CN109726717B - A vehicle comprehensive information detection system - Google Patents
A vehicle comprehensive information detection system Download PDFInfo
- Publication number
- CN109726717B CN109726717B CN201910002648.5A CN201910002648A CN109726717B CN 109726717 B CN109726717 B CN 109726717B CN 201910002648 A CN201910002648 A CN 201910002648A CN 109726717 B CN109726717 B CN 109726717B
- Authority
- CN
- China
- Prior art keywords
- license plate
- vehicle
- detection
- image
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 238000013135 deep learning Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 48
- 230000011218 segmentation Effects 0.000 claims description 22
- 238000010586 diagram Methods 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 12
- 238000013527 convolutional neural network Methods 0.000 claims description 8
- 230000000877 morphologic effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000011176 pooling Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 4
- 238000003708 edge detection Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 claims description 2
- 238000012163 sequencing technique Methods 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 238000012937 correction Methods 0.000 description 7
- 229910052704 radon Inorganic materials 0.000 description 7
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000009191 jumping Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000013136 deep learning model Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
- Character Discrimination (AREA)
- Traffic Control Systems (AREA)
Abstract
一种车辆综合信息检测系统,可对车辆的车型型号以及车牌信息进行检测识别,具有较高的准确性和较快的检测速度。传统检测方法只能对车辆的车牌信息进行检测,无法得到车辆的整体信息,在实际应用中无法有效的解决套牌车、肇事逃逸等交通问题,同时传统检测方法只能解决较为简单场景下的车牌识别问题,在复杂的实际应用中不具有鲁棒性。而本发明结合了深度学习等理论,能快速、准确地实现车辆定位和车牌识别,可适用于各种环境下的检测对象,同时在车型识别的应用中也表现出了高效性和准确性。将该系统与现有交通系统结合可有效地解决各种交通问题,同时提高整个交通系统的车辆检测效率。
The utility model relates to a vehicle comprehensive information detection system, which can detect and identify the vehicle model type and license plate information, and has higher accuracy and faster detection speed. The traditional detection method can only detect the license plate information of the vehicle, and cannot obtain the overall information of the vehicle. In practical applications, it cannot effectively solve the traffic problems such as fake license plates and hit-and-run. At the same time, the traditional detection method can only solve the problems in relatively simple scenarios The license plate recognition problem is not robust in complex practical applications. The invention combines deep learning and other theories, can quickly and accurately realize vehicle positioning and license plate recognition, can be applied to detection objects in various environments, and also shows high efficiency and accuracy in the application of vehicle recognition. Combining this system with the existing traffic system can effectively solve various traffic problems while improving the vehicle detection efficiency of the entire traffic system.
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910002648.5A CN109726717B (en) | 2019-01-02 | 2019-01-02 | A vehicle comprehensive information detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910002648.5A CN109726717B (en) | 2019-01-02 | 2019-01-02 | A vehicle comprehensive information detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109726717A CN109726717A (en) | 2019-05-07 |
CN109726717B true CN109726717B (en) | 2022-03-01 |
Family
ID=66298021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910002648.5A Expired - Fee Related CN109726717B (en) | 2019-01-02 | 2019-01-02 | A vehicle comprehensive information detection system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109726717B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110334709B (en) * | 2019-07-09 | 2022-11-11 | 西北工业大学 | License plate detection method based on end-to-end multi-task deep learning |
CN110503831A (en) * | 2019-08-28 | 2019-11-26 | 上海眼控科技股份有限公司 | A kind of method and apparatus identifying driver's illegal activities |
CN110765861A (en) * | 2019-09-17 | 2020-02-07 | 中控智慧科技股份有限公司 | Unlicensed vehicle type identification method and device and terminal equipment |
CN111027558A (en) * | 2019-10-23 | 2020-04-17 | 中电科新型智慧城市研究院有限公司 | A kind of illegal vehicle type and license plate recognition method |
KR102814354B1 (en) * | 2019-12-05 | 2025-05-30 | 차나안 브라이트 사이트 컴퍼니 리미티드 | Character segmentation method, device and computer-readable storage medium |
CN111860317A (en) * | 2020-07-20 | 2020-10-30 | 青岛特利尔环保集团股份有限公司 | Boiler operation data acquisition method, system, equipment and computer medium |
CN112712012B (en) * | 2020-12-29 | 2024-09-13 | 中通服公众信息产业股份有限公司 | Road gate vehicle position detection method |
CN113642412B (en) * | 2021-07-16 | 2023-12-26 | 盛视科技股份有限公司 | Method, device and equipment for detecting vehicle occupying bus lane |
CN113869196B (en) * | 2021-09-27 | 2022-04-19 | 中远海运科技股份有限公司 | Vehicle type classification method and device based on laser point cloud data multi-feature analysis |
CN114999167A (en) * | 2021-11-19 | 2022-09-02 | 深圳市智泊云科技有限公司 | High-definition license plate recognition system based on artificial intelligence |
CN114999051B (en) * | 2022-06-16 | 2024-07-05 | 广州晟烨信息科技股份有限公司 | Security monitoring system for intelligent community platform |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105975941A (en) * | 2016-05-31 | 2016-09-28 | 电子科技大学 | Multidirectional vehicle model detection recognition system based on deep learning |
CN106650553A (en) * | 2015-10-30 | 2017-05-10 | 比亚迪股份有限公司 | License plate recognition method and system |
KR101888683B1 (en) * | 2017-07-28 | 2018-08-14 | 펜타시큐리티시스템 주식회사 | Method and apparatus for detecting anomaly traffic |
CN108734189A (en) * | 2017-04-20 | 2018-11-02 | 天津工业大学 | Vehicle License Plate Recognition System based on atmospherical scattering model and deep learning under thick fog weather |
CN108805121A (en) * | 2017-05-02 | 2018-11-13 | 优信拍(北京)信息科技有限公司 | A kind of car plate detection localization method, device, equipment and computer-readable medium |
CN108921083A (en) * | 2018-06-28 | 2018-11-30 | 浙江工业大学 | Illegal flowing street pedlar recognition methods based on deep learning target detection |
-
2019
- 2019-01-02 CN CN201910002648.5A patent/CN109726717B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106650553A (en) * | 2015-10-30 | 2017-05-10 | 比亚迪股份有限公司 | License plate recognition method and system |
CN105975941A (en) * | 2016-05-31 | 2016-09-28 | 电子科技大学 | Multidirectional vehicle model detection recognition system based on deep learning |
CN108734189A (en) * | 2017-04-20 | 2018-11-02 | 天津工业大学 | Vehicle License Plate Recognition System based on atmospherical scattering model and deep learning under thick fog weather |
CN108805121A (en) * | 2017-05-02 | 2018-11-13 | 优信拍(北京)信息科技有限公司 | A kind of car plate detection localization method, device, equipment and computer-readable medium |
KR101888683B1 (en) * | 2017-07-28 | 2018-08-14 | 펜타시큐리티시스템 주식회사 | Method and apparatus for detecting anomaly traffic |
CN108921083A (en) * | 2018-06-28 | 2018-11-30 | 浙江工业大学 | Illegal flowing street pedlar recognition methods based on deep learning target detection |
Non-Patent Citations (3)
Title |
---|
Christian Szegedy ; Vincent Vanhoucke ; Sergey Ioffe ; Jon Shlens.Rethinking the Inception Architecture for Computer Vision.《2016 IEEE Conference on Computer Vision and Pattern Recognition》.2016, * |
Looking beyond appearances: Synthetic training data for deep CNNs in reidentification;Igor Barros Barbosa,Marco Cristani,Barbara Caputo,Aleksander Rog;《Computer Vision and Image Understanding》;20171212;50-62 * |
基于深度学习的车牌识别研究;江永爱;《中国优秀硕士论文全文数据库工程科技Ⅱ辑》;20180715;C034-380 * |
Also Published As
Publication number | Publication date |
---|---|
CN109726717A (en) | 2019-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109726717B (en) | A vehicle comprehensive information detection system | |
Wei et al. | Multi-vehicle detection algorithm through combining Harr and HOG features | |
CN101334836B (en) | License plate positioning method incorporating color, size and texture characteristic | |
CN109886896B (en) | A blue license plate segmentation and correction method | |
CN101872416B (en) | Vehicle license plate recognition method and system of road image | |
CN105373794B (en) | A kind of licence plate recognition method | |
CN103324930B (en) | A license plate character segmentation method based on gray histogram binarization | |
CN103116751B (en) | A kind of Method of Automatic Recognition for Character of Lcecse Plate | |
CN109190444B (en) | An implementation method of a video-based toll lane vehicle feature recognition system | |
CN103136528B (en) | A kind of licence plate recognition method based on dual edge detection | |
CN103824081B (en) | Method for detecting rapid robustness traffic signs on outdoor bad illumination condition | |
CN110069986A (en) | A kind of traffic lights recognition methods and system based on mixed model | |
CN106203433A (en) | In a kind of vehicle monitoring image, car plate position automatically extracts and the method for perspective correction | |
CN107895492A (en) | A kind of express highway intelligent analysis method based on conventional video | |
CN111860509B (en) | A two-stage method for accurate extraction of unconstrained license plate regions from coarse to fine | |
CN105160309A (en) | Three-lane detection method based on image morphological segmentation and region growing | |
CN105005989B (en) | A kind of vehicle target dividing method under weak contrast | |
CN111695373B (en) | Zebra stripes positioning method, system, medium and equipment | |
Zhang et al. | A multi-feature fusion based traffic light recognition algorithm for intelligent vehicles | |
CN111259796A (en) | A Lane Line Detection Method Based on Image Geometric Features | |
CN106709530A (en) | License plate recognition method based on video | |
CN104598912A (en) | Traffic light detection and recognition method based CPU and GPU cooperative computing | |
CN100414561C (en) | A License Plate Extraction Method Based on Projection and Mathematical Morphology | |
CN112101108B (en) | Left-right pass-through sign recognition method based on graph pole position characteristics | |
CN100385452C (en) | A license plate character segmentation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Xu Haiying Inventor after: Wan Min Inventor after: Bao Hailong Inventor after: Zhang Qiang Inventor after: Li Zhonglin Inventor after: Zeng Tao Inventor after: Binzechuan Inventor after: Ning Yuhan Inventor after: Chen Yunsheng Inventor before: Wan Min Inventor before: Bao Hailong Inventor before: Zhang Qiang Inventor before: Li Zhonglin Inventor before: Zeng Tao Inventor before: Binzechuan Inventor before: Ning Yuhan Inventor before: Chen Yunsheng |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220301 |
|
CF01 | Termination of patent right due to non-payment of annual fee |