesis gene cluster of Luo Bolu ketone and its application | |
CN113061560A (en) | Genetically engineered bacterium of amycolatopsis as well as construction method and application thereof | |
KR102026934B1 (en) | A Novel host stain Leuconostoc citreum EFEL2701 for production of recombinant target protein and uses thereof | |
JP5512177B2 (en) | Natto strain with reduced spore-forming ability and natto with few spores produced using the strain | |
CN106434394B (en) | Aureobasidium pullulans alb1 gene knockout mutant strain and its application | |
CN102660488A (en) | Genetic engineering bacterium capable of promoting biological synthesis of medermycin and application thereof | |
CN105734072A (en) | alr (alanine racemase)-deficient lactobacillus plantarum NC8 | |
CN113881615B (en) | Xenorhabdus nematophila with high yield of Xcn1 and application thereof | |
CN104480056B (en) | A kind of genetic engineering bacterium of high-yield extracellular polysaccharide and its preparation method and application | |
CN112746050B (en) | Nocardia seriolae attenuated strain and preparation method and application thereof | |
CN105062906B (en) | A kind of production method optimizing organophosphor hydrolytic enzyme Yeast engineering bacteria and its enzyme | |
CN103626855A (en) | Protein associated with biosynthesis of wuyiencin and encoding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190510 |
|
RJ01 | Rejection of invention patent application after publication |