CN109725187A - 一种磁屏蔽开环电流传感器 - Google Patents

一种磁屏蔽开环电流传感器 Download PDF

Info

Publication number
CN109725187A
CN109725187A CN201811639673.6A CN201811639673A CN109725187A CN 109725187 A CN109725187 A CN 109725187A CN 201811639673 A CN201811639673 A CN 201811639673A CN 109725187 A CN109725187 A CN 109725187A
Authority
CN
China
Prior art keywords
air gap
magnetic
magnet ring
sensor chip
ring air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811639673.6A
Other languages
English (en)
Inventor
王志强
宋小雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201811639673.6A priority Critical patent/CN109725187A/zh
Publication of CN109725187A publication Critical patent/CN109725187A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明公开了一种磁屏蔽开环电流传感器,包括聚磁环;激励电流导线,所述激励电流导线穿过聚磁环环内空心区域;磁环气隙,所述磁环气隙设置在聚磁环的环身上;传感器芯片,所述传感器芯片设置在磁环气隙的中心点向着远离激励电流导线方向的延长线上并且该延长线平行于磁环气隙的上下两表面;软磁屏蔽层,所述软磁屏蔽层设置在传感器芯片的正上方。本发明利用远离磁环气隙处的磁场衰减作用特性配合软磁屏蔽层的磁场屏蔽作用特性,使得较大磁感应强度线性降低到传感器芯片检测范围内,达到检测大电流的目的;利用磁屏蔽结构GMR开环电流传感器具有较好的灵敏度和磁滞且开环结构降低了功耗。

Description

一种磁屏蔽开环电流传感器
技术领域
本发明涉及磁传感器技术领域,具体为一种磁屏蔽开环电流传感器。
背景技术
电流传感器是一种用于探测导体中电流大小和方向的检测装置,广泛应用于工业控制、智能电网、汽车电子等领域,随着新能源汽车产业的快速发展,高可靠性的车载电流传感器的需求日渐迫切。利用磁敏元件和铁芯配合检测导体内电流所产生的磁场,进行电流大小和方向的检测,是当前电流传感器最为常用的技术手段。目前,电流传感器普遍利用霍尔效应进行电流检测,常用的霍尔电流传感器分为开环和闭环两种传感结构。开环传感结构利用磁敏元件直接检测电流产生的磁场;闭环传感结构利用反馈电流产生反馈磁场以抵消被测电流所产生的磁场,使得磁敏元件所探测的磁场接近于零,继而检测反馈电流在采样电阻上的压降来确定被测电流的大小和方向。两者相比,闭环传感结构具有检测精度高、线性范围大等优势,但其结构复杂、功耗高、可靠性差,难以适应车载应用的复杂环境;而开环传感结构虽然精度和线性范围略逊于闭环传感结构,但其具有结构简单、可靠性高、成本低等优势,更适合车载应用。然而,由于霍尔元件的温度稳定性差、分辨力低、响应速度慢,不适合高精度、高速电流检测应用。自1988年Baibich在Fe/Cr多层膜中发现了巨磁电阻(giant magneto resistance,GMR)效应以来,GMR开始被用于制作磁传感器。基于GMR效应的磁敏元件具有热稳定性高、分辨力高、响应速度快等优点,可以克服霍尔元件本质缺陷,适合高精度、高带宽电流检测应用。然而,对于新能源汽车而言,其需求的电流传感器量程在300A以上,其中铁芯聚集的磁场将达数千高斯,而GMR传感元件的线性范围通常为数十高斯,在进行大电流检测时难以直接应用,通常需要使用闭环结构,无法应用于车载。需要研究一种GMR传感元件与铁芯配合的方式,以实现开环传感结构的电流检测。
例如,申请号为201721376460.X的,名称为一种点阵式开环大电流传感器的实用新型专利。
该实用新型通过采用一次载流导线为长直导线的磁场分布模型,当采用的霍尔元件足够多时,将若干霍尔元件均匀分布设置在若干磁芯开口处,设计16点阵开环大电流传感器对一次载流导线的横截面形状位置变化等因素不敏感,外界相邻电流影响小,可忽略不计,具有良好的线性度,动态范围大反应速度快等优点。
但是,现有的开环电流传感器仍然存在以下缺陷:
现有的开环电流传感器多为霍尔式电流传感器,但霍尔元件温度稳定性差,分辨力低不适用于精密的车载电流传感器,巨磁阻元件具有热稳定性高、分辨力高、响应速度快等优点,可以克服霍尔元件本质缺陷,但在进行大电流检测时难以直接应用,通常需要使用闭环结构,无法应用于车载,局限性大。
发明内容
为了克服现有技术方案的不足,本发明提供一种磁屏蔽开环电流传感器,能有效的解决背景技术提出的问题。
本发明解决其技术问题所采用的技术方案是:
一种磁屏蔽开环电流传感器,包括聚磁环;
激励电流导线,所述激励电流导线穿过聚磁环环内空心区域;
磁环气隙,所述磁环气隙设置在聚磁环的环身上;
传感器芯片,所述传感器芯片设置在磁环气隙的中心点向着远离激励电流导线方向的延长线上并且该延长线平行于磁环气隙的上下两表面;
软磁屏蔽层,所述软磁屏蔽层设置在传感器芯片的正上方;
聚磁环将激励电流导线产生的感生磁场聚集并在磁环气隙处产生漏磁,由于大电流激励时磁环气隙处磁感应强度很大,超出了传感器芯片的检测范围,此时利用远离磁环气隙处的磁场衰减作用特性配合软磁屏蔽层的磁场屏蔽作用特性,使得较大磁感应强度线性降低到传感器芯片检测范围内,达到检测大电流的目的。
进一步地,所述聚磁环采用圆形磁或环者方形磁环。
进一步地,所述软磁屏蔽层采用坡莫合金材料制成,形状为扁平长方体状。
进一步地,所述传感器芯片采用双极性的磁传感器芯片,且其灵敏轴方向垂直于磁环气隙的上下两个面。
进一步地,所述软磁屏蔽层与传感器芯片之间的间距不大于1mm。
进一步地,所述激励电流导线采用铜质材料制成,且其直径在22mm以上。
与现有技术相比,本发明的有益效果是:
本发明利用远离磁环气隙处的磁场衰减作用特性配合软磁屏蔽层的磁场屏蔽作用特性,使得较大磁感应强度线性降低到传感器芯片检测范围内,达到检测大电流的目的;利用磁屏蔽结构GMR开环电流传感器具有较好的灵敏度和磁滞且开环结构降低了功耗。
附图说明
图1为本发明整体结构示意图;
图2为本发明的整体电路图;
图3为本发明在通入-500~500A激励电流时,磁环气隙内磁感应强度变化情况示意图;
图4为本发明在500A电流激励下磁环气隙向外的延长线上的磁感应强度随延长线距磁环距离变化情况示意图;
图5为本发明软磁屏蔽层下0.5mm下的位置处,在0~800Gs磁场情况下的衰减曲线图;
图6为本发明在±500A电流激励下屏蔽区域中心位置磁场强度变化示意图;
图7为本发明在实施例中采用的传感器芯片在测量不同磁场时的输出曲线图;
图8为本发明无屏蔽结构时电流传感器输出特性曲线图;
图9为本发明带有屏蔽结构时电流传感器输出特性曲线图。
图中标号:
1-聚磁环;2-激励电流导线;3-磁环气隙;4-传感器芯片;5-软磁屏蔽层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示,本发明提供了一种磁屏蔽开环电流传感器包括聚磁环1;
激励电流导线2,所述激励电流导线2穿过聚磁环1环内空心区域;
磁环气隙3,所述磁环气隙3设置在聚磁环1的环身上;
传感器芯片4,所述传感器芯片4设置在磁环气隙3的中心点向着远离激励电流导线2方向的延长线上并且该延长线平行于磁环气隙3的上下两表面;
软磁屏蔽层5,所述软磁屏蔽层5设置在传感器芯片4的正上方;
聚磁环1将激励电流导线2产生的感生磁场聚集并在磁环气隙3处产生漏磁,由于大电流激励时磁环气隙3处磁感应强度很大,超出了传感器芯片4的检测范围,此时利用远离磁环气隙3处的磁场衰减作用特性配合软磁屏蔽层5的磁场屏蔽作用特性,使得较大磁感应强度线性降低到传感器芯片4检测范围内,达到检测大电流的目的。
所述聚磁环1采用圆形磁或环者方形磁环。本实施例中采用圆形磁环,铁芯材料为硅钢,内直径尺寸为27mm,外直径为37mm,气隙为4mm,高度为10mm。
所述软磁屏蔽层5采用坡莫合金材料制成,形状为扁平长方体状,本实施例优选使用磁屏蔽层5尺寸大小为长20mm,宽10mm,高1mm。
所述传感器芯片4采用双极性的磁传感器芯片,且其灵敏轴方向垂直于磁环气隙3的上下两个面,本实施例中采用的传感器芯片4型号为SAD02的GMR传感器。内部设置有惠斯通电桥结构,且具有双极性输出。
所述软磁屏蔽层5与传感器芯片4之间的间距不大于1mm,本实施例中传感器芯片4紧贴软磁屏蔽层5放置,敏感单元距软磁屏蔽层5距离0.05mm。
所述激励电流导线2采用铜质材料制成,且其直径在22mm以上。
如图2所示,本发明具体测量过程是,激励电流导线2中通入电流激励,导线周围产生环形的感生磁场,产生的磁场被聚磁环1聚集并在磁环气隙3露出,泄露的感生磁场在远离磁环气隙3处的磁场衰减以及软磁屏蔽层5的磁场屏蔽下,该处的磁感应强度降低到适合本实施例中传感器线性检测的范围。传感器芯片4利用内部惠斯通电桥结构测得偏置电压,在传感器输出端输出,由于传感器芯片4的输出电压较小无法直接测出该值,现将传感器输出的小电压经过仪表放大器放大后再读取。
本实施例中采用的仪表放大器为AD623型号的仪表放大器。因为本发明中传感器为有源传感器,所以为传感器芯片4提供3.3V电压。
如图3所示,本发明在激励电流导线2中通入-500~500A激励电流时,磁环气隙内磁感应强度变化情况,由图可知磁环的聚磁系数为2.90Gs/A,磁滞为0.08%,线性度良好,且在通入最大量程500A时磁环未饱和,符合本发明的设计要求。
如图4所示,500A电流激励下磁环气隙3向外的延长线上的磁感应强度随延长线距磁环距离变化情况,磁环气隙3内的最大磁场强度为1535Gs,在气隙区域以外,磁场随着距离增大而逐渐减小,最小磁场为100Gs。在所仿真的20mm距离之内,磁场强度均远大于GMR传感器的线性范围,如果继续增大GMR传感器与铁芯气隙的距离,将导致GMR传感器易于接收到周围的干扰磁场。所以需要屏蔽结构使该距离范围内的磁场降低至GMR传感器线性范围内。
如图5所示,本发明中所述软磁屏蔽层5下0.5mm下的位置处,在0~800Gs磁场情况下,传感器芯片4位置处检测到的磁感应强度情况,当激励电流导线2内激励场从50Gs增大至750Gs时,屏蔽结构下表面0.5mm处的磁感应强度从3.81Gs线性增大至57.17Gs。本发明将该位置所能感测到的磁场与激励磁场的比值定义为屏蔽系数。根据仿真结果,本发明所设计的屏蔽结构的屏蔽系数约为0.08。根据GMR传感器的饱和磁感应强度计算可得,GMR传感器结合屏蔽结构所能应用的磁场范围为312.50Gs,屏蔽作用区域需距离铁芯内径至少为11.7mm。
如图6所示,本发明中所述激励电流导线2内施加激励电流从-500A线性增大至500A,感生的磁场从-8.56Gs线性增大至8.56Gs。综合以上可知,磁屏蔽层5把磁场降低至传感芯片4的线性范围内,使得GMR传感器可以应用于±500A量程电流开环检测中。
如图7所示,本发明中传感芯片4采用的型号为SAD02的GMR传感器芯片,其饱和场大小为±25Gs,线性区内灵敏度为0.63mV/V/Gs,非线性度为1.34%,经过衰减后的磁场刚好处于本实施例中提供的传感器的检测范围内。
如图8所示,本发明为了验证磁屏蔽层5的屏蔽效果,在未添加屏蔽层时做了对比试验,此时该电流传感器的量程下降为±75A,可以看到在量程范围以外,电流传感器因输出饱和无法工作,与此同时,电流传感器的磁滞扩大为26.50%,其灵敏度为6.54mV/V/A,非线性度为7.17%。这是因为去掉磁屏蔽层5以后,传感器芯片4直接感应磁环气隙3的磁场。当被测电流达到75A时,传感器芯片4本身尚未达到饱和,但传感器芯片4的输出信号经仪表放大器放大后已接近5V而输出饱和,因此此时电流传感器的磁滞特性显著增大,导致测量精度严重下降。
如图9所示,本发明加上磁屏蔽层5后测试的结果,此时本发明的测量结果大致成线性,达到-500~500A电流量程的检测,其灵敏度为0.85mV/V/A,线性度为3.79%,磁滞为0.60%,基本满足开环大电流的测量要求。
本发明的优点在于利用磁屏蔽结构GMR开环电流传感器具有较好的灵敏度和磁滞,既采用开环结构降低功耗,又解决了GMR线性范围与开环结构下感应区域磁场不匹配问题。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (6)

1.一种磁屏蔽开环电流传感器,其特征在于:包括
聚磁环(1);
激励电流导线(2),所述激励电流导线(2)穿过聚磁环(1)环内空心区域;
磁环气隙(3),所述磁环气隙(3)设置在聚磁环(1)的环身上;
传感器芯片(4),所述传感器芯片(4)设置在磁环气隙(3)的中心点向着远离激励电流导线(2)方向的延长线上并且该延长线平行于磁环气隙(3)的上下两表面;
软磁屏蔽层(5),所述软磁屏蔽层(5)设置在传感器芯片(4)的正上方;
聚磁环(1)将激励电流导线(2)产生的感生磁场聚集并在磁环气隙(3)处产生漏磁,由于大电流激励时磁环气隙(3)处磁感应强度很大,超出了传感器芯片(4)的检测范围,此时利用远离磁环气隙(3)处的磁场衰减作用特性配合软磁屏蔽层(5)的磁场屏蔽作用特性,使得较大磁感应强度线性降低到传感器芯片(4)检测范围内,达到检测大电流的目的。
2.根据权利要求1所述的一种磁屏蔽开环电流传感器,其特征在于:所述聚磁环(1)采用圆形磁或环者方形磁环。
3.根据权利要求1所述的一种磁屏蔽开环电流传感器,其特征在于:所述软磁屏蔽层(5)采用坡莫合金材料制成,形状为扁平长方体状。
4.根据权利要求1所述的一种磁屏蔽开环电流传感器,其特征在于:所述传感器芯片(4)采用双极性的磁传感器芯片,且其灵敏轴方向垂直于磁环气隙(3)的上下两个面。
5.根据权利要求1所述的一种磁屏蔽开环电流传感器,其特征在于:所述软磁屏蔽层(5)与传感器芯片(4)之间的间距不大于1mm。
6.根据权利要求1所述的一种磁屏蔽开环电流传感器,其特征在于:所述激励电流导线(2)采用铜质材料制成,且其直径在22mm以上。
CN201811639673.6A 2018-12-29 2018-12-29 一种磁屏蔽开环电流传感器 Pending CN109725187A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811639673.6A CN109725187A (zh) 2018-12-29 2018-12-29 一种磁屏蔽开环电流传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811639673.6A CN109725187A (zh) 2018-12-29 2018-12-29 一种磁屏蔽开环电流传感器

Publications (1)

Publication Number Publication Date
CN109725187A true CN109725187A (zh) 2019-05-07

Family

ID=66299366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811639673.6A Pending CN109725187A (zh) 2018-12-29 2018-12-29 一种磁屏蔽开环电流传感器

Country Status (1)

Country Link
CN (1) CN109725187A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806529A (zh) * 2019-11-27 2020-02-18 云南电网有限责任公司电力科学研究院 一种电容型设备绝缘性能在线监测系统
CN113038813A (zh) * 2021-03-05 2021-06-25 云南电网有限责任公司电力科学研究院 一种用于强磁场的屏蔽装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634666A (zh) * 2009-06-26 2010-01-27 祝波 一种超大电流霍尔检测方法及装置
CN201622299U (zh) * 2009-06-19 2010-11-03 钱正洪 新型巨磁阻集成电流传感器
CN102004203A (zh) * 2009-08-31 2011-04-06 西门子公司 一种漏电流检测装置
CN103487632A (zh) * 2013-10-11 2014-01-01 上海飞轩电子有限公司 屏蔽式开环无聚磁环隧道磁阻传感器
CN103575960A (zh) * 2013-10-29 2014-02-12 河北工业大学 巨磁阻效应电流传感器
CN103616550A (zh) * 2013-11-29 2014-03-05 河北工业大学 巨磁阻电流传感器
CN205139229U (zh) * 2015-11-25 2016-04-06 天津航空机电有限公司 一种巨磁阻效应电流传感器
CN105866722A (zh) * 2016-06-17 2016-08-17 重庆所罗门智跑机械有限公司 一种电流检测装置及电机驱动系统
CN106018939A (zh) * 2016-05-20 2016-10-12 清华大学 一种基于隧穿磁阻的大量程暂态电流传感器
CN205861750U (zh) * 2016-06-21 2017-01-04 哈尔滨理工大学 基于聚磁和蔽磁双功能导磁回路及磁流体的电流传感器
CN108152763A (zh) * 2017-12-28 2018-06-12 上海市计量测试技术研究院 直流磁屏蔽效能的测量装置及测量方法
CN207908572U (zh) * 2018-03-13 2018-09-25 海宁嘉晨汽车电子技术有限公司 一种高精度、闭环式磁阻电流传感器
CN109100565A (zh) * 2018-07-05 2018-12-28 国网重庆市电力公司电力科学研究院 一种基于巨磁阻传感器的功率计设计方法及系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201622299U (zh) * 2009-06-19 2010-11-03 钱正洪 新型巨磁阻集成电流传感器
CN101634666A (zh) * 2009-06-26 2010-01-27 祝波 一种超大电流霍尔检测方法及装置
CN102004203A (zh) * 2009-08-31 2011-04-06 西门子公司 一种漏电流检测装置
CN103487632A (zh) * 2013-10-11 2014-01-01 上海飞轩电子有限公司 屏蔽式开环无聚磁环隧道磁阻传感器
CN103575960A (zh) * 2013-10-29 2014-02-12 河北工业大学 巨磁阻效应电流传感器
CN103616550A (zh) * 2013-11-29 2014-03-05 河北工业大学 巨磁阻电流传感器
CN205139229U (zh) * 2015-11-25 2016-04-06 天津航空机电有限公司 一种巨磁阻效应电流传感器
CN106018939A (zh) * 2016-05-20 2016-10-12 清华大学 一种基于隧穿磁阻的大量程暂态电流传感器
CN105866722A (zh) * 2016-06-17 2016-08-17 重庆所罗门智跑机械有限公司 一种电流检测装置及电机驱动系统
CN205861750U (zh) * 2016-06-21 2017-01-04 哈尔滨理工大学 基于聚磁和蔽磁双功能导磁回路及磁流体的电流传感器
CN108152763A (zh) * 2017-12-28 2018-06-12 上海市计量测试技术研究院 直流磁屏蔽效能的测量装置及测量方法
CN207908572U (zh) * 2018-03-13 2018-09-25 海宁嘉晨汽车电子技术有限公司 一种高精度、闭环式磁阻电流传感器
CN109100565A (zh) * 2018-07-05 2018-12-28 国网重庆市电力公司电力科学研究院 一种基于巨磁阻传感器的功率计设计方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WOLFRAM TEPPAN: "Shielded Fluxgates for Open-Loop Current Transducers; Measuring High Flux Densities Fast", 《SENSORS, 2006 IEEE》 *
李嘉鸿: "智能巨磁阻电流传感器设计", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806529A (zh) * 2019-11-27 2020-02-18 云南电网有限责任公司电力科学研究院 一种电容型设备绝缘性能在线监测系统
CN113038813A (zh) * 2021-03-05 2021-06-25 云南电网有限责任公司电力科学研究院 一种用于强磁场的屏蔽装置

Similar Documents

Publication Publication Date Title
CN207908572U (zh) 一种高精度、闭环式磁阻电流传感器
US9459293B2 (en) Current sensor
CN209264810U (zh) 一种电流传感器
CN205139229U (zh) 一种巨磁阻效应电流传感器
CN103901363A (zh) 一种单芯片z轴线性磁阻传感器
CN101004416B (zh) Gmr 自旋阀磁标记免疫生物传感器阵列检测方法及系统
CN202216701U (zh) 巨磁阻效应节气门角度位置传感器
CN110716162B (zh) 一种垂直灵敏的磁传感器闭环式芯上在位反馈装置
CN211180162U (zh) 闭环式芯上反馈的宽量程垂直灵敏磁传感器
CN105466324B (zh) 位移传感器和位移传感测量系统
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
CN105974339A (zh) 磁传感器
CN109725187A (zh) 一种磁屏蔽开环电流传感器
CN108663557A (zh) 电流检测探头
CN111856354A (zh) 兼具宽量程与高灵敏度的磁传感器、其制备方法与使用方法
CN106093524A (zh) 磁芯及电流传感器
CN106526283A (zh) 一种基于巨磁阻效应的多量程电流传感装置
CN205246739U (zh) 一种电流传感器
CN105676151B (zh) 一种负反馈式磁场传感器
CN101520494B (zh) 一种电磁磁电效应式传感器
CN202033405U (zh) 一种电流测量装置
CN108469594B (zh) 一种高精度、闭环式梯度磁阻传感器
Ricken et al. Improved multi-sensor for force measurement of pre-stressed steel cables by means of the eddy current technique
CN105353192A (zh) 一种电流传感器
CN103076578B (zh) 各向异性磁阻结构磁场强度检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190507

WD01 Invention patent application deemed withdrawn after publication