CN109721657B - Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof - Google Patents

Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof Download PDF

Info

Publication number
CN109721657B
CN109721657B CN201711053256.9A CN201711053256A CN109721657B CN 109721657 B CN109721657 B CN 109721657B CN 201711053256 A CN201711053256 A CN 201711053256A CN 109721657 B CN109721657 B CN 109721657B
Authority
CN
China
Prior art keywords
ser
val
thr
gly
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711053256.9A
Other languages
Chinese (zh)
Other versions
CN109721657A (en
Inventor
胡品良
邹敬
洪伟东
何芸
白洁
宋凌云
杨文第
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Beyond Biotechnology Co ltd
Original Assignee
Beijing Beyond Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Beyond Biotechnology Co ltd filed Critical Beijing Beyond Biotechnology Co ltd
Priority to CN201711053256.9A priority Critical patent/CN109721657B/en
Priority to PCT/CN2018/111652 priority patent/WO2019080872A1/en
Publication of CN109721657A publication Critical patent/CN109721657A/en
Application granted granted Critical
Publication of CN109721657B publication Critical patent/CN109721657B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a fusion protein that blocks the PD-1/PD-L1 signaling pathway and activates T cells, comprising (i) an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody; (ii) an immunoglobulin Fc domain; and (iii) CD80 extracellular domain (ECD). The invention also provides a polynucleotide encoding the fusion protein, a vector comprising the polynucleotide, a host cell comprising the polynucleotide or the vector, and use of the fusion protein in treating, preventing and/or diagnosing diseases related to activation of PD-1/PD-L1 signaling pathway and inhibition of T cell function in an individual.

Description

Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof
Technical Field
The present invention relates generally to the field of medical biotechnology. In particular, the invention relates to antigen-binding fragments comprising (i) an antibody derived from anti-programmed death protein-1 (PD-1)) antibody and/or anti-programmed death protein ligand 1(PD-L1) antibody; (ii) an immunoglobulin Fc domain; and (iii) a CD80 extracellular domain (ECD), a polynucleotide encoding the fusion protein, a vector comprising the polynucleotide, a host cell comprising the polynucleotide or vector, and the use of the fusion protein in the treatment, prevention and/or diagnosis of a disease associated with activation of the PD-1/PD-L1 signaling pathway and inhibition of T cell function in an individual.
Background
Immune checkpoints (immune checkpoints) are a class of inhibitory signaling molecules present in The immune system that avoid tissue damage by modulating The persistence and intensity of The immune response in peripheral tissues and are involved in maintaining tolerance to self-antigens (pardol DM., The block of immune responses in Cancer immunological. nat Rev Cancer,2012,12(4): 252-264). It has been found that one of the reasons that tumor cells are able to escape the immune system in vivo and proliferate uncontrollably is to utilize the inhibitory signaling pathway of immune checkpoints, thereby inhibiting T lymphocyte activity, rendering T lymphocytes ineffective in exerting a tumor killing effect (Yao S, Zhu Y and Chen l., Advances in targeting cell surface signaling molecules for tumor modulation. nat Rev Drug disease, 2013,12(2): 130-146).
Programmed death protein-1 (PD-1) is an important immune checkpoint protein and is also an important target for tumor immunotherapy at present. PD-1 was first discovered in 1992, and the cloning and expression of its gene suggests that PD-1 is capable of inducing programmed T cell death upon activation. PD-1 protein is found on activated T cells, B cells and myeloid cells. PD-1 is also inducibly expressed in macrophages, dendritic cells and monocytes. No PD-1 expression was observed on the surface of resting lymphocytes.
PD-1 is a 55kDa type I transmembrane protein with a cytoplasmic domain containing an immunoreceptor tyrosine inhibitory motif and homology to CD28 and CTLA-4. Two cell surface glycoprotein ligands have been identified for PD-1, programmed death protein ligand 1(PD-L1) and programmed death protein ligand 2(PD-L2), respectively. Ligand expression of PD-1 has been found on many cancer cells, including human lung, ovarian, colon, and multiple myelomas. In addition, the ligand of PD-1 is highly expressed on the cell surface of various epithelial cancers, hematologic cancers and other malignant tumors. Expression of ligands for PD-1, such as PD-L1, in tumor patients is often associated with poor prognosis of the cancer (Iwai Y et al, Involment of PD-L1on tumor cells in the cancer from the tumor immune system and tumor immunity by PD-L1blockade, PNAS, 2002, 99(19): 12293-7).
Binding of PD-1 to a ligand for PD-1 plays an important role in regulating T lymphocyte activity and maintaining peripheral immune tolerance. The binding of PD-1 to the ligand of PD-1 can lead to T cell apoptosis, immune unresponsiveness, T cell 'exhaustion' and IL-10 secretion, etc. Thus, PD-1 functions to limit T cell activation, inhibit T cell proliferation, and improve tolerance to antigens. Upregulation of the expression of PD-1 on the surface of activated lymphocytes can lead to suppression of acquired or innate immune responses, thereby causing tumor-infiltrating lymphocytes (including T lymphocytes) to have tumor antigen specificity, but the tumor cells can escape the immune system from killing the tumor cells because the binding of the ligand for PD-1 on the tumor cells to PD-1 on the tumor-infiltrating lymphocytes generates a signal that inhibits the activation of the tumor-infiltrating lymphocytes.
Studies have shown that these tumor infiltrating lymphocytes expressing PD-1 are dysfunctional lymphocytes whose biological function can be restored by antibodies that block the binding of PD-1 to the ligand of PD-1. At present, antibodies inhibiting the binding of PD-1 to the ligand of PD-1 mainly include anti-PD-1 monoclonal antibody and anti-PD-L1 monoclonal antibody, but there are also products directed against PD-L2.
Currently, the relatively mature anti-PD-1 antibodies studied were Nivolumab (Nivolumab) of Bevacizumab (BMS) and Pembrolizumab (Pembrolizumab) of Merck (Merck). Nivolumab (trade name)
Figure BDA0001448682480000021
) Is a fully humanized IgG4 antibody molecule, pembrolizumab (trade name)
Figure BDA0001448682480000022
) Is a human sourceAn IgG4 antibody molecule was formed. The anti-PD-1 monoclonal antibody can inhibit the binding of PD-1 to the ligands PD-L1 and PD-L2 after binding with PD-1 on T lymphocytes, thereby promoting the activation and proliferation of the T lymphocytes and producing immune activation type cytokines such as IL-2, and relieving the inhibition of the immune monitoring of the T lymphocytes with anti-tumor activity by PD-1. The current approved indications for nivolumab by the U.S. food and drug administration include: melanoma, non-small cell lung cancer, kidney cancer, head and neck tumors, and the like; indications for pembrolizumab include: head and neck tumors, non-small cell lung cancer, melanoma, and the like. With respect to the anti-PD-L1 antibody, atezolizumab developed by Roche (Roche), avelumab developed by cooperation of Merck KGaA (German Merck) and Pfizer (U.S. Perey), durvalumab developed by Aslicon also showed a therapeutic effect on tumors.
Although the anti-PD-1 antibody and the anti-PD-L1 antibody have the treatment effect on tumors, the average treatment efficiency is only about 20 percent, and the five-year survival rate of the lung cancer is only 16 percent. Still a significant fraction of tumor patients do not respond to treatment with anti-PD-1 antibodies, anti-PD-L1 antibodies. Therefore, how to improve the effectiveness of tumor therapy is still a problem to be solved urgently in the field of tumor therapy at present.
On the other hand, activation of T cells requires dual signal stimulation: the first signal is provided by the binding of the T cell antigen receptor (TCR) to the antigenic peptide MHC (major histocompatibility Complex) molecule complex on the Antigen Presenting Cell (APC), and the second signal is provided by the binding of a costimulatory molecule on the APC to a corresponding ligand on the T cell. Among costimulatory molecules involved in T cell activation, the binding of T cell surface CD28 molecules to APC surface corresponding ligands CD80 and CD86 plays an important role. However, low or no expression of CD80 and CD86 in the tumor microenvironment is also one of the important mechanisms responsible for tumor immune evasion.
Both CD80 and CD86 are transmembrane glycoproteins and are members of the immunoglobulin superfamily (IgSF). The mature CD80 molecule consists of 254 amino acids, with an extracellular domain (ECD) of 208 amino acids, a transmembrane domain of 25 amino acids, and an intracellular domain of 21 amino acids. Similarly, the mature CD86 molecule consists of 303 amino acids, with an extracellular domain of 222 amino acids, a transmembrane domain of 20 amino acids, and an intracellular domain of 61 amino acids. The extracellular domains of CD80 and CD86 comprise immunoglobulin v (igv) and immunoglobulin c (igc) regions, and CD80 and CD86 are bound by immunoglobulin v (igv) regions to their ligands CD28 and CTLA-4. In the case of CD80 and CD86 binding to CD28, CD80 and CD86 have important regulatory effects on antigen-induced T cell activation, proliferation and the generation of effector functions, and are positive regulators; whereas in the case of binding of CD80 and CD86 to CTLA-4, CD80 and CD86 down-regulate the immune response, are negative regulators. Thus, CD80 and CD86 are co-stimulatory factors in T lymphocyte activation and play important roles in autoimmune monitoring, humoral immune response, and transplantation response.
In addition, CD80 can also block PD-1/PD-L1 interaction by binding to PD-L1, thereby participating in the activation of the immune system.
As can be seen from the above, the effect of the CD80 protein on T cell responses is complex and cannot be predicted before actual testing (Salomon, B et al, complexes of CD28/B7: CTLA-4 synergistic pathway in autoimmunity and transplantation, annual review of immunology, 2001, 19: 225-.
Since activation of the PD-1/PD-L1 signaling pathway and inhibition of T cell function contribute to the development and progression of tumors, there is a need to develop proteins that have both the activity of interfering with, inhibiting or blocking the PD-1/PD-L1 signaling pathway and activating T cells.
The present inventors have conducted intensive studies to develop a group of fusion proteins that interfere, inhibit or block the PD-1/PD-L1 signaling pathway and activate T cells, which fusion proteins are capable of inhibiting the PD-1/PD-L1 signaling pathway and of inducing T cell activation, and thus can be used for treating, preventing and/or diagnosing diseases associated with the activation of the PD-1/PD-L1 signaling pathway and the inhibition of T cell function in individuals, and particularly can be used for enhancing tumor immune responses in individuals who do not respond or respond weakly to PD-1 antibody and/or PD-L1 antibody therapy.
Summary of The Invention
The invention discloses a novel fusion protein for blocking a PD-1/PD-L1 signal transduction pathway and activating a T cell, a polynucleotide for encoding the fusion protein, a vector containing the polynucleotide, a host cell containing the polynucleotide or the vector, and application of the fusion protein in treating, preventing and/or diagnosing diseases related to activation of the PD-1/PD-L1 signal transduction pathway and inhibition of T cell functions in an individual.
Accordingly, in one aspect, the present invention provides a novel fusion protein that inhibits the PD-1/PD-L1 signaling pathway and is capable of inducing T cell activation, comprising (i) an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody; (ii) an immunoglobulin Fc domain; and (iii) CD80 extracellular domain (ECD). In one embodiment, said (i) of said fusion protein is a Fab, Fab ', F (ab') derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody2Fv, single-chain Fv. In one embodiment, said (ii) of said fusion protein is a human immunoglobulin Fc domain. In one embodiment, said (iii) of said fusion protein comprises human CD80 ECD.
The (i) antigen-binding fragment contained in the fusion protein may be derived from any anti-PD-1 antibody as long as it is an antibody capable of inhibiting or reducing binding of PD-1 to its ligand, including anti-PD-1 antibodies known in the art and anti-PD-1 antibodies developed in the future. In one embodiment, the antigen-binding fragment comprises a sequence selected from SEQ ID NOs: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16, 17/18, 19/20, 21/22, 23/24, and 25/26, preferably the antigen binding fragment comprises all 6 heavy chain CDRs and light chain CDRs contained in the heavy chain variable region sequence/light chain variable region sequence selected from the group consisting of SEQ ID NOs: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16, 17/18, 19/20, 21/22, 23/24, and 25/26, or a sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to said heavy-heavy chain variable region sequence/light chain variable region sequence; more preferably, the antigen-binding fragment comprises a peptide selected from the group consisting of nivolumab, pidilizumab and pembrolizumabThe heavy chain variable region and the light chain variable region of the anti-PD-1 antibody of (1), in particular, the antigen-binding fragment is a Fab, Fab ', F (ab') selected from the group consisting of nivolumab, pidilizumab and pembrolizumab2Fv, single-chain Fv.
The (i) antigen-binding fragment comprised in the fusion protein may also be derived from any anti-PD-L1 antibody, as long as it is an antibody capable of inhibiting or reducing the binding of PD-L1 to its receptor (e.g. to PD-1 or CD80(B7-1) or to both), including anti-PD-L1 antibodies known in the art and anti-PD-L1 antibodies developed in the future. In one embodiment, the antigen-binding fragment comprises a sequence selected from SEQ ID NOs: 27/28, 29/30, and 31/32, and all 6 heavy and light chain CDRs contained in the heavy/light chain variable region sequences. Preferably, the antigen-binding fragment comprises an amino acid sequence selected from SEQ ID NOs: 27/28, 29/30, and 31/32, or a sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to said heavy chain variable region sequence/light chain variable region sequence; more preferably, the antigen binding fragment is a Fab, Fab ', F (ab') selected from atezolizumab, avelumab and durvalumab2Fv, single-chain Fv.
In one embodiment, the light chain constant region type in the antigen binding fragment may be of the kappa or lambda type, preferably of the kappa type. The kappa-type light chain constant region amino acid sequence of the exemplary anti-PD-1 antibody is shown in SEQ ID NO. 33. The lambda-type light chain constant region amino acid sequence of an exemplary anti-PD-1 antibody is shown in SEQ ID NO. 34.
The (ii) immunoglobulin Fc domain comprised in the fusion protein may be any immunoglobulin Fc domain, in particular, the (ii) is a human immunoglobulin Fc domain. In one embodiment, the immunoglobulin Fc domain is an Fc domain of an IgG class antibody, particularly an IgG1Subclass, IgG2Subclass, IgG4An Fc domain of a subclass antibody. In a preferred embodiment, the immunoglobulin Fc domain comprised in the fusion protein of the invention is an IgG4Fc domain of subclass antibodyIn particular human IgG4An Fc domain of a subclass antibody. In one embodiment, the IgG is4Subclass antibodies comprise an amino acid substitution at position S228 (EU numbering) in the Fc region, particularly amino acid substitution S228P. Exemplary IgG is shown in SEQ ID NO 351Subclass anti-PD-1 antibody heavy chain constant region amino acid sequence. Exemplary IgG is shown in SEQ ID NO 362Subclass anti-PD-1 antibody heavy chain constant region amino acid sequence. Exemplary IgG is shown in SEQ ID NO 374Subclass anti-PD-1 antibody heavy chain constant region amino acid sequence. Exemplary IgG is shown in SEQ ID NO 381Fc domain amino acid sequence of a subclass anti-PD-1 antibody. Exemplary IgG is shown in SEQ ID NO 392Fc domain amino acid sequence of a subclass anti-PD-1 antibody. Exemplary IgG is shown in SEQ ID NO 404Fc domain amino acid sequence of a subclass anti-PD-1 antibody. In some embodiments, the (ii) immunoglobulin Fc domain comprised in the fusion protein is identical to SEQ ID NO: 38. 39 or 40, or an Fc domain having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence set forth in seq id no.
In one embodiment, the (iii) CD80ECD comprised in the fusion protein is part of the extracellular domain of CD 80. In one embodiment, the CD80ECD comprises a CD80 immunoglobulin v (IgV) region (CD 80-IgV). In one embodiment, the CD80ECD comprises CD80 immunoglobulin V and C regions (CD 80-IgVIgC). In one embodiment, the CD80ECD is a human CD80ECD, preferably the CD80ECD comprises a human CD80 IgV. In a specific embodiment, the CD80-IgV has the amino acid sequence of SEQ ID NO: 41, or an amino acid sequence corresponding to SEQ ID NO: 41 has an amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical. In one embodiment, the CD80-IgVIgC has the amino acid sequence of SEQ ID NO: 42, or an amino acid sequence corresponding to SEQ ID NO: 42, has an amino acid sequence of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity.
In one embodiment, said fusion protein further comprises a peptide linker between said (i), (ii) and/or (iii); preferably, the peptide linker comprises one or more amino acids, more preferably at least 5 amino acids, most preferably comprises a sequence selected from the group consisting of SEQ ID NO: 43-71.
In one embodiment, the fusion protein is produced from N-terminus to C-terminus in the order of (i), (ii), and (iii); (iii) the order of (i), (ii) and (iii); or the order of (iii), (ii) and (i) are operably linked.
In one embodiment, the fusion protein comprises
(a) An anti-PD-1 antibody, an anti-PD-L1 antibody, or a bispecific antibody against PD-1 and PD-L1; and a CD80ECD operably linked at the C-terminus of each of the two heavy chains of the antibody;
(b) an anti-PD-1 antibody, an anti-PD-L1 antibody, or a bispecific antibody against PD-1 and PD-L1; a CD80ECD operably linked at the N-terminus of each of the two heavy chains of the antibody; and a CD80ECD operably linked at the N-terminus of each of the two light chains of the antibody; or
(c) A CD80 ECD; an immunoglobulin Fc domain in dimeric form operatively linked at the C-terminus of the CD80 ECD; and an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody operably linked at the C-terminus of the immunoglobulin Fc domain in dimeric form;
preferably, the anti-PD-1 antibody is selected from nivolumab, pidilizumab and pembrolizumab; the anti-PD-L1 antibody is selected from the group consisting of atezolizumab, avelumab and durvalumab. Preferably, the antibody is an IgG class antibody, in particular an IgG1Subclass, IgG2Subclass, IgG4Subclass antibody, more particularly IgG4A subclass antibody; also preferably, the IgG4Subclass antibodies comprise an amino acid substitution at position S228 in the Fc domain, more preferably amino acid substitution S228P; further preferably, the light chain type of the antibody is of the kappa type or lambda type, preferably of the kappa type.
In a specific embodiment, the fusion protein is a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO:77 and a second subunit of the fusion protein of SEQ ID NO:79, hereinafter referred to as fusion protein BY31.2, comprising an anti-PD-1 antibody (IgG4, kappa, S228P) and a CD80IgV operatively linked to the C-terminus of the antibody heavy chain via a peptide linker.
In a specific embodiment, the fusion protein is a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO:81 and a second subunit of the fusion protein of SEQ ID NO:83, hereinafter referred to as fusion protein BY31.3, comprising an anti-PD-1 antibody (IgG2, kappa) and a CD80IgVIgC operatively linked to the C-terminus of the heavy chain of the antibody BY a peptide linker.
In a specific embodiment, the fusion protein is a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO:85 and a second subunit of the fusion protein of SEQ ID NO:87, hereinafter referred to as fusion protein BY31.7, comprising an anti-PD-1 antibody (IgG4, kappa, S228P) and CD80IgV operatively linked to the N-terminus of each light chain and each heavy chain of the antibody BY a peptide linker.
In a specific embodiment, the fusion protein is a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO 89 comprising, from N-terminus to C-terminus, operably linked CD80IgV, IgG4CH2 and CH3 domains, a peptide linker, an anti-PD-1 antibody light chain, and a second subunit of the fusion protein of from N-terminus to C-terminus, comprising, from N-terminus to C-terminus, the heavy chain variable region of an anti-PD-1 antibody Fab fragment and the CH1 domain, the second subunit being linked BY a disulfide bond to the anti-PD-1 antibody light chain portion of the first subunit of fusion protein BY31.14, and SEQ ID NO 91, hereinafter referred to as fusion protein BY 31.14.
In a specific embodiment, the fusion protein is a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO 93 comprising, from N-terminus to C-terminus, the variable and constant regions of the light chain of the anti-PD-1 antibody and a second subunit of the fusion protein of SEQ ID NO 95 comprising, from N-terminus to C-terminus, operably linked domains of CD80IgV, IgG4CH2 and CH3, a peptide linker, the heavy chain variable region of the Fab fragment of the anti-PD-1 antibody and the CH1 domain, the heavy chain variable region and the CH1 domain of the Fab fragment of the PD-1 antibody in the second subunit being linked to the first subunit BY disulfide bonds, hereinafter referred to as fusion protein BY 31.15.
In a specific embodiment, the fusion protein comprises
(a) An anti-PD-L1 antibody selected from atezolizumab, avelumab and durvalumab; and a CD80 extracellular domain (ECD) operably linked (optionally, operably linked by a peptide linker) at the C-terminus of each of the two heavy chains of the anti-PD-L1 antibody;
(b) an anti-PD-L1 antibody selected from the group consisting of atezolizumab, avelumab and durvalumab, a CD80ECD operably linked (optionally operably linked by a peptide linker) to the N-terminus of each of the two heavy chains of the anti-PD-L1 antibody, and a CD80ECD operably linked (optionally operably linked by a peptide linker) to the N-terminus of each of the two light chains of the anti-PD-L1 antibody; or
(c) A CD80 ECD; an immunoglobulin Fc domain in dimeric form operatively linked at the C-terminus of the CD80 ECD; and an antigen-binding fragment derived from the anti-PD-L1 antibody atezolizumab, avelumab or durvalumab operably linked C-terminal to the dimeric form of the immunoglobulin Fc domain.
Preferably, the CD80ECD is CD80IgV or CD80 IgVIgC.
In one embodiment, the fusion protein specifically targets the PD-1/PD-L1 signaling pathway and activated T cells. The fusion protein of the invention can not only bind to PD-1 and/or PD-L1 with high affinity, but also bind to CD28 constitutively expressed on the surface of T cells with high affinity. The structure of the fusion protein designed by the invention fully ensures the proper physical space distance for the combination of the fusion protein and the target thereof, and the specific combination of the fusion protein and other molecules in the target is not influenced after the fusion protein with the structure is specifically combined with one molecule in the target.
The invention also provides a polynucleotide encoding the fusion protein of the invention, a vector, preferably an expression vector, most preferably a glutamine synthetase expression vector having a dual expression cassette, comprising the polynucleotide encoding the fusion protein of the invention. In another aspect, the invention provides a host cell comprising a polynucleotide or vector of the invention. In one embodiment, the host cell is a CHO, HEK293, or NSO cell. The invention also provides a method for producing a fusion protein of the invention comprising the steps of (i) culturing a host cell of the invention under conditions suitable for expression of the fusion protein of the invention, and (ii) recovering the fusion protein of the invention.
In one aspect, the invention provides diagnostic kits and pharmaceutical compositions comprising the fusion proteins of the invention. Further, the use of the fusion protein, the diagnostic kit or the pharmaceutical composition of the invention is also provided for the treatment, prevention and/or diagnosis of diseases associated with the activation of the PD-1/PD-L1 signaling pathway and the inhibition of T cell function, in particular for the treatment, prevention and/or diagnosis of cancerous diseases (e.g. solid and soft tissue tumors), most particularly for the treatment, prevention and/or diagnosis of melanoma, breast cancer, colon cancer, esophageal cancer, gastrointestinal stromal tumor (GIST), kidney cancer (e.g. renal cell carcinoma), liver cancer, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer, prostate cancer, head and neck tumors, gastric cancer, hematological malignancies (e.g. lymphomas).
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples described herein are illustrative only and are not intended to be limiting. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Brief Description of Drawings
The preferred embodiments of the present invention described in detail below will be better understood when read in conjunction with the following drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities of the embodiments shown in the drawings.
FIGS. 1A, B and C provide schematic diagrams of fusion proteins of the invention, wherein FIG. 1A illustrates a schematic structural diagram of a fusion protein comprising, from N-terminus to C-terminus, an antigen-binding fragment of an antibody, an immunoglobulin Fc domain, and a CD80 ECD; FIG. 1B illustrates a schematic structural diagram of a fusion protein comprising, from N-terminus to C-terminus, a CD80ECD, an antigen-binding fragment of an antibody, and an immunoglobulin Fc domain; figure 1C illustrates a schematic structural view of a fusion protein comprising, from N-terminus to C-terminus, a CD80ECD, an immunoglobulin Fc domain, and an antigen-binding fragment of an antibody.
FIG. 2: the results of the fusion protein of the present invention prepared and purified in example 2 after passing through SDS-PAGE in the presence of a reducing agent (5mM 1, 4-dithiothreitol) and staining with Coomassie blue are shown. Lane 1: protein molecular weight standard markers; lane 2: antibody BY 18.1; lane 3: fusion protein BY 31.2; lane 4: fusion protein BY 31.3; lane 5: fusion protein BY 31.7; lane 6: fusion protein BY 31.14; lane 7: the fusion protein BY 31.15.
FIG. 3A: the binding curve of the fusion protein BY31.2 of the present invention prepared and purified in example 2 to human CD28 is illustrated; FIG. 3B: the binding curve of the fusion protein BY31.2 of the present invention prepared and purified in example 2 to human PD-L1 is illustrated; FIG. 3C: the binding curve of the fusion protein BY31.2 of the present invention prepared and purified in example 2 to human CTLA-4 is exemplified.
FIG. 4: the effect of the fusion protein BY31.2 of the invention on the body weight of experimental animals in the animal model of example 6 is shown.
FIG. 5: the in vivo anti-tumor effect of the fusion protein BY31.2 of the present invention in the animal model of example 6 is shown.
FIG. 6: the effect of the fusion protein BY31.2 of the invention on the body weight of experimental animals in the animal model of example 7 is shown.
FIG. 7: a schematic diagram comparing the in vivo anti-tumor effect of the fusion protein BY31.2 of the present invention with anti-PD-L1 mab Avelumab and anti-PD-1 mab Opdivo in the animal model of example 7 is shown.
Detailed Description
The invention provides fusion proteins and pharmaceutical compositions that interfere with, inhibit or block the PD-1/PD-L1 signaling pathway and activate T cells. The invention also provides methods for producing the fusion protein and the use of the fusion protein in treating, preventing and/or diagnosing a disease associated with activation of the PD-1/PD-L1 signaling pathway and inhibition of T cell function in an individual.
Unless defined otherwise below, terms in this specification are used as they are commonly used in the art.
I. Definition of
The term "about," when used in conjunction with a numerical value, is intended to encompass a numerical value within a range having a lower limit that is 5% less than the stated numerical value and an upper limit that is 5% greater than the stated numerical value.
As used herein, the term "comprising" or "comprises" is intended to mean including the stated elements, integers or steps, but not excluding any other elements, integers or steps.
"PD-1 pathway" refers to any intracellular signaling pathway initiated by binding to PD-1, including but not limited to the intracellular signaling pathway initiated by binding of PD-1 to PD-L1, or the intracellular signaling pathway initiated by binding of PD-1 to PD-L2, or the intracellular signaling pathway initiated by binding of PD-1 to both PD-L1 and PD-L2.
The "PD-L1 pathway" refers to any intracellular signaling pathway initiated by binding to PD-L1, including but not limited to the intracellular signaling pathway initiated by binding of PD-L1 to PD-1, or the intracellular signaling pathway initiated by binding of PD-L1 to CD80(B7-1), or the intracellular signaling pathway initiated by binding of PD-L1 to both PD-1 and CD80 (B7-1).
As used herein, "interfere with," "inhibit," or "block" the PD-1/PD-L1 signaling pathway, are used interchangeably, and refer to (i) interfering with the interaction between PD-1 and PD-L1; and/or (ii) results in the inhibition of at least one biological function of the PD-1/PD-L1 signaling pathway. The "interference", "inhibition" or "blocking" of the PD-1/PD-L1 signaling pathway resulting from the specific binding of the fusion protein of the invention to PD-1 and/or PD-L1 need not be a complete interference, inhibition or blocking.
As used herein, the term "specific binding" means selective for binding of an antigen or molecule of interest and distinguishable from unwanted or non-specific interactions. The specific binding may be measured by enzyme-linked immunosorbent assay (ELISA) or other techniques familiar to those skilled in the art, such as Surface Plasmon Resonance (SPR) techniques (Analysis on a BIAcore instrument) (Liljebold et al, Analysis of the antibody-IgG in rhematoid reaction using surface plasma resonance, Glyco J.,2000, 17, 323-.
"affinity" or "binding affinity" refers to the inherent binding affinity that reflects the interaction between members of a binding pair. The affinity of a molecule X for its partner Y may be generally determined by the dissociation constant (K)D) Typically, the dissociation constants are the dissociation and association rate constants (k, respectively)offAnd kon) The ratio of (a) to (b). Affinity can be measured by common methods known in the art. One specific method for measuring affinity is Surface Plasmon Resonance (SPR).
The term "antibody" is used herein in the broadest sense and includes, but is not limited to, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies) so long as they exhibit the desired antigen binding activity. The antibody can be a whole antibody (e.g., having two full-length light chains and two full-length heavy chains) of any type and subtype (e.g., IgM, IgD, IgG1, IgG2, IgG3, IgG4, IgE, IgA1, and IgA 2).
The terms "whole antibody," "full-length antibody," "full antibody," and "intact antibody" are used interchangeably herein to refer to an antibody having a structure that is substantially similar to a native antibody structure.
The term "antibody heavy chain" refers to the larger of the two types of polypeptide chains present in an antibody molecule in its naturally occurring conformation, which normally determines the class to which an antibody belongs.
The term "antibody light chain" refers to the smaller of the two types of polypeptide chains present in an antibody molecule in its naturally occurring conformation. Kappa and lambda light chains refer to the two major antibody light chain classes.
A "bispecific antibody" is an artificial hybrid antibody having two different heavy/light chain pairs and having two different binding sites. Bispecific antibodies can be prepared by a variety of methods, including hybridoma fusion or ligation of Fab' fragments.
The term "antigen-binding fragment" of an antibody is a portion or section of an antibody or antibody chain having fewer amino acid residues than an intact or complete antibody or antibody chain, which is capable of binding to an antigen or competes for binding to an antigen with an intact antibody (i.e., an intact antibody from which the antigen-binding fragment is derived). Antigen-binding fragments can be prepared by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Antigen binding fragments include, but are not limited to, Fab ', F (ab')2Fv, single-chain Fv. The Fab fragment is a fragment consisting of VL、VH、CLAnd the CH1 domain, e.g., Fab fragments can be obtained by papain digestion of whole antibodies. In addition, complete antibody production F (ab') by pepsin digestion below the disulfide bond in the hinge region2It is a dimer of Fab' and is a bivalent fragment. F (ab')2Can be reduced under neutral conditions by disrupting disulfide bonds in the hinge region, thereby converting F (ab')2The dimer is converted to Fab' monomer. The Fab' monomer is essentially a Fab fragment with a hinge region (see: basic Immunology, edited by W.E.Paul, Raven Press, N.Y. (1993) for a more detailed description of other antibody fragments). The Fv fragment consists of a V on one arm of an antibodyLAnd VHDomain composition. In addition, although two domains of the Fv fragment, VLAnd VHEncoded by separate genes, but using recombinant methods they can be joined by a synthetic linker that enables the two domains to be produced as a single protein chain in which V is presentLRegion and VHThe regions pair to form a single chain Fv. The antibody fragment may be obtained by a chemical method, a recombinant DNA method, or a protease digestion method.
The term "immunoglobulin" refers to a protein having the structure of a naturally occurring antibody. For example, immunoglobulins of the IgG class are two light chains and two chains bound by disulfide bondsA heterotetrameric glycoprotein consisting of about 150,000 daltons in heavy chain. From N-terminus to C-terminus, each immunoglobulin heavy chain has one variable region (VH), also known as the variable heavy chain domain or heavy chain variable domain, followed by three constant domains (CH1, CH2, and CH3), also known as heavy chain constant regions. Similarly, from N-terminus to C-terminus, each immunoglobulin light chain has one variable region (VL), also known as a variable light domain or light chain variable domain, followed by one constant light Chain (CL) domain, also known as a light chain constant region. Heavy chains of immunoglobulins can be assigned to one of 5 classes, called α (IgA), δ (IgD), ε (IgE), γ (IgG) or μ (IgM), wherein certain classes can be further divided into subclasses, e.g., γ1(IgG1)、γ2(IgG2)、γ3(IgG3)、γ4(IgG4)、α1(IgA1) And alpha2(IgA2). The light chains of immunoglobulins can be divided into one of two types, called kappa and lambda, based on the amino acid sequence of their constant domains. An immunoglobulin essentially consists of two Fab molecules and one Fc domain connected by means of an immunoglobulin hinge region.
The term "Fc domain" or "Fc region" is used herein to define a C-terminal region of an immunoglobulin heavy chain that contains at least a portion of a constant region. The term includes native sequence Fc regions and variant Fc regions. A native immunoglobulin "Fc domain" comprises two or three constant domains, namely a CH2 domain, a CH3 domain, and optionally a CH4 domain. For example, in natural antibodies, the immunoglobulin Fc domain comprises the second and third constant domains (CH2 domain and CH3 domain) derived from the two heavy chains of IgG, IgA, and IgD class antibodies; or second, third and fourth constant domains (CH2 domain, CH3 domain and CH4 domain) derived from the two heavy chains of antibodies of the IgM and IgE classes. Unless otherwise indicated herein, the numbering of amino acid residues in the Fc region or heavy chain constant region is according to the EU numbering system (also known as the EU index) as described in Kabat et al, Sequences of Proteins of Immunological Interes, 5 th edition, Public Health Service, National Institutes of Health, Bethesda, MD, 1991.
A "human immunoglobulin" is an immunoglobulin that possesses an amino acid sequence corresponding to an immunoglobulin produced by a human or human cell or is derived from a non-human source using a human immunoglobulin repertoire or other sequence encoding a human immunoglobulin.
"percent (%) identity" of an amino acid sequence refers to the percentage of amino acid residues in the candidate sequence that are identical to the amino acid residues in the specific amino acid sequence shown in the specification, after aligning the candidate sequence with the specific amino acid sequence shown in the specification and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity.
The term "operably linked" means that the specified components are in a relationship that allows them to function in the intended manner.
A "signal sequence" is a sequence of amino acids linked to the N-terminal portion of a protein that promotes secretion of the protein outside the cell. The mature form of the extracellular protein lacks a signal sequence, which is cleaved off during the secretion process.
The term "N-terminal" refers to the last amino acid at the N-terminus, and the term "C-terminal" refers to the last amino acid at the C-terminus.
The term "fusion" refers to the joining of two or more components by peptide bonds either directly or by means of one or more peptide linkers.
The term "host cell" refers to a cell into which an exogenous polynucleotide has been introduced, including progeny of such a cell. Host cells include "transformants" and "transformed cells," which include the primary transformed cell and progeny derived therefrom. Host cells are any type of cell system that can be used to produce the fusion proteins of the invention. Host cells include cultured cells, and also include cells within transgenic animals, transgenic plants, or cultured plant tissues or animal tissues.
The terms "individual" or "subject" are used interchangeably and refer to a mammal. Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., human and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats). In particular, the individual is a human.
The term "treatment" refers to clinical intervention intended to alter the natural course of disease in the individual undergoing treatment. Desirable therapeutic effects include, but are not limited to, preventing the occurrence or recurrence of disease, alleviating symptoms, reducing any direct or indirect pathological consequences of the disease, preventing metastasis, reducing the rate of disease progression, ameliorating or palliating the disease state, and alleviating or improving prognosis. In some embodiments, the fusion proteins of the invention are used to delay the progression of a disease or to slow the progression of a disease.
The term "anti-tumor effect" refers to a biological effect that can be exhibited by a variety of means, including, but not limited to, for example, a reduction in tumor volume, a reduction in tumor cell number, a reduction in tumor cell proliferation, or a reduction in tumor cell survival. The terms "tumor" and "cancer" are used interchangeably herein to encompass solid tumors and liquid tumors.
Fusion proteins
The present invention provides a novel fusion protein comprising (i) an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody; (ii) an immunoglobulin Fc domain; and (iii) CD80 extracellular domain (ECD).
In some embodiments, said (i), (ii) and/or (iii) are operably linked, optionally via a peptide linker.
In some embodiments, the fusion protein of the invention is a heterotetrameric glycoprotein consisting of a disulfide-bonded first subunit of the fusion protein and a second subunit of the fusion protein.
The fusion protein of the invention blocks the immune checkpoint PD-1/PD-L1 signaling pathway and activates T cells. The fusion protein blocks the immune checkpoint PD-1 pathway which is a signaling pathway mediated by the binding of PD-1 to its ligand. The PD-L1 pathway blocked by the fusion protein is a signal transduction pathway mediated by the binding of PD-L1 and a receptor thereof. The activation of T cells by the fusion protein is realized by blocking an immunosuppressive PD-1/PD-L1 channel and through the positive regulation effect of CD80ECD on the T cells.
In some embodiments, the fusion of the inventionThe synthetic protein is represented by 10-8M or less, e.g. at 10-9M to 10-12Dissociation constant (K) of MD) Binds to PD-1 or PD-L1; and is numbered 10-8M or less, e.g. at 10-9M to 10-12Dissociation constant (K) of MD) Specifically binds to the CD28 molecule and has the functions of,
antigen-binding fragments derived from anti-PD-1 antibodies and/or anti-PD-L1 antibodies
The antigen-binding fragment derived from the anti-PD-1 antibody and/or the anti-PD-L1 antibody contained in the fusion protein of the invention is capable of specifically binding to PD-1 and/or PD-L1; or competes with intact anti-PD-1 antibody and/or anti-PD-L1 antibody for binding to PD-1 and/or PD-L1. Such antigen binding fragments include, but are not limited to, Fab ', F (ab')2Fv, single-chain Fv.
The inclusion of an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody in a fusion protein of the invention enables the fusion protein of the invention to be used with high affinity, for example at 10-8M or less, preferably at 10-9M to 10-12K of MDSpecifically binds to PD-1 and/or PD-L1 and thereby blocks the signaling pathway mediated by PD-1 binding to ligand PD-L1/PD-L2 and/or blocks the signaling pathway mediated by PD-L1 binding to receptor PD-1/CD80 (B7-1).
Examples of heavy chain variable regions (VH) and light chain variable regions (VL) in the antigen-binding fragment of the anti-PD-1 antibody comprised in the fusion protein of the invention are provided herein in table 1A below. In addition, examples of heavy chain variable regions (VH) and light chain variable regions (VL) in the antigen-binding fragment of the anti-PD-L1 antibody included in the fusion protein of the present invention are provided herein in table 1B below. In some embodiments, the antigen-binding fragment in the fusion protein of the invention comprises a sequence that is substantially identical to an amino acid sequence set forth in table 1A and/or table 1B, e.g., a sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to a heavy chain variable region sequence/light chain variable region sequence set forth in table 1A and/or table 1B.
TABLE 1A. examples of sequences for heavy and light chain variable regions in antigen-binding fragments of anti-PD-1 antibodies
Figure BDA0001448682480000151
Figure BDA0001448682480000161
Figure BDA0001448682480000171
TABLE 1B examples of heavy and light chain variable region sequences in antigen-binding fragments of anti-PD-L1 antibodies
Figure BDA0001448682480000172
In one embodiment, the antigen binding fragment in the fusion protein of the invention comprises a sequence selected from the group consisting of SEQ ID NOs: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16, 17/18, 19/20, 21/22, 23/24, and 25/26, and all 6 heavy chain Complementarity Determining Regions (CDRs) and light chain CDRs contained in the heavy chain variable region sequence/light chain variable region sequence. In one embodiment, the antigen binding fragment in the fusion protein of the invention comprises a sequence selected from the group consisting of SEQ ID NOs: 27/28, 29/30, and 31/32, and all 6 heavy and light chain CDRs contained in the heavy/light chain variable region sequences. Methods and techniques for identifying CDRs in the amino acid sequences of heavy chain variable regions and light chain variable regions are known in the art and can be used to identify CDRs in the amino acid sequences of particular heavy chain variable regions and/or light chain variable regions disclosed herein. Exemplary well-known techniques that can be used to identify CDR boundaries include, for example, Kabat, Chothia, and AbM. See, e.g., Kabat, Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md. (1991); Al-Lazikani et Al, Standard transformations for the microbiological structures, J.mol.biol.273: 927-; and Martin AC et al, modular antibody hypervariable loops: a combined algorithms, Proc. Natl. Acad. Sci. USA 86: 9268. 9272 (1989).
The anti-PD-1 antibody or anti-PD-L1 antibody that is the source of the antigen-binding fragment in the fusion protein of the present invention may be classified into a kappa type or a lambda type, preferably a kappa type, based on the amino acid sequence of the light chain constant region thereof.
Examples of amino acid sequences of the anti-PD-1 antibody light chain constant regions are provided herein in table 2 below.
TABLE 2 examples of light chain constant region sequences of anti-PD 1 antibodies
Figure BDA0001448682480000181
The anti-PD-1 antibody or anti-PD-L1 antibody derived as an antigen-binding fragment in the fusion protein of the invention is preferably an antibody of the IgG class, in particular IgG, based on the amino acid sequence of its heavy chain constant region1Subclass, IgG2Subclass, IgG4Subclass antibody, more particularly IgG4Subclass antibody. Preferably, the IgG is4Subclass anti-PD-1 antibody or anti-PD-L1 antibody comprises an amino acid substitution at position S228 in the Fc region that prevents the occurrence of an arm exchange, in particular the amino acid substitution S228P.
Examples of amino acid sequences of the anti-PD-1 antibody heavy chain constant region are provided herein in table 3 below.
TABLE 3 examples of heavy chain constant region sequences for anti-PD 1 antibodies
Figure BDA0001448682480000182
Figure BDA0001448682480000191
-immunoglobulin Fc domain
The "immunoglobulin Fc domain" in the fusion protein of the present invention comprises all amino acid residues of a naturally occurring immunoglobulin Fc domain or comprises a portion of amino acid residues of a naturally occurring immunoglobulin Fc domain. Immunoglobulin Fc domains provide advantageous pharmacokinetic properties for the fusion proteins of the invention, including but not limited to long serum half-life. In addition, immunoglobulin Fc domains also make it possible to purify the fusion proteins of the invention by, for example, protein a affinity chromatography.
Immunoglobulin Fc domains are typically dimeric molecules, which may be produced by papain digestion or trypsin digestion of a complete (full-length) immunoglobulin or may be produced recombinantly, comprising a CH2 domain, a CH3 domain, and optionally a CH4 domain.
In one embodiment, the IgG Fc region comprises an IgG CH2 domain and an IgG CH3 domain. Preferably, the immunoglobulin Fc domain has the amino acid sequence of SEQ ID NO: 38-40 or an amino acid sequence having an amino acid sequence substantially identical to SEQ ID NO: 38-40, or an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity.
Table 4 examples of immunoglobulin Fc domain amino acid sequences in fusion proteins
Figure BDA0001448682480000192
In addition to the amino acid sequence as set forth in SEQ ID NO: 38-40, the IgG Fc region can further comprise a sequence other than the sequences defined for SEQ ID NOs: 38-40, such as the peptide sequence obtained after additional sequence modifications to SEQ ID NO: 38-40 by one or more amino acid substitutions, deletions or derivations. In one embodiment, the IgG Fc region comprises an amino acid substitution at position S228 that prevents the occurrence of an arm exchange (arm-exchange), in particular amino acid substitution S228P.
Extracellular domain (ECD) of CD80
The "extracellular domain (ECD) of CD 80" in the fusion protein of the invention comprises all or a portion of the amino acid residues of a naturally occurring CD80 ECD. In some embodiments, the CD80ECD comprises a CD80IgV, preferably the CD80ECD comprises a human CD80IgV, more preferably the CD80ECD has the amino acid sequence of SEQ ID NO: 41 or 42.
TABLE 5 examples of CD80ECD amino acid sequences in fusion proteins
Figure BDA0001448682480000201
In addition to the amino acid sequence as set forth in SEQ ID NO: 41 and 42, the CD80ECD may comprise a sequence other than the sequences defined in SEQ ID NOs: 41 and 42, for example, a peptide sequence obtained by additional sequence modification of SEQ ID NO: 41 and 42, as long as they have substantially the same activity or function as the unmodified peptide. The modified peptide will retain the activity or function associated with the unmodified peptide. The modified peptide typically has an amino acid sequence that is substantially homologous to the amino acid sequence of the unmodified sequence, e.g., to the amino acid sequence of SEQ ID NO: 41 or 42, or an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identity.
-peptide linker
The fusion protein of the present invention comprises (i) an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody; (ii) an immunoglobulin Fc domain; and (iii) the CD80ECD is optionally operably linked to a "peptide linker" which is a peptide of one or more amino acids, typically about 2-20 amino acids. Peptide linkers are known in the art or described herein.
In some embodiments, the peptide linker comprises at least 5 amino acids, preferably comprises a peptide linker selected from the group consisting of AKTTPKLEEGEFSEAR (SEQ ID NO: 43); AKTTPKLEEGEFSEARV (SEQ ID NO: 44); AKTTPKLGG (SEQ ID NO: 45); SAKTTPKLGG (SEQ ID NO: 46); SAKTTP (SEQ ID NO: 47); RADAAP (SEQ ID NO: 48); RADAAPTVS (SEQ ID NO: 49); RADAAAAGGPGS (SEQ ID NO: 50); RADAAAAA (SEQ ID NO: 51); SAKTTPKLEEGEFSEARV (SEQ ID NO: 52); ADAAP (SEQ ID NO: 53); DAAPTVSIFPP (SEQ ID NO: 54); TVAAP (SEQ ID NO: 55); TVAAPSVFIFPP (SEQ ID NO: 56); QPKAAP (SEQ ID NO: 57); QPKAAPSVTLFPP (SEQ ID NO: 58); AKTTPP (SEQ ID NO: 59); AKTTPPSVTPLAP (SEQ ID NO: 60); AKTTAP (SEQ ID NO: 61); AKTTAPSVYPLAP (SEQ ID NO: 62); ASTKGP (SEQ ID NO: 63); ASTKGPSVFPLAP (SEQ ID NO: 64); GGGGSGGGGSGGGGS (SEQ ID NO: 65); GENKVEYAPALMALS (SEQ ID NO: 66); GPAKELTPLKEAKVS (SEQ ID NO: 67); GHEAAAVMQVQYPAS (SEQ ID NO: 68); GGGGSGGGGSGGGGSA (SEQ ID NO: 69); GQGTKVEIKRGGSGGGGSG (SEQ ID NO: 70) and GQGTLVTVSSGGGGSGGGGS (SEQ ID NO: 71).
-fusion proteins
Provided herein are antigen-binding fragments comprising, in any order, (i) an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody; (ii) an immunoglobulin Fc domain; and (iii) a CD80ECD, including but not limited to fusion proteins from N-terminus to C-terminus in the order of (i), (ii), and (iii); (iii) the order of (i), (ii) and (iii); or the order of (iii), (ii) and (i) are operably linked.
In one embodiment, the fusion protein comprises, from N-terminus to C-terminus, an anti-PD-1 antibody, an anti-PD-L1 antibody, or an anti-PD-1 and PD-L1 bispecific antibody; and a CD80ECD operably linked C-terminal to each of the two heavy chains of the antibody.
In another embodiment, the fusion protein comprises an anti-PD-1 antibody, an anti-PD-L1 antibody, or an anti-PD-1 and PD-L1 bispecific antibody; a CD80ECD operably linked at the N-terminus of each of the two heavy chains of the antibody; and a CD80ECD operably linked N-terminal to each of the two light chains of the antibody.
In yet another embodiment, the fusion protein comprises, from N-terminus to C-terminus, CD80 ECD; an immunoglobulin Fc domain in dimeric form operatively linked at the C-terminus of the CD80 ECD; and an antigen-binding fragment derived from an anti-PD-1 antibody and/or an anti-PD-L1 antibody operatively linked at the C-terminus of the immunoglobulin Fc domain in dimeric form.
Production and purification of fusion proteins of the invention
The fusion protein of the present invention can be obtained, for example, by solid-state peptide synthesis (e.g., Merrifield solid phase synthesis) or recombinant production. For recombinant production, the polynucleotide encoding the first subunit of the fusion protein and/or the polynucleotide encoding the second subunit of the fusion protein is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell. The polynucleotides can be readily isolated and sequenced using conventional methods. In one embodiment, a vector, preferably an expression vector, comprising one or more polynucleotides of the invention is provided.
Methods well known to those skilled in the art can be used to construct expression vectors. Expression vectors include, but are not limited to, viruses, plasmids, cosmids, lambda phages, or Yeast Artificial Chromosomes (YACs). In a preferred embodiment, a glutamine synthetase high expression vector having a dual expression cassette is used.
Once an expression vector comprising one or more polynucleotides of the invention has been prepared for expression, the expression vector may be transfected or introduced into a suitable host cell. A variety of techniques can be used to achieve this, for example, protoplast fusion, calcium phosphate precipitation, electroporation, retroviral transduction, viral transfection, gene gun, liposome-based transfection, or other conventional techniques.
In one embodiment, a host cell comprising one or more polynucleotides of the invention is provided. In some embodiments, host cells comprising the expression vectors of the invention are provided. As used herein, the term "host cell" refers to any kind of cellular system that can be engineered to produce a fusion protein of the invention. Host cells suitable for replication and to support expression of the fusion proteins of the invention are well known in the art. Such cells can be transfected or transduced with a particular expression vector, as desired, and a large number of vector-containing cells can be grown for seeding a large-scale fermentor to obtain sufficient quantities of the fusion protein of the invention for clinical use. Suitable host cells include prokaryotic microorganisms such as E.coli, eukaryotic microorganisms such as filamentous fungi or yeast, or various eukaryotic cells such as Chinese hamster ovary Cells (CHO), insect cells, and the like. Mammalian cell lines suitable for suspension culture may be used. Examples of useful mammalian host cell lines include SV40 transformed monkey kidney CV1 line (COS-7); human embryonic kidney lines (HEK 293 or 293F cells), baby hamster kidney cells (BHK), monkey kidney cells (CV1), Vero monkey kidney cells (VERO-76), human cervical cancer cells (HELA), canine kidney cells (MDCK), Bufarro rat liver cells (BRL 3A), human lung cells (W138), human liver cells (Hep G2), CHO cells, NSO cells, myeloma cell lines such as YO, NS0, P3X63, and Sp2/0, and the like. For a review of mammalian host cell lines suitable for protein production see, e.g., Yazaki and Wu, Methods in Molecular Biology, Vol.248 (edited by B.K.C.Lo, Humana Press, Totowa, NJ), pp.255-268 (2003). In a preferred embodiment, the host cell is a CHO, HEK293 or NSO cell.
Standard techniques for expressing foreign genes in these host cell systems are known in the art. In one embodiment, a method of producing a fusion protein of the invention is provided, wherein the method comprises culturing a host cell as provided herein comprising a polynucleotide encoding the fusion protein under conditions suitable for expression of the fusion protein, and recovering the fusion protein from the host cell (or host cell culture medium).
The fusion protein prepared as described herein can be purified by known prior art techniques such as high performance liquid chromatography, ion exchange chromatography, gel electrophoresis, affinity chromatography, size exclusion chromatography, and the like. The actual conditions used to purify a particular protein also depend on factors such as net charge, hydrophobicity, hydrophilicity, and the like, and will be apparent to those skilled in the art.
The purity of the fusion protein of the present invention can be determined by any of a variety of well-known analytical methods, including gel electrophoresis, high performance liquid chromatography, and the like. The physical/chemical properties and/or biological activities of the fusion proteins provided herein can be identified, screened or characterized by a variety of assays known in the art.
Pharmaceutical compositions and kits
In another aspect, the invention provides a composition, e.g., a pharmaceutical composition, comprising a fusion protein described herein formulated with a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, isotonic and absorption delaying agents, and the like that are physiologically compatible. The pharmaceutical compositions of the invention are suitable for intravenous, intramuscular, subcutaneous, parenteral, rectal, spinal or epidermal administration (e.g., by injection or infusion).
The compositions of the present invention may be in a variety of forms. Such forms include, for example, liquid, semi-solid, and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, liposomal formulations, and suppositories. The preferred form depends on the intended mode of administration and therapeutic use. The generally preferred compositions are in the form of injectable solutions or infusible solutions. Preferred modes of administration are parenteral (e.g., intravenous, subcutaneous, intraperitoneal (i.p.), intramuscular) injection. In a preferred embodiment, the fusion protein is administered by intravenous infusion or injection. In another preferred embodiment, the fusion protein is administered by intramuscular, intraperitoneal or subcutaneous injection.
The phrases "parenteral administration" and "administered parenterally" as used herein mean modes of administration other than enteral and topical administration, typically by injection, and include, but are not limited to, intravenous, intramuscular, intraarterial, intradermal, intraperitoneal, transtracheal, subcutaneous injection, and infusion.
The therapeutic compositions should generally be sterile and stable under the conditions of manufacture and storage. The compositions may be formulated as solutions, microemulsions, dispersions, liposomes, or lyophilized forms. Sterile injectable solutions can be prepared by incorporating the active compound (i.e., the fusion protein) in the required amount in an appropriate solvent, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and other ingredients. Coating agents such as lecithin and the like may be used. In the case of dispersions, the proper fluidity of solutions can be maintained by the use of surfactants. Prolonged absorption of the injectable compositions can be brought about by including in the composition an absorption delaying substance, for example, monostearate salts and gelatin.
In certain embodiments, a fusion protein of the invention can be administered orally, e.g., with an inert diluent or an edible carrier. The fusion proteins of the invention may also be enclosed in hard or soft shell gelatin capsules, compressed into tablets, or incorporated directly into the diet of a subject. For oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches (troche), capsules, elixirs, suspensions, syrups, wafers (wafers), and the like. In order to administer the fusion protein of the present invention by a non-parenteral administration method, it may be necessary to coat the fusion protein with a material that prevents its inactivation or to co-administer it with such a material. Therapeutic compositions may also be administered using medical devices known in the art.
The pharmaceutical composition of the invention may comprise a "therapeutically effective amount" or a "prophylactically effective amount" of the fusion protein of the invention. "therapeutically effective amount" means an amount effective, at dosages and for periods of time as required, to achieve the desired therapeutic result. The therapeutically effective amount may vary depending on factors such as the disease state, age, sex, and weight of the individual. A therapeutically effective amount is any amount that has no toxic or deleterious effect than a therapeutically beneficial effect. A "therapeutically effective amount" preferably inhibits a measurable parameter (e.g., tumor growth rate) by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80%, relative to an untreated subject. The ability of the fusion proteins of the invention to inhibit a measurable parameter (e.g., tumor volume) can be evaluated in an animal model system predictive of efficacy in human tumors.
A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time as required, to achieve the desired prophylactic result. Typically, a prophylactically effective amount is less than a therapeutically effective amount since a prophylactic dose is used in a subject prior to or at an earlier stage of disease.
Kits comprising the fusion proteins described herein are also within the scope of the invention. The kit may comprise one or more further elements, including for example: instructions for use; other reagents, such as labels or reagents for conjugation; a pharmaceutically acceptable carrier; and a device or other material for administration to a subject.
Use of fusion proteins
The fusion proteins disclosed herein have in vitro and in vivo diagnostic uses as well as therapeutic and prophylactic uses. For example, these molecules can be administered to cultured cells in vitro or ex vivo or to a subject, e.g., a human subject, to treat, prevent and/or diagnose a variety of diseases associated with the activation of the PD-1/PD-L1 signaling pathway and the inhibition of T cell function, e.g., cancer.
In one aspect, the invention provides diagnostic methods for detecting the presence of PD-1, PD-L1, CD28, or CTLA-4 in a biological sample, such as serum, semen, or urine or a tissue biopsy (e.g., from a hyperproliferative or cancerous lesion), in vitro or in vivo. The diagnostic method comprises the following steps: (i) contacting a sample (and optionally a control sample) with a fusion protein as described herein or administering the fusion protein to a subject under conditions that allow an interaction to occur and (ii) detecting the formation of a complex between the fusion protein and the sample (and optionally the control sample). The formation of a complex indicates the presence of PD-1, PD-L1, CD28, or CTLA-4, and may indicate the applicability or need of treatment and/or prevention as described herein.
In some embodiments, PD-1 or PD-L1, CD28, CTLA-4 are detected prior to treatment, e.g., prior to initiation of treatment or prior to some treatment following a treatment interval. Detection methods that may be used include immunohistochemistry, immunocytochemistry, FACS, ELISA assays, PCR-techniques (e.g., RT-PCR) or in vivo imaging techniques. In general, fusion proteins used in vivo and in vitro detection methods are labeled, directly or indirectly, with a detectable substance to facilitate detection of bound or unbound conjugate. Suitable detectable substances include a variety of biologically active enzymes, prosthetic groups, fluorescent materials, luminescent materials, paramagnetic (e.g., nmr active) materials, and radioactive materials.
In some embodiments, the level and/or distribution of PD-1, PD-L1, CD28, or CTLA-4 is determined in vivo, e.g., a fusion protein of the invention that is detectably labeled is determined in a non-invasive manner (e.g., by detection using a suitable imaging technique (e.g., Positron Emission Tomography (PET) scanning), hi one embodiment, e.g., by detection of a protein labeled with a PET agent (e.g.,18F-Fluorodeoxyglucose (FDG)) detectably labeled fusion proteins of the invention, the level and/or distribution of PD-1, PD-L1, CD28, or CTLA-4 is determined in vivo.
In one embodiment, the invention provides a diagnostic kit comprising a fusion protein as described herein and instructions for use.
In another aspect, the invention relates to the use of the fusion protein for treating or preventing a disease in which enhanced T cell activation and immune response are desired in a subject, thereby inhibiting or reducing the growth or appearance, metastasis or recurrence of an associated disease, such as a cancerous tumor. The fusion protein may be used alone to inhibit the growth of, or prevent the appearance of, cancerous tumors. Alternatively, the fusion protein may be administered in combination with other cancer therapeutic/prophylactic agents. When the fusion protein of the invention is administered in combination with one or more other drugs, such combination may be administered in any order or simultaneously.
Accordingly, in one embodiment, the present invention provides a method of inhibiting tumor cell growth in a subject, the method comprising administering to the subject a therapeutically effective amount of a fusion protein described herein. In another embodiment, the invention provides a method of preventing the appearance or metastasis or recurrence of tumor cells in a subject, comprising administering to the subject a prophylactically effective amount of a fusion protein described herein.
In some embodiments, cancers treated and/or prevented with the fusion protein include, but are not limited to, solid tumors, hematological cancers (e.g., leukemia, lymphoma, myeloma, e.g., multiple myeloma), and metastatic lesions. In one embodiment, the cancer is a solid tumor. Examples of solid tumors include malignancies, e.g., sarcomas and carcinomas of the various organ systems, such as those that affect the lung, breast, ovary, lymphoid, gastrointestinal (e.g., colon), anal, genital, and genitourinary tracts (e.g., kidney, bladder epithelium, bladder cells, prostate), pharynx, CNS (e.g., brain, neural, or glial cells), head and neck, skin (e.g., melanoma), nasopharynx (e.g., differentiated or undifferentiated metastatic or locally recurrent nasopharyngeal carcinoma), and pancreas, and adenocarcinomas, including malignancies, such as colon, rectal, renal cell, liver, non-small cell lung, small intestine, and esophageal cancers. The cancer may be in an early, intermediate or advanced stage or a metastatic cancer.
In some embodiments, the cancer is selected from melanoma, breast cancer, colon cancer, esophageal cancer, gastrointestinal stromal tumors (GIST), renal cancer (e.g., renal cell carcinoma), liver cancer, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer, prostate cancer, head and neck tumors, gastric cancer, hematologic malignancies (e.g., lymphoma).
The following examples are described to aid in the understanding of the present invention. The examples are not intended to, and should not be construed as, limiting the scope of the invention in any way.
Examples
Example 1 construction of a Glutamine synthetase high expression vector containing a Gene of interest
(1) Synthesis of control anti-PD 1 antibody BY18.1 coding nucleotide and construction of expression vector
The following nucleotide sequence suitable for expression in chinese hamster ovary cancer Cells (CHO) was optimized based on the amino acid sequence data of nivolumab No. 9623 in the International Nproprietary Name (INN) database, and the synthesis of the nucleotide sequence was entrusted to shanghai jieli bioengineering limited. The anti-PD 1 antibody produced upon expression of the nucleotide sequence is denoted herein as antibody BY 18.1.
Light chain (BY18.1L) nucleotide sequence of anti-PD 1 antibody BY18.1 (SEQ ID NO: 72):
CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCTCAGTCCGTGTCTTCTTACCTCGCTTGGTATCAGCAGAAGCCCGGCCAGGCTCCAAGACTGCTGATCTATGACGCTTCTAACCGCGCTACAGGCATTCCTGCTAGGTTCAGCGGCAGCGGCTCTGGCACCGACTTCACACTCACAATTAGCTCTCTTGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTCTAGCAACTGGCCTAGAACATTCGGCCAGGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAAGAATTC
light chain (BY18.1L) amino acid sequence of anti-PD 1 antibody BY18.1 (SEQ ID NO: 73):
METDTLLLWVLLLWVPGSTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
heavy chain (BY18.1H) nucleotide sequence of anti-PD 1 antibody BY18.1 (SEQ ID NO: 74):
TCTAGAGCCACCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTCCTGTGGGTGCCTGGCTCCACAGGCCAGGTGCAGCTCGTGGAGTCCGGCGGCGGCGTGGTGCAGCCCGGCAGATCCCTCAGACTGGACTGCAAGGCATCCGGCATTACATTCTCTAACTCTGGAATGCACTGGGTGAGACAGGCTCCTGGCAAGGGCCTGGAATGGGTGGCCGTGATTTGGTACGACGGCTCTAAGAGATACTACGCTGACTCCGTGAAGGGCCGGTTCACAATTAGCAGAGACAACTCCAAGAACACTCTGTTCCTCCAGATGAACAGCCTGAGAGCCGAGGACACCGCTGTGTACTACTGCGCCACCAACGACGACTACTGGGGCCAGGGCACCCTCGTGACAGTGTCTTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCTCCCTGGGCACCAAGACCTACACCTGCAACGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAGTCCAAGTACGGCCCTCCTTGCCCTCCTTGCCCTGCCCCTGAGTTCCTGGGCGGCCCTTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGCACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGTCCCAGGAGGACCCTGAGGTGCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCGCGAGGAGCAGTTCAACTCCACCTACCGCGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCTCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTTCCCAGGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCCGCCTGACCGTGGACAAGTCCCGCTGGCAGGAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCTGGGCAAGTAA GTCGAC
heavy chain (BY18.1H) amino acid sequence of anti-PD 1 antibody BY18.1 (SEQ ID NO: 75):METDTLLLWVLLL WVPGSTGQVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
wherein the lower scribed line part "METDTLLLWVLLLWVPGSTG"is a signal peptide sequence.
The BY18.1L-encoding nucleotide sequence and the BY18.1H-encoding nucleotide sequence were synthesized by Shanghai Czeri bioengineering, Inc. Separately double-digesting BY18.1L encoding nucleotides with XhoI-EcoRI, double-digesting glutamine synthetase high-efficiency expression vectors with double expression cassettes (patent grant No: CN104195173B, obtained from Beijing Biyan Biotechnology Co., Ltd.) with XhoI-EcoRI, and then connecting BY18.1L encoding nucleotides double-digested with XhoI-EcoRI to the glutamine synthetase high-efficiency expression vectors with double expression cassettes double-digested with XhoI-EcoRI by ligase to obtain the glutamine synthetase high-efficiency expression vectors with double expression cassettes into which BY18.1L encoding nucleotides have been introduced; then, BY18.1H encoding nucleotides were digested simultaneously with XbaI-SalI, the glutamine synthetase high-efficiency expression vector with double expression cassettes into which BY18.1L encoding nucleotides were introduced was digested simultaneously with XbaI-SalI, the XbaI-SalI digested BY18.1H encoding nucleotides were ligated to the XbaI-SalI digested glutamine synthetase high-efficiency expression vector with double expression cassettes into which BY18.1L encoding nucleotides were introduced, the glutamine synthetase high-efficiency expression vector with double expression cassettes into which BY18.1L encoding nucleotides and BY18.1H encoding nucleotides were introduced was obtained, and the sequences were verified to be correct for expression, thereby obtaining anti-PD 1 antibody BY 18.1.
Alternatively, the antibody BY18.1 can be obtained BY ligating the coding nucleotide BY18.1L to a glutamine synthetase high-efficiency expression vector having a double expression cassette into which the BY18.1H coding nucleotide has been introduced.
(2) Synthesis of encoding nucleotide of fusion protein containing anti-PD-1 antibody and CD80 extracellular domain and construction of expression vector
The amino acid sequence of the heavy and light chain variable regions of the anti-PD-1 antibody in table 1A, the light chain constant region sequence of the antibody in table 2, the heavy chain constant region sequence of the antibody in table 3, the sequence of the extracellular domain of CD80 in table 5, and the amino acid sequence of SEQ ID NO: 43-71, optimized to a nucleotide sequence suitable for expression in Chinese hamster ovary cancer Cells (CHO), and entrusted Shanghai Czeri bioengineering, Inc. to synthesize a polynucleotide sequence as shown by even-numbered SEQ ID NO 76-95.
Nucleotide sequence of first subunit (BY31.2L) of fusion protein BY31.2 (kappa, IgG4) (SEQ ID NO: 76): CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCTCAGTCCGTGTCTTCTTACCTCGCTTGGTATCAGCAGAAGCCCGGCCAGGCTCCAAGACTGCTGATCTATGACGCTTCTAACCGCGCTACAGGCATTCCTGCTAGGTTCAGCGGCAGCGGCTCTGGCACCGACTTCACACTCACAATTAGCTCTCTTGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTCTAGCAACTGGCCTAGAACATTCGGCCAGGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAAGAATTC
The amino acid sequence of the first subunit (BY31.2L) of fusion protein BY31.2 (kappa, IgG4) (SEQ ID NO: 77):
METDTLLLWVLLLWVPGSTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
the nucleotide sequence of the second subunit (BY31.2H) of fusion protein BY31.2 (kappa, IgG4) (SEQ ID NO: 78):
TCTAGAGCCACCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTCCTGTGGGTGCCTGGCTCCACAGGCCAGGTGCAGCTCGTGGAGTCCGGCGGCGGCGTGGTGCAGCCCGGCAGATCCCTCAGACTGGACTGCAAGGCATCCGGCATTACATTCTCTAACTCTGGAATGCACTGGGTGAGACAGGCTCCTGGCAAGGGCCTGGAATGGGTGGCCGTGATTTGGTACGACGGCTCTAAGAGATACTACGCTGACTCCGTGAAGGGCCGGTTCACAATTAGCAGAGACAACTCCAAGAACACTCTGTTCCTCCAGATGAACAGCCTGAGAGCCGAGGACACCGCTGTGTACTACTGCGCCACCAACGACGACTACTGGGGCCAGGGCACCCTCGTGACAGTGTCTTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCTCCCTGGGCACCAAGACCTACACCTGCAACGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAGTCCAAGTACGGCCCTCCTTGCCCTCCTTGCCCTGCCCCTGAGTTCCTGGGCGGCCCTTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGCACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGTCCCAGGAGGACCCTGAGGTGCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCGCGAGGAGCAGTTCAACTCCACCTACCGCGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCTCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTTCCCAGGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCCGCCTGACCGTGGACAAGTCCCGCTGGCAGGAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCTGGGCGGCGGAGGATCTGGCGGCGGAGGCAGTGGAGGCGGCGGAAGTGTGATCCATGTAACAAAAGAAGTGAAGGAAGTGGCTACACTCTCTTGCGGCCACAACGTGTCCGTGGAGGAACTAGCTCAGACCCGGATCTATTGGCAGAAAGAAAAGAAGATGGTGCTGACCATGATGTCCGGCGACATGAACATTTGGCCAGAGTACAAGAACCGCACAATTTTCGACATTACAAACAACCTCTCTATTGTGATTCTGGCTCTCAGGCCTAGCGACGAGGGCACATACGAGTGCGTGGTGCTCAAGTACGAGAAGGACGCTTTCAAGCGGGAGCACCTCGCTGAGGTGACCCTGTCCGTGAAGGCCGACTTCCCTACTCCATCTTAAGTCGAC
the second subunit (BY31.2H) amino acid sequence of fusion protein BY31.2 (kappa, IgG4) (SEQ ID NO: 79):
METDTLLLWVLLLWVPGSTGQVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGGGGSGGGGSGGGGSVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPS
nucleotide sequence of first subunit (BY31.3L) of fusion protein BY31.3 (kappa, IgG2) (SEQ ID NO: 80):
CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGAGATCAAGCGGACCGTGGCCGCCCCATCCGTGTTCATTTTCCCACCTTCCGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCCAAGGGCGTGAGCACATCCGGCTACTCCTACCTCCACTGGTATCAGCAGAAGCCAGGCCAGGCCCCAAGACTGCTGATATACCTCGCTTCTTACTTAGAGTCTGGCGTGCCCGCTCGGTTCAGCGGCTCCGGCTCTGGCACCGACTTCACCCTGACAATTTCTAGCCTGGAGCCCGAGGACTTCGCCGTGTACTACTGCCAGCACTCTAGGGACCTGCCTCTCACATTCGGCGGCGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAAGAATTC
the amino acid sequence of the first subunit (BY31.3L) of fusion protein BY31.3 (kappa, IgG2) (SEQ ID NO: 81):
METDTLLLWVLLLWVPGSTGEIVLTQSPATLSLSPGERATLSCRASKGVSTSGYSYLHWYQQKPGQAPRLLIYLASYLESGVPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHSRDLPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
the nucleotide sequence of the second subunit (BY31.3H) of fusion protein BY31.3 (kappa, IgG2) (SEQ ID NO: 82):
TCTAGAGCCACCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTCCTGTGGGTGCCTGGCTCCACAGGCCAGGTGCAGCTCGTGCAGTCTGGCGTGGAGGTGAAGAAGCCTGGCGCCTCTGTGAAGGTGTCTTGCAAGGCTTCCGGCTACACTTTCACTAACTACTACATGTACTGGGTGAGACAGGCTCCCGGCCAGGGCCTAGAGTGGATGGGCGGCATTAACCCTAGCAACGGCGGCACAAACTTCAACGAGAAGTTCAAGAACCGCGTGACCCTGACCACAGACTCTAGCACAACAACTGCTTACATGGAGCTGAAGTCTCTCCAGTTCGACGACACCGCTGTGTACTACTGCGCTCGGAGGGACTACAGATTCGACATGGGCTTCGACTACTGGGGCCAGGGCACCACTGTGACAGTGTCTACAGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCAACTTCGGCACCCAGACATACACATGCAACGTGGACCACAAGCCTTCTAACACAAAGGTGGACAAGACCGTGGAGCGGAAGTGCTGCGTGGAGTGCCCACCTTGCCCCGCTCCTCCTGTGGCCGGCCCTTCTGTGTTCCTGTTCCCACCTAAGCCAAAGGACACACTCATGATCAGCAGAACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGAGCCACGAGGACCCCGAGGTGCAGTTCAACTGGTATGTGGACGGCGTGGAGGTGCACAACGCTAAGACCAAGCCTAGAGAAGAACAGTTCAACAGCACATTCAGAGTGGTGTCCGTGCTCACCGTGGTGCACCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCAGCCCCTATCGAAAAAACAATCAGCAAGACCAAGGGCCAGCCTAGAGAGCCTCAGGTGTACACACTGCCTCCATCTCGGGAAGAAATGACAAAGAACCAGGTGTCCCTCACATGCCTCGTGAAGGGCTTCTACCCATCCGACATCGCTGTGGAGTGGGAGTCTAACGGCCAGCCCGAGAACAACTACAAGACCACCCCTCCTATGCTCGACTCCGACGGCTCTTTCTTCCTGTACTCTAAGCTGACCGTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTCTCTTGCAGCGTGATGCACGAGGCTCTCCACAACCACTACACCCAGAAGTCCCTGAGCCTGTCTCCAGGCGGCGGAGGATCTGGCGGCGGAGGCAGTGGAGGCGGCGGAAGCGTCATTCACGTCACTAAGGAGGTCAAGGAGGTCGCAACCCTCAGTTGCGGACACAACGTCAGCGTGGAGGAGCTTGCACAGACACGCATCTACTGGCAGAAGGAGAAGAAGATGGTGCTGACCATGATGTCCGGCGATATGAACATTTGGCCAGAGTACAAGAATCGGACCATCTTCGATATTACAAATAACCTGTCCATCGTGATCCTCGCTCTGCGCCCTAGCGACGAGGGAACATACGAGTGTGTGGTGCTGAAGTACGAGAAGGATGCATTTAAGCGCGAGCACCTGGCTGAGGTGACACTCTCCGTCAAGGCCGATTTTCCTACTCCTTCTATCTCCGACTTTGAGATTCCAACATCAAATATTAGGCGCATTATCTGTTCTACATCCGGCGGATTCCCAGAGCCCCACCTCTCTTGGTTGGAGAACGGCGAGGAACTTAATGCTATCAATACAACCGTGTCTCAAGATCCCGAGACTGAGCTGTACGCCGTGTCTAGTAAGCTGGACTTTAACATGACTACCAATCACAGTTTCATGTGCCTGATTAAGTACGGCCACCTGCGGGTGAATCAGACCTTTAATTGGAATACTACCAAGCAGGAGCACTTCCCAGATAACTAAGTCGAC
second subunit (BY31.3H) amino acid sequence of fusion protein BY31.3 (kappa, IgG2) (SEQ ID NO: 83):
METDTLLLWVLLLWVPGSTGQVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSTASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGSGGGGSGGGGSVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPSISDFEIPTSNIRRIICSTSGGFPEPHLSWLENGEELNAINTTVSQDPETELYAVSSKLDFNMTTNHSFMCLIKYGHLRVNQTFNWNTTKQEHFPDN
the nucleotide sequence of the first subunit (BY31.7L) of fusion protein BY31.7 (SEQ ID NO: 84):
TCTAGAGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGTCATCCATGTGACCAAAGAGGTCAAAGAAGTCGCAACTCTGTCTTGCGGACACAACGTCTCCGTCGAAGAACTCGCCCAGACTAGAATATATTGGCAGAAGGAAAAGAAGATGGTGCTCACCATGATGTCCGGCGATATGAACATTTGGCCTGAGTACAAGAACCGGACAATCTTCGATATTACTAATAACCTGAGTATCGTGATTCTCGCTCTGCGCCCTAGCGACGAGGGCACATACGAGTGTGTGGTGCTGAAGTACGAGAAGGATGCATTCAAGCGGGAGCACCTCGCAGAGGTGACACTCTCCGTGAAGGCCGACTTCCCAACCCCATCTGGCCAGGGCACTAAGGTGGAGATTAAGAGAGGCGGCTCTGGCGGCGGAGGCAGTGGAGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCTCAGTCCGTGTCTTCTTACCTCGCTTGGTATCAGCAGAAGCCCGGCCAGGCTCCAAGACTGCTGATCTATGACGCTTCTAACCGCGCTACAGGCATTCCTGCTAGGTTCAGCGGCAGCGGCTCTGGCACCGACTTCACACTCACAATTAGCTCTCTTGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTCTAGCAACTGGCCTAGAACATTCGGCCAGGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAA GTCGAC
the amino acid sequence of the first subunit (BY31.7L) of fusion protein BY31.7 (SEQ ID NO: 85):
METDTLLLWVLLLWVPGSTGVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPSGQGTKVEIKRGGSGGGGSGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
the nucleotide sequence of the second subunit (BY31.7H) of fusion protein BY31.7 (SEQ ID NO: 86):
CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGTCATCCATGTGACCAAAGAGGTCAAAGAAGTCGCAACTCTGTCTTGCGGACACAACGTCTCCGTCGAAGAACTCGCCCAGACTAGAATATATTGGCAGAAGGAAAAGAAGATGGTGCTCACCATGATGTCCGGCGATATGAACATTTGGCCTGAGTACAAGAACCGGACAATCTTCGATATTACTAATAACCTGAGTATCGTGATTCTCGCTCTGCGCCCTAGCGACGAGGGCACATACGAGTGTGTGGTGCTGAAGTACGAGAAGGATGCATTCAAGCGGGAGCACCTCGCAGAGGTGACACTCTCCGTGAAGGCCGACTTCCCAACCCCATCTGGCCAGGGCACACTCGTGACCGTGTCTAGCGGCGGCGGAGGCAGTGGCGGCGGAGGCAGTCAGGTGCAGCTCGTGGAGTCCGGCGGCGGCGTGGTGCAGCCCGGCAGATCCCTCAGACTGGACTGCAAGGCATCCGGCATTACATTCTCTAACTCTGGAATGCACTGGGTGAGACAGGCTCCTGGCAAGGGCCTGGAATGGGTGGCCGTGATTTGGTACGACGGCTCTAAGAGATACTACGCTGACTCCGTGAAGGGCCGGTTCACAATTAGCAGAGACAACTCCAAGAACACTCTGTTCCTCCAGATGAACAGCCTGAGAGCCGAGGACACCGCTGTGTACTACTGCGCCACCAACGACGACTACTGGGGCCAGGGCACCCTCGTGACAGTGTCTTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCTCCCTGGGCACCAAGACCTACACCTGCAACGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAGTCCAAGTACGGCCCTCCTTGCCCTCCTTGCCCTGCCCCTGAGTTCCTGGGCGGCCCTTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGCACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGTCCCAGGAGGACCCTGAGGTGCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCGCGAGGAGCAGTTCAACTCCACCTACCGCGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCTCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTTCCCAGGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCCGCCTGACCGTGGACAAGTCCCGCTGGCAGGAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCTGGGCAAGTAAGAATTC
the amino acid sequence of the second subunit (BY31.7H) of fusion protein BY31.7 (SEQ ID NO: 87):
METDTLLLWVLLLWVPGSTGVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPSGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
nucleotide sequence of the first subunit of fusion protein BY31.14 (linker of PD-1 antibody light chain to C-terminus of CD80-Fc fusion, i.e., BY31.14L) (SEQ ID NO: 88):
CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGTCATCCATGTGACCAAAGAGGTCAAAGAAGTCGCAACTCTGTCTTGCGGACACAACGTCTCCGTCGAAGAACTCGCCCAGACTAGAATATATTGGCAGAAGGAAAAGAAGATGGTGCTCACCATGATGTCCGGCGATATGAACATTTGGCCTGAGTACAAGAACCGGACAATCTTCGATATTACTAATAACCTGAGTATCGTGATTCTCGCTCTGCGCCCTAGCGACGAGGGCACATACGAGTGTGTGGTGCTGAAGTACGAGAAGGATGCATTCAAGCGGGAGCACCTCGCAGAGGTGACACTCTCCGTGAAGGCCGACTTCCCAACCCCATCTGACAAGCGCGTGGAGTCCAAGTACGGCCCTCCTTGCCCTCCTTGCCCTGCCCCTGAGTTCCTGGGCGGCCCTTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGCACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGTCCCAGGAGGACCCTGAGGTGCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCGCGAGGAGCAGTTCAACTCCACCTACCGCGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCTCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTTCCCAGGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCCGCCTGACCGTGGACAAGTCCCGCTGGCAGGAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCTGGGCGGCGGAGGATCTGGCGGCGGAGGCAGTGGAGGCGGCGGAAGTGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCTCAGTCCGTGTCTTCTTACCTCGCTTGGTATCAGCAGAAGCCCGGCCAGGCTCCAAGACTGCTGATCTATGACGCTTCTAACCGCGCTACAGGCATTCCTGCTAGGTTCAGCGGCAGCGGCTCTGGCACCGACTTCACACTCACAATTAGCTCTCTTGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTCTAGCAACTGGCCTAGAACATTCGGCCAGGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAAGAATTC
the amino acid sequence of the first subunit of fusion protein BY31.14 (linker of PD-1 antibody light chain to C-terminus of CD80-Fc fusion, BY31.14L) (SEQ ID NO: 89):
METDTLLLWVLLLWVPGSTGVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPSDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
nucleotide sequence of the second subunit of fusion protein BY31.14 (heavy chain variable region and CH1 domain of PD-1 antibody Fab fragment, i.e., BY31.14H, disulfide-linked to the PD-1 antibody light chain portion in the first subunit of fusion protein BY 31.14) (SEQ ID NO: 90):
TCTAGAGCCACCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTCCTGTGGGTGCCTGGCTCCACAGGCCAGGTGCAGCTCGTGGAGTCCGGCGGCGGCGTGGTGCAGCCCGGCAGATCCCTCAGACTGGACTGCAAGGCATCCGGCATTACATTCTCTAACTCTGGAATGCACTGGGTGAGACAGGCTCCTGGCAAGGGCCTGGAATGGGTGGCCGTGATTTGGTACGACGGCTCTAAGAGATACTACGCTGACTCCGTGAAGGGCCGGTTCACAATTAGCAGAGACAACTCCAAGAACACTCTGTTCCTCCAGATGAACAGCCTGAGAGCCGAGGACACCGCTGTGTACTACTGCGCCACCAACGACGACTACTGGGGCCAGGGCACCCTCGTGACAGTGTCTTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCTCCCTGGGCACCAAGACCTACACCTGCAACGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAGTCCTAAGTCGAC
the amino acid sequence of the second subunit (BY31.14H) of fusion protein BY31.14 (SEQ ID NO: 91):
METDTLLLWVLLLWVPGSTGQVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVES
the nucleotide sequence of the first subunit of fusion protein BY31.15 (BY31.15L, i.e., the light chain of PD-1 antibody) (SEQ ID NO: 92):
TCTAGAGCCACCAATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTCCTGTGGGTGCCTGGCTCCACAGGCGAGATTGTGCTGACACAGTCCCCCGCTACTCTGAGCCTGAGCCCTGGCGAGAGGGCTACACTGTCTTGCAGAGCTTCTCAGTCCGTGTCTTCTTACCTCGCTTGGTATCAGCAGAAGCCCGGCCAGGCTCCAAGACTGCTGATCTATGACGCTTCTAACCGCGCTACAGGCATTCCTGCTAGGTTCAGCGGCAGCGGCTCTGGCACCGACTTCACACTCACAATTAGCTCTCTTGAACCTGAGGACTTCGCCGTGTACTACTGCCAGCAGTCTAGCAACTGGCCTAGAACATTCGGCCAGGGCACTAAGGTGGAGATTAAGAGAACCGTGGCCGCCCCCAGCGTGTTCATCTTCCCTCCCAGCGACGAGCAGCTGAAGTCTGGCACCGCCAGCGTGGTGTGCCTGCTGAACAACTTCTACCCCCGCGAGGCCAAGGTGCAGTGGAAGGTGGACAACGCCCTGCAGAGCGGCAACAGCCAGGAGAGCGTGACCGAGCAGGACTCCAAGGACAGCACCTACAGCCTGAGCAGCACCCTGACCCTGAGCAAGGCCGACTACGAGAAGCACAAGGTGTACGCCTGCGAGGTGACCCACCAGGGACTGTCTAGCCCCGTGACCAAGAGCTTCAACCGGGGCGAGTGCTAAGTCGAC
the amino acid sequence of the first subunit (BY31.15L) of fusion protein BY31.15 (SEQ ID NO: 93):
METDTLLLWVLLLWVPGSTGEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
the nucleotide sequence of the second subunit of fusion protein BY31.15 (BY31.15H, i.e., the C-terminus of the CD80-Fc fusion linked to the heavy chain variable region and CH1 domain of the Fab fragment of the PD-1 antibody) (SEQ ID NO: 94):
CTCGAGGCCACCATGGAGACCGACACACTCCTCCTGTGGGTGCTGCTGCTGTGGGTGCCTGGCTCCACTGGCGTCATCCATGTGACCAAAGAGGTCAAAGAAGTCGCAACTCTGTCTTGCGGACACAACGTCTCCGTCGAAGAACTCGCCCAGACTAGAATATATTGGCAGAAGGAAAAGAAGATGGTGCTCACCATGATGTCCGGCGATATGAACATTTGGCCTGAGTACAAGAACCGGACAATCTTCGATATTACTAATAACCTGAGTATCGTGATTCTCGCTCTGCGCCCTAGCGACGAGGGCACATACGAGTGTGTGGTGCTGAAGTACGAGAAGGATGCATTCAAGCGGGAGCACCTCGCAGAGGTGACACTCTCCGTGAAGGCCGACTTCCCAACCCCATCTGACAAGCGCGTGGAGTCCAAGTACGGCCCTCCTTGCCCTCCTTGCCCTGCCCCTGAGTTCCTGGGCGGCCCTTCCGTGTTCCTGTTCCCTCCTAAGCCTAAGGACACCCTGATGATCTCCCGCACCCCTGAGGTGACCTGCGTGGTGGTGGACGTGTCCCAGGAGGACCCTGAGGTGCAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCTCGCGAGGAGCAGTTCAACTCCACCTACCGCGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCTCCATCGAGAAGACCATCTCCAAGGCCAAGGGCCAGCCTCGCGAGCCTCAGGTGTACACCCTGCCTCCTTCCCAGGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTACCCTTCCGACATCGCCGTGGAGTGGGAGTCCAACGGCCAGCCTGAGAACAACTACAAGACCACCCCTCCTGTGCTGGACTCCGACGGCTCCTTCTTCCTGTACTCCCGCCTGACCGTGGACAAGTCCCGCTGGCAGGAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGTCCCTGTCCCTGGGCGGCGGAGGATCTGGCGGCGGAGGCAGTGGAGGCGGCGGAAGTCAGGTGCAGCTCGTGGAGTCCGGCGGCGGCGTGGTGCAGCCCGGCAGATCCCTCAGACTGGACTGCAAGGCATCCGGCATTACATTCTCTAACTCTGGAATGCACTGGGTGAGACAGGCTCCTGGCAAGGGCCTGGAATGGGTGGCCGTGATTTGGTACGACGGCTCTAAGAGATACTACGCTGACTCCGTGAAGGGCCGGTTCACAATTAGCAGAGACAACTCCAAGAACACTCTGTTCCTCCAGATGAACAGCCTGAGAGCCGAGGACACCGCTGTGTACTACTGCGCCACCAACGACGACTACTGGGGCCAGGGCACCCTCGTGACAGTGTCTTCCGCCTCCACCAAGGGCCCTTCCGTGTTCCCTCTGGCCCCTTGCTCCCGCTCCACCTCCGAGTCCACCGCCGCCCTGGGCTGCCTGGTGAAGGACTACTTCCCTGAGCCTGTGACCGTGTCCTGGAACTCCGGCGCCCTGACCTCCGGCGTGCACACCTTCCCTGCCGTGCTGCAGTCCTCCGGCCTGTACTCCCTGTCCTCCGTGGTGACCGTGCCTTCCTCCTCCCTGGGCACCAAGACCTACACCTGCAACGTGGACCACAAGCCTTCCAACACCAAGGTGGACAAGCGCGTGGAGTC
the amino acid sequence of the second subunit of fusion protein BY31.15 (BY31.15H, the heavy chain variable region and CH1 domain of the Fab fragment of PD-1 antibody in the second subunit of fusion protein BY31.15 are linked to the first subunit of fusion protein BY31.15 BY a disulfide bond) (SEQ ID NO: 95):
METDTLLLWVLLLWVPGSTGVIHVTKEVKEVATLSCGHNVSVEELAQTRIYWQKEKKMVLTMMSGDMNIWPEYKNRTIFDITNNLSIVILALRPSDEGTYECVVLKYEKDAFKREHLAEVTLSVKADFPTPSDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGGGGSGGGGSGGGGSQVQLVESGGGVVQPGRSLRLDCKASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCATNDDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVES
wherein the amino acid sequence "METDTLLLWVLLLWVPGSTG" is a signal peptide.
The same procedures as in example 1(1) above were used to ligate the coding nucleotides BY31.2L, BY31.3L, BY31.7L, BY31.14L and BY31.15L to the glutamine synthetase high-efficiency expression vector having a double expression cassette by XhoI-EcoRI double digestion, respectively (patent No. CN104195173B, available from Beijing Biyang Biotechnology Co., Ltd.); then cloning BY31.2H, BY31.3H, BY31.7H, BY31.14H and BY31.15H coding nucleotides to a glutamine synthetase high-efficiency expression vector with a double expression cassette which is connected with coding nucleotides of the other subunit of the corresponding fusion protein by XbaI-SalI double digestion; or vice versa. The recombinant vector is used for expression after being sequenced and verified to be correct. The expressed fusion proteins were designated as fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15, respectively.
Example 2 expression and purification of fusion proteins
(1) Transient expression of fusion proteins
293F (from Invitrogen, catalog No. 11625-019) cells were suspension cultured in serum-free CD 293 medium (from Invitrogen, catalog No. 11913-019). The cell culture was centrifuged before transfection to obtain cell pellet, the cells were suspended in fresh serum-free CD 293 medium and the cell concentration was adjusted to 1X 106Individual cells/ml. The cell suspension was placed in a shake flask. Using 100ml of cell suspension as an example, 250ug of each DNA and 500ug of Polyethyleneimine (PEI) (Sigma, catalog # 408727) of each recombinant expression vector plasmid of the fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15 prepared in example 1 were added to 1ml of CD 293 serum-free culture solution and mixed well, and after standing at room temperature for 8 minutes, the PEI/DNA suspension was added dropwise to a flask containing 100ml of cell suspension. Mixing gently, and placing in 5% CO2Shaking culture (120 rpm) at 37 ℃. Culture supernatants were collected after 5 days.
According to the same method, the antibody BY18.1 was produced as a control BY transient expression.
(2) Purification of expressed proteins
The fusion protein present in the culture supernatant collected in example 2(1) above was purified by using a HiTrap MabSelect SuRe 1ml column (product of GE Healthcare Life Sciences, Cat. No. 11-0034-93) equilibrated with a PBS solution at pH 7.4. Briefly, a HiTrap MabSelect SuRe 1ml column was equilibrated with 10 bed volumes of PBS solution pH7.4 at a flow rate of 0.5 ml/min; the culture supernatant collected in example 2(1) above was filtered through a 0.45 μm filter and loaded on a HiTrap MabSelect SuRe 1ml column equilibrated with a PBS solution having a pH of 7.4; after loading the supernatant, the column was first washed with a PBS solution at pH7.4 at a flow rate of 0.5 ml/min for 5-10 bed volumes and then eluted with 100mM citrate buffer (pH 4.0) at a flow rate of 0.5 ml/min. And collecting an elution peak, wherein the target protein exists in the elution peak.
The purity and molecular weight of the fusion protein were analyzed by SDS-PAGE in the presence of a reducing agent (5mM 1, 4-dithiothreitol) and staining with Coomassie blue. The results are shown in FIG. 2. The theoretical predicted value and the actual measured value of the molecular weight are shown in Table 6. Because of the glycosylation of protein in eukaryotic expression system, the measured value of molecular weight is slightly higher than the theoretical predicted value.
TABLE 6 molecular weight of the purified expressed proteins
Figure BDA0001448682480000361
Example 3 detection of specific binding Using ELISA method
Recombinant human CD28 (product of Beijing Yiqiao Shenzhou Biotechnology Co., Ltd., catalog number: 50103-M08H), recombinant human PD-L1 (product of Beijing Baiproseis Biotechnology Co., Ltd., catalog number: PD1-H5229), and recombinant human CTLA-4 (product of Beijing Yiqiao Shenzhou Biotechnology Co., Ltd., catalog number: 11159-H08H) were each diluted to 0.5. mu.g/ml, 0.25. mu.g/ml and 1.0. mu.g/ml and coated on 96-well ELISA plates (Corning Co., catalog number: 42592). The fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15 purified in example 2(2) above were diluted to 2000. mu.g/ml, and then 3-fold serial dilutions were performed for 15-16 gradients, and duplicate wells were performed for each concentration gradient. Mu.l of the diluted sample was added to the above-mentioned 96-well plate coated with recombinant human CD28 or recombinant human PD-L1, respectively, and incubated at 37 ℃ for 2 hours. After washing for 3 times, goat anti-human secondary antibody (manufactured by Beijing Zhongxiu gold bridge) labeled with horseradish peroxidase was addedProduct, product number: ZDR-5301), incubated at 37 ℃ for 1 hour. After 3 times of washing, 50. mu.l/well of 3,3',5,5' -Tetramethylbenzidine (TMB) substrate color developing solution (product number: CW0050, Beijing kang, century Biotech Co., Ltd.) was added. After 10 minutes, 2N H was added2SO4The color development was terminated. The absorbance OD value of each well was measured at 450nm using an ELISA reader.
ELISA results show that the fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15 of the invention can specifically bind to recombinant human PD-L1 and recombinant human CD 28; can also specifically bind to recombinant human CTLA-4. The binding curves of fusion protein BY31.2 specifically binding to recombinant human CD28, recombinant human PD-L1 and recombinant human CTLA-4 are shown in FIG. 3A, FIG. 3B and FIG. 3C, respectively.
Protein concentrations of the fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15 were plotted against absorbance OD values using GraphPadprism5 software, and the data were fitted to generate half the maximal effective concentration EC for fusion protein-mediated specific binding50The value is obtained. The results are shown in Table 7 below.
TABLE 7 binding of the fusion proteins of the invention to human PD-L1, human CD28 and human CTLA-4
Figure BDA0001448682480000371
As can be seen from the results in Table 7, the novel fusion proteins BY31.2, BY31.3, BY31.7, BY31.14 and BY31.15 constructed BY the present invention are all capable of specifically binding to human PD-L1, human CD28 and human CTLA-4. The fusion protein BY31.3 has better binding capacity with human CD28, CTLA-4 and PD-L1 than the fusion protein BY31.2 and fusion protein BY31.7, which is probably because the IgC region in the CD80ECD has certain stabilizing effect on the binding of CD80 with CD28, CTLA-4 and PD-L1.
The fusion proteins BY31.14 and BY31.15 have better binding capacity with human PD-L1, human CD28 and human CTLA-4 than BY31.2, BY31.3 and BY 31.7. It is possible that BY31.2, BY31.3 and BY31.7 placed the CD80 extracellular domain (ECD) at the N-terminus or C-terminus of the full length antibody had some effect on binding to human PD-L1, human CD28 and human CTLA-4, respectively.
In addition, EC for specific binding of antibody BY18.1 to antigen PD-1 (product of Beijing Yi Qiao Shen Biotechnology Co., Ltd., catalog No. 10377-H08H) was also detected BY ELISA method50The value was 3.154. mu.g/ml.
Example 4 determination of the affinity of the fusion protein of the invention for PD-1 Using Biacore T100
In that
Figure BDA0001448682480000381
Surface plasmon resonance measurements were performed on a T100 instrument (GE Healthcare Biosciences AB, Sweden) at 25 ℃.
First, an anti-IgG antibody (GE Healthcare Life Sciences, Cat: BR-1008-39) was covalently immobilized on a CM5 chip by amide coupling. The CM5 chip was activated with 60. mu. l N-ethyl-N' - (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 60. mu. l N-hydroxysuccinimide (NHS), and then 5. mu.l of the anti-IgG antibody plus 95. mu.l of dilution buffer HBST (0.1M HEPES,1.5MNaCl, pH7.4, plus 0.005% Tween 20) was filtered through a 0.2um filter, and the anti-IgG antibody was covalently immobilized on the CM5 chip by amide coupling, resulting in a capture system of approximately 9000-14000 Resonance Units (RU). The CM5 chip was blocked with 120. mu.l ethanolamine.
Then, the fusion protein of the present invention prepared in example 2 and the antibody BY18.1 were each diluted to 5. mu.g/ml, and the dilution was injected at a flow rate of 10. mu.L/min for 2 minutes, and 1600RU of the fusion protein of the present invention prepared in example 2 and the antibody BY18.1 were non-covalently captured onto the surface of a CM5 chip via the respective Fc regions. The resulting composite was stabilized by crosslinking with EDC/NHS to avoid baseline drift during measurement and regeneration.
Antigen PD-1 (product of Beijing Yi Qiao Shen State Biotechnology Co., Ltd., catalog number 10377-H08H) was formulated as a concentration gradient as follows: 7nM, 22nM, 66nM, 200nM, 600 nM. Binding was measured by injecting each concentration at a flow rate of 30. mu.l/min for 180 seconds, with a dissociation time of 600 seconds. By using 3M MgCl2The solution was washed at a flow rate of 10. mu.L/min for 30 seconds to regenerate the surface. The samples were evaluated using BIA evaluation software (BIAevaluation 4.1software, from GE Healthcare Biosciences AB,sweden) was performed, and affinity data shown in table 8 below were obtained.
TABLE 8 binding of the respective proteins to PD-1
Name of protein ka(1/Ms) kd(1/s) KD(M)
Fusion protein BY31.2 6.66E+05 1.58E-03 2.37E-09
Fusion protein BY31.3 5.62E+05 5.66E-04 1.01E-09
Fusion protein BY31.7 8.56E+05 3.55E-03 4.15E-09
Fusion protein BY31.14 5.04E+05 3.55E-03 7.04E-09
Fusion protein BY31.15 1.56E+04 8.18E-04 5.24E-08
Antibody BY18.1 1.76E+05 5.18E-04 2.94E-09
As can be seen from the data shown in Table 8, the fusion proteins BY31.2, BY31.3 and BY31.7 of the present invention are all capable of binding PD-1 with high affinity (KD) of 2.37X 10-9M、1.01×10-9M and 4.15X 10-9And M. Antibody BY18.1 at 2.94X 10-9The KD value of M binds to PD-1.
The fusion proteins BY31.14 and BY31.15 bind to PD-1 less strongly than BY31.2, BY31.3 and BY 31.7. Probably, the antigen binding fragment in the fusion proteins BY31.14 and BY31.15 is a Fab structure positioned at the C terminal, and the binding effect is slightly weakened compared with that of a whole antibody. The fusion protein BY31.14 is stronger in PD-1 binding than the fusion protein BY31.15, and the KD value can reach 10-9M level.
Example 5 Effect of fusion proteins of the invention on IL-2 and IFN- γ secretion in Mixed Lymphocyte Reaction (MLR)
CD4 available from Beijing Shihe Biotechnology Ltd+T lymphocytes and Dendritic Cells (DCs), said CD4+T lymphocytes and Dendritic Cells (DCs) are derived from different healthy people. Will CD4+T lymphocytes and Dendritic Cells (DCs) were 1X 10, respectively5Individual cells/well and 1X 104Individual cells/well were plated in 96-well cell culture plates. The experiment was divided into 6 groups, blank control, BY18.1, BY31.2, BY31.3, BY31.7 and BY31.14, each of 6 duplicate wells. Except for the blank control group, the antibody or the fusion protein was added to the other groups in the amounts shown in Table 9, respectively. Finally, the 1640 culture medium containing 10% fetal calf serum is added to ensure that the final volume is 200 mul。37℃,5%CO2And (5) culturing.
After 5 days of culture, the clumps of cells formed in each experiment were more abundant and a significant proportion of spindle and adherent cells appeared compared to the control group. Taking the culture supernatant, and detecting the IL-2 and IFN-gamma expression levels of each group by using an IL-2 kit (product number EH002-96) and an IFN-gamma kit (product number EH008-96ELISA) of Ekesai Biotechnology Limited. Compared with the antibody BY18.1 group, the BY31.2 group, the BY31.3 group, the BY31.7 group and the BY31.14 group all significantly improve the expression level of IL-2 and IFN-gamma (P <0.01), wherein the expression level of IL-2 and IFN-gamma is the highest in the supernatant of the BY31.14 group.
TABLE 9 Effect of the fusion proteins on IL-2 and IFN- γ secretion
Name of antibody or protein μg/ml IL-2(pg/ml) IFN-γ(pg/ml)
Antibody BY18.1 5.0 485±59.4 9552±754
Fusion protein BY31.2 6.0 775±143.6 26431±812
Fusion protein BY31.7 6.9 903±186.5 21651±1890
Fusion protein BY31.14 6.0 1896±266.2 36378±1531
Blank control 0 55.4±10.6 63.5±4.8
Example 6 in vivo anti-tumor Effect of the fusion protein of the present invention in B-hPD-1 humanized mouse model
This example investigated the in vivo anti-tumor effect of the fusion protein of the present invention using a B-hPD-1 humanized mouse model.
The B-hPD-1 humanized mouse (product No.: B-CM-001, available from Beijing Baiosai Toxico Gene Biotechnology Co., Ltd.) was a mouse obtained by knocking human PD-1(hPD-1) into the genome of a C57BL/6 mouse. Human PD-1 can be detected in B-hPD-1 humanized mice+A cell.
5X 10 in 0.1mL DMEM Medium5An individual MC38 murine colon cancer cell (obtained from ATCC, USA) was inoculated subcutaneously into the right anterior flank of an approximately 18g, 6-week-old female B-hPD-1 humanized mouse. Tumors grew in the mice. When the tumor volume reaches about 108mm3The tumor-bearing mice are randomly grouped, 6 mice in each group are divided into 3 groups, and the groups are respectively as follows: PBS solvent control group, fusion protein BY31.2 group (6.0mg/kg) and antibody BY18.1 group (5mg/kg), the dose of each administration group was based on the dose of antibody BY18.1 group, and the dose administered was equivalent in molar amount for the fusion protein BY31.2 group and the antibody BY18.1 group. The time of the first administration was set to day 0. All groups were administered by intraperitoneal (i.p.) injections every three daysThe administration was 1 time, 6 times continuously, and the experiment was terminated 3 days after the last administration. Tumor volume and mouse body weight were measured 2 times per week and mouse body weight and tumor volume were recorded. At the end of the experiment, animals were euthanized, tumors were stripped, weighed, photographed, and tumor growth inhibition rate was calculated (Tumor Growth Inhibition%). The formula used to calculate TGI% is: [ 1- (mean change in tumor volume of administration group/mean change in tumor volume of PBS solvent control group)]x 100%. The experiment was conducted in Beijing Baiosai Tourette Biotechnology, Inc.
All animals had good mental status and no animal death during the whole experimental process. At the end of the experiment (day 21 after the first dose), the animals in each group averaged about 19 g. Compared with the PBS solvent control group, the weight of the animals of the fusion protein BY31.2 group and the antibody BY18.1 group serving as the drug control group has no significant difference (P >0.05), which indicates that the animals are well tolerated BY the fusion protein BY31.2 (figure 4).
At the end of the experiment, the mean tumor volume. + -. standard error of the PBS solvent control group was 1386. + -. 170mm3Fusion protein BY31.2 group mean tumor volume. + -. standard error 953. + -.166 mm3The tumor growth inhibition ratio (TGI%) of the fusion protein BY31.2 group was 31.2%, indicating that the fusion protein BY31.2 has the technical effect of resisting tumors in vivo (fig. 5).
In addition, at the end of the experiment, the mean tumor volume. + -. standard error of the group of antibody BY18.1 as the drug control was 739. + -. 128 and TGI% was 46.9%, indicating that the antibody BY18.1 as the drug control specifically binds to hPD-1 in B-hPD-1 humanized mice+The cells exert an anti-tumor effect in vivo. This is consistent with the reports in the prior art that nivolumab is a specific monoclonal antibody directed against a human PD-1 molecule that blocks the inhibitory biological effects mediated by the human PD-1 molecule by specifically binding to the human PD-1 molecule, thereby exerting an anti-tumor effect on human patients expressing PD-1.
The effect of the fusion protein BY31.2 on inhibiting tumor growth was not significantly different from that of the antibody BY18.1 as a drug control, probably because only the anti-PD-1 antibody moiety was able to act in the fusion protein BY31.2, whereas human CD80ECD in the fusion protein BY31.2 did not bind to mouse CD28, mouse CTLA-4, and mouse PD-L1 of the B-hPD-1 humanized mouse; in addition, it is also possible that the fusion protein BY31.2 has a larger molecular weight than the control antibody BY18.1, and that the fusion protein BY31.2 penetrates into the tumor tissue in a smaller amount when administered in an equivalent molar amount (inside the tumor tissue is a hypertonic environment).
Example 7 fusion protein of the invention in human CD34+In vivo anti-tumor effects in HSC-transplanted NSG mouse model
This example was prepared by inoculating MDA-MB-231 human triple-negative breast cancer cell line (i.e., a breast cancer cell line that is negative for estrogen receptor, progestin receptor, and HER-2, obtained from ATCC, USA) to human CD34+The in vivo anti-tumor effect of the fusion protein of the present invention was studied in an NSG mouse model of HSC transplantation.
Human CD34+HSC-transplanted NSG mouse (available from Edmol Biotechnology Ltd. Beijing) is a human CD34+Transplantation of Hematopoietic Stem Cells (HSC) to immunodeficient NOD/SCID/IL2 r-gammanull(NSG) mice, a mouse model humanized in terms of body immunity obtained by reconstituting the human immune system of NSG mice.
This embodiment is on a human CD34+On the basis of the HSC-transplanted NSG mouse model, a human-derived tumor cell line, namely MDA-MB-231 human triple-negative breast cancer cell line, is inoculated, and finally, a mouse humanized in both tumor and immunity is obtained. Since such a mouse has both a human immune system and a human tumor tissue, it can truly simulate the process of interaction between the human immune system and a tumor, and is an ideal animal model for evaluating the effectiveness and safety of tumor immunotherapy.
By 5X 106Amount of individual MDA-MB-231 human triple negative breast cancer cells/mouse MDA-MB-231 cells were inoculated into human CD34 weighing approximately 23g, 28-32 weeks old+HSC transplanted successful NSG female mice were inoculated at the dorsal right postero-dorsal subcutaneous site. When the tumor volume reaches about 150mm3Randomly grouping tumor-bearing mice into 5 mice each group, and 4 groups in totalRespectively, the following steps: PBS solvent control group, fusion protein BY31.2 group (5.8mg/kg), anti-PD-L1 monoclonal antibody Avelumab group (10mg/kg, manufactured BY Beijing Shanjian Biotechnology Co., Ltd.), and anti-PD-1 monoclonal antibody Opdivo group (10mg/kg, manufactured BY Cassia Tokyo Biotechnology Co., Ltd., batch No.: MB09MA1201), wherein the fusion protein BY31.2 group was administered in a molar amount of 1/2 of the anti-PD-1 monoclonal antibody Opdivo group and the anti-PD-L1 monoclonal antibody Avelumab group. The time of the first administration was set to day 0. All groups were administered by intraperitoneal injection 1 time every 5 days and 4 times continuously. Tumor volume and mouse body weight were measured 3 times per week and mouse body weight and tumor volume were recorded. At the end of the experiment, animals were euthanized, tumors were stripped and weighed, photographed, and tumor growth inhibition (TGI%) calculated. The experiment was performed in Idermer (IDMO) biotechnology limited, beijing.
Figure 6 shows the change in body weight of the animals after administration. On day 25, no significant difference was observed in the body weight comparison of the animals of the fusion protein BY31.2 group of the present invention and the PBS solvent control group (P >0.05), indicating that the fusion protein BY31.2 of the present invention has no significant toxicity to the animals.
Figure 7 shows the tumor volume of the animals as a function of time after administration. Mean tumor volume. + -. standard error of 1287.11. + -. 184.71mm in the PBS solvent control group on day 253The Avelumab group of the anti-PD-L1 monoclonal antibody is 964.25 +/-20.01 mm3The Opdivo group of the anti-PD-1 monoclonal antibody is 1354.62 +/-126.65 mm3The fusion protein BY31.2 group is 773.14 +/-310.66 mm3
Relative to the PBS solvent control group, the tumor inhibition ratio (TGI%) of the anti-PD-L1 monoclonal antibody Avelumab group was 25.08%, the TGI% of the anti-PD-1 monoclonal antibody Opdivo group was-5.24%, and the TGI% of the fusion protein BY31.2 group was 39.93%.
From the above experimental results, it can be seen that, compared with the PBS solvent control group, the fusion protein BY31.2 of the present invention can significantly inhibit tumor growth (P <0.05) even when the molar dose used is halved relative to the molar doses of the anti-PD-L1 mab and the anti-PD-1 mab in the prior art.
In addition, unexpectedly, in the fusion protein BY31.2 group, there was a swelling of one mouseThe tumor volume was reduced to only 60mm on day 253The tumor volume of the PBS solvent control group was up to 1287.11 + -184.71 mm on day 253This mouse was shown to produce a complete response to the tumor (CR). In both the anti-PD-L1 mAb Avelumab group and the anti-PD-1 mAb Opdivo group, no fully responsive mice were observed.
Since the pharmaceutical efficacy experiment of the antitumor drug was conducted on the mice having both human immune system and human tumor tissue developed by Beijing Addermer (IDMO) Biotechnology Ltd, there are very few cases where the mice completely responded to the tumor to be tested. The fusion protein of the present invention still enables observation of complete response to tumor when the molar dose used is halved relative to the molar doses of anti-PD-L1 mab and anti-PD-1 mab of the prior art, thereby achieving unexpected technical effects.
The anti-PD-1 mAb Opdivo group had no anti-tumor effect at all in this mouse model. The anti-PD-L1 monoclonal antibody Avelumab has certain tumor inhibition effect in the mouse model (the tumor volume of the PBS solvent control group is 1287.11 +/-184.71 mm)3The anti-PD-L1 monoclonal antibody Avelumab group tumor volume is 964.25 +/-20.01 mm3) However, the antitumor effect was significant without the fusion protein BY31.2 of the present invention (the tumor volume of the fusion protein BY31.2 group was 773.14. + -. 310.66mm3). This shows that the fusion protein BY31.2 of the present invention can generate very significant anti-tumor effect in a mouse model that truly simulates the interaction process between the human immune system and the tumor.
Sequence listing
<110> Beijing Biyang Biotechnology Co., Ltd
<120> fusion protein blocking PD-1/PD-L1 signaling pathway and activating T cell and use thereof
<130>
<160> 95
<170> PatentIn version 3.3
<210> 1
<211> 106
<212> PRT
<213> Artificial sequence
<400> 1
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Asp Cys Lys Ala Ser Gly Ile Thr Phe Ser Asn Ser
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Thr Asn Asp Asp Tyr Trp Gly Gln Gly
100 105
<210> 2
<211> 101
<212> PRT
<213> Artificial sequence
<400> 2
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Ser Asn Trp Pro Arg
85 90 95
Thr Phe Gly Gln Gly
100
<210> 3
<211> 113
<212> PRT
<213> Artificial sequence
<400> 3
Gln Val Gln Leu Val Gln Ser Gly Val Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30
Tyr Met Tyr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Gly Ile Asn Pro Ser Asn Gly Gly Thr Asn Phe Asn Glu Lys Phe
50 55 60
Lys Asn Arg Val Thr Leu Thr Thr Asp Ser Ser Thr Thr Thr Ala Tyr
65 70 75 80
Met Glu Leu Lys Ser Leu Gln Phe Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Arg Asp Tyr Arg Phe Asp Met Gly Phe Asp Tyr Trp Gly Gln
100 105 110
Gly
<210> 4
<211> 105
<212> PRT
<213> Artificial sequence
<400> 4
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Lys Gly Val Ser Thr Ser
20 25 30
Gly Tyr Ser Tyr Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
35 40 45
Arg Leu Leu Ile Tyr Leu Ala Ser Tyr Leu Glu Ser Gly Val Pro Ala
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
65 70 75 80
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln His Ser Arg
85 90 95
Asp Leu Pro Leu Thr Phe Gly Gly Gly
100 105
<210> 5
<211> 110
<212> PRT
<213> Artificial sequence
<400> 5
Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30
Gly Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Gln Trp Met
35 40 45
Gly Trp Ile Asn Thr Asp Ser Gly Glu Ser Thr Tyr Ala Glu Glu Phe
50 55 60
Lys Gly Arg Phe Val Phe Ser Leu Asp Thr Ser Val Asn Thr Ala Tyr
65 70 75 80
Leu Gln Ile Thr Ser Leu Thr Ala Glu Asp Thr Gly Met Tyr Phe Cys
85 90 95
Val Arg Val Gly Tyr Asp Ala Leu Asp Tyr Trp Gly Gln Gly
100 105 110
<210> 6
<211> 100
<212> PRT
<213> Artificial sequence
<400> 6
Glu Ile Val Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Ser Ala Arg Ser Ser Val Ser Tyr Met
20 25 30
His Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr
35 40 45
Arg Thr Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Ser Tyr Cys Leu Thr Ile Asn Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Phe Pro Leu Thr
85 90 95
Phe Gly Gly Gly
100
<210> 7
<211> 109
<212> PRT
<213> Artificial sequence
<400> 7
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Met Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Thr Ile Ser Gly Gly Gly Ala Asn Thr Tyr Tyr Pro Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Gln Leu Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly
100 105
<210> 8
<211> 101
<212> PRT
<213> Artificial sequence
<400> 8
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Leu Ala Ser Gln Thr Ile Gly Thr Trp
20 25 30
Leu Thr Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Thr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Val Tyr Ser Ile Pro Trp
85 90 95
Thr Phe Gly Gly Gly
100
<210> 9
<211> 114
<212> PRT
<213> Artificial sequence
<400> 9
Gln Val Thr Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Thr Cys Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45
Trp Leu Ala Thr Ile Cys Trp Glu Asp Ser Lys Gly Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Ala
65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
85 90 95
Cys Ala Arg Arg Glu Asp Ser Gly Tyr Phe Trp Phe Pro Tyr Trp Gly
100 105 110
Gln Gly
<210> 10
<211> 100
<212> PRT
<213> Artificial sequence
<400> 10
Asn Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Lys Ala Gly Gln Asn Val Asn Asn Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Val Leu Ile
35 40 45
Phe Asn Ala Asn Ser Leu Gln Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Trp Thr Thr
85 90 95
Phe Gly Gly Gly
100
<210> 11
<211> 111
<212> PRT
<213> Artificial sequence
<400> 11
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr Ser Tyr
20 25 30
Gly Val His Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45
Gly Val Ile Trp Ala Gly Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60
Ser Arg Leu Thr Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Ser Leu
65 70 75 80
Lys Met Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg Ala Tyr Gly Asn Tyr Trp Tyr Ile Asp Val Trp Gly Gln Gly
100 105 110
<210> 12
<211> 101
<212> PRT
<213> Artificial sequence
<400> 12
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Glu Arg Ala Thr Ile Asn Cys Lys Ala Ser Gln Ser Val Ser Asn Asp
20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile
35 40 45
Asn Tyr Ala Phe His Arg Phe Thr Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Gly Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Ala
65 70 75 80
Glu Asp Val Ala Val Tyr Tyr Cys His Gln Ala Tyr Ser Ser Pro Tyr
85 90 95
Thr Phe Gly Gly Gly
100
<210> 13
<211> 105
<212> PRT
<213> Artificial sequence
<400> 13
Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser
1 5 10 15
Leu Arg Leu Asp Cys Lys Ala Ser Gly Ile Thr Phe Ser Asn Tyr Gly
20 25 30
Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala
35 40 45
Val Ile Trp Tyr Asp Ser Ser Arg Lys Tyr Tyr Ala Asp Ser Val Lys
50 55 60
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu
65 70 75 80
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Thr Asn Asn Asp Tyr Trp Gly Gln Gly
100 105
<210> 14
<211> 101
<212> PRT
<213> Artificial sequence
<400> 14
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Ser Asn Tyr
20 25 30
Leu Asp Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Thr Arg Ala Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Asn Met Gln Leu Pro Leu
85 90 95
Thr Phe Gly Gln Gly
100
<210> 15
<211> 113
<212> PRT
<213> Artificial sequence
<400> 15
Asp Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val
1 5 10 15
Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Gly Ile
20 25 30
Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp
35 40 45
Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gln Lys Leu Gln Gly
50 55 60
Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr Met Glu
65 70 75 80
Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95
Gly Arg Gly Tyr Ser Tyr Gly Ile Asp Ala Phe Asp Ile Trp Gly Gln
100 105 110
Gly
<210> 16
<211> 103
<212> PRT
<213> Artificial sequence
<400> 16
Leu Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ser Pro Gly
1 5 10 15
Gln Thr Ala Arg Ile Thr Cys Ser Gly Asp Ala Leu Pro Lys Gln Tyr
20 25 30
Ala Tyr Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile
35 40 45
Tyr Lys Asp Ser Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly
50 55 60
Ser Ser Ser Gly Thr Thr Val Thr Leu Thr Ile Ser Gly Val Gln Ala
65 70 75 80
Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Ala Asp Ser Ser Gly Thr
85 90 95
Tyr Val Val Phe Gly Gly Gly
100
<210> 17
<211> 118
<212> PRT
<213> Artificial sequence
<400> 17
Gln Gly Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30
Glu Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Val Ile Glu Ser Glu Thr Gly Gly Thr Ala Tyr Asn Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Thr Arg Glu Gly Ile Thr Thr Val Ala Thr Thr Tyr Tyr Trp Tyr Phe
100 105 110
Asp Val Trp Gly Gln Gly
115
<210> 18
<211> 106
<212> PRT
<213> Artificial sequence
<400> 18
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Leu Gly
1 5 10 15
Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
20 25 30
Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95
Ser His Val Pro Leu Thr Phe Gly Gln Gly
100 105
<210> 19
<211> 111
<212> PRT
<213> Artificial sequence
<400> 19
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Thr Ile Ser Gly Gly Gly Ser Asp Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Gln Leu Asn Tyr Ala Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110
<210> 20
<211> 105
<212> PRT
<213> Artificial sequence
<400> 20
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Pro Gly
1 5 10 15
Gln Arg Ala Thr Ile Thr Cys Arg Ala Ser Glu Ser Val Asp Asn Tyr
20 25 30
Gly Ile Ser Phe Met Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Thr Ser Ser Asn Lys Asp Thr Gly Val Pro Ala
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn
65 70 75 80
Pro Met Glu Ala Glu Asp Thr Ala Val Tyr Tyr Cys Gln Gln Ser Lys
85 90 95
Glu Val Pro Trp Thr Phe Gly Gly Gly
100 105
<210> 21
<211> 113
<212> PRT
<213> Artificial sequence
<400> 21
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Leu Ile Ile Pro Met Phe Asp Thr Ala Gly Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Ala Ile Thr Val Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Ala Glu His Ser Ser Thr Gly Thr Phe Asp Tyr Trp Gly Gln
100 105 110
Gly
<210> 22
<211> 101
<212> PRT
<213> Artificial sequence
<400> 22
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Ser Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn His Leu Pro Phe
85 90 95
Thr Phe Gly Gly Gly
100
<210> 23
<211> 116
<212> PRT
<213> Artificial sequence
<400> 23
Gln Leu Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Val Ser Ala Asp Ser Ile Ser Ser Thr
20 25 30
Thr Tyr Tyr Trp Val Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu
35 40 45
Trp Ile Gly Ser Ile Ser Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Arg Val Thr Val Ser Val Asp Thr Ser Lys Asn Gln Phe
65 70 75 80
Ser Leu Lys Leu Asn Ser Val Ala Ala Thr Asp Thr Ala Leu Tyr Tyr
85 90 95
Cys Ala Arg His Leu Gly Tyr Asn Gly Arg Tyr Leu Pro Phe Asp Tyr
100 105 110
Trp Gly Gln Gly
115
<210> 24
<211> 104
<212> PRT
<213> Artificial sequence
<400> 24
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Phe Tyr
20 25 30
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Glu Leu
35 40 45
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asp Arg Phe
50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr Asn Ile
85 90 95
Ser Thr Trp Val Phe Gly Gly Gly
100
<210> 25
<211> 106
<212> PRT
<213> Artificial sequence
<400> 25
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Thr Cys Lys Ala Ser Gly Leu Thr Phe Ser Ser Ser
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Thr Asn Asn Asp Tyr Trp Gly Gln Gly
100 105
<210> 26
<211> 102
<212> PRT
<213> Artificial sequence
<400> 26
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45
Tyr Thr Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Ser Asn Trp Pro Arg
85 90 95
Thr Phe Gly Gln Gly Thr
100
<210> 27
<211> 111
<212> PRT
<213> Artificial sequence
<400> 27
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ser
20 25 30
Trp Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Trp Ile Ser Pro Tyr Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Arg His Trp Pro Gly Gly Phe Asp Tyr Trp Gly Gln Gly
100 105 110
<210> 28
<211> 101
<212> PRT
<213> Artificial sequence
<400> 28
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala
20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala
85 90 95
Thr Phe Gly Gln Gly
100
<210> 29
<211> 114
<212> PRT
<213> Artificial sequence
<400> 29
Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Tyr
20 25 30
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Gly Gly Trp Phe Gly Glu Leu Ala Phe Asp Tyr Trp Gly
100 105 110
Gln Gly
<210> 30
<211> 102
<212> PRT
<213> Artificial sequence
<400> 30
Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Arg Val Ser Ser Ser
20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45
Ile Tyr Asp Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Leu Pro
85 90 95
Trp Thr Phe Gly Gln Gly
100
<210> 31
<211> 113
<212> PRT
<213> Artificial sequence
<400> 31
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ile Met Met Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Tyr Pro Ser Gly Gly Ile Thr Phe Tyr Ala Asp Thr Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Ile Lys Leu Gly Thr Val Thr Thr Val Asp Tyr Trp Gly Gln
100 105 110
Gly
<210> 32
<211> 104
<212> PRT
<213> Artificial sequence
<400> 32
Gln Ser Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr Ser Ser
85 90 95
Ser Thr Arg Val Phe Gly Thr Gly
100
<210> 33
<211> 113
<212> PRT
<213> Artificial sequence
<400> 33
Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile
1 5 10 15
Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val
20 25 30
Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys
35 40 45
Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
50 55 60
Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu
65 70 75 80
Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr
85 90 95
His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu
100 105 110
Cys
<210> 34
<211> 112
<212> PRT
<213> Artificial sequence
<400> 34
Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr
1 5 10 15
Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu
20 25 30
Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp
35 40 45
Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro
50 55 60
Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu
65 70 75 80
Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr
85 90 95
His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser
100 105 110
<210> 35
<211> 337
<212> PRT
<213> Artificial sequence
<400> 35
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
1 5 10 15
Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
20 25 30
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
35 40 45
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
50 55 60
Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
65 70 75 80
Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
85 90 95
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
100 105 110
Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
115 120 125
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
130 135 140
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
145 150 155 160
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
165 170 175
Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
180 185 190
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
195 200 205
Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
210 215 220
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
225 230 235 240
Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr
245 250 255
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
260 265 270
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
275 280 285
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
290 295 300
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
305 310 315 320
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
325 330 335
Lys
<210> 36
<211> 333
<212> PRT
<213> Artificial sequence
<400> 36
Thr Thr Val Thr Val Ser Thr Ala Ser Thr Lys Gly Pro Ser Val Phe
1 5 10 15
Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
20 25 30
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
35 40 45
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
50 55 60
Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
65 70 75 80
Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
85 90 95
Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
100 105 110
Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
115 120 125
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
130 135 140
Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
145 150 155 160
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
165 170 175
Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
180 185 190
Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
195 200 205
Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
210 215 220
Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
225 230 235 240
Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
245 250 255
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
260 265 270
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly
275 280 285
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
290 295 300
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
305 310 315 320
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
325 330
<210> 37
<211> 334
<212> PRT
<213> Artificial sequence
<400> 37
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
1 5 10 15
Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
20 25 30
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
35 40 45
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
50 55 60
Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
65 70 75 80
Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
85 90 95
Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
100 105 110
Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
115 120 125
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
130 135 140
Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val
145 150 155 160
Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
165 170 175
Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val
180 185 190
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
195 200 205
Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
210 215 220
Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
225 230 235 240
Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
245 250 255
Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
260 265 270
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
275 280 285
Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
290 295 300
Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
305 310 315 320
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
325 330
<210> 38
<211> 232
<212> PRT
<213> Artificial sequence
<400> 38
Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro
1 5 10 15
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe
20 25 30
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
35 40 45
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
50 55 60
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
65 70 75 80
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
85 90 95
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
100 105 110
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
115 120 125
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
130 135 140
Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
145 150 155 160
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
165 170 175
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
180 185 190
Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
195 200 205
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
210 215 220
Tyr Thr Gln Lys Ser Leu Ser Leu
225 230
<210> 39
<211> 228
<212> PRT
<213> Artificial sequence
<400> 39
Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
1 5 10 15
Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
20 25 30
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
35 40 45
Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val
50 55 60
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
65 70 75 80
Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln
85 90 95
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
100 105 110
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro
115 120 125
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr
130 135 140
Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
145 150 155 160
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
165 170 175
Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
180 185 190
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
195 200 205
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
210 215 220
Ser Leu Ser Leu
225
<210> 40
<211> 231
<212> PRT
<213> Artificial sequence
<400> 40
Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro
1 5 10 15
Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
20 25 30
Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
35 40 45
Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr
50 55 60
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
65 70 75 80
Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
85 90 95
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
100 105 110
Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
115 120 125
Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met
130 135 140
Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
145 150 155 160
Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
165 170 175
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
180 185 190
Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
195 200 205
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
210 215 220
Lys Ser Leu Ser Leu Ser Leu
225 230
<210> 41
<211> 112
<212> PRT
<213> Artificial sequence
<400> 41
Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala Thr Leu Ser Cys
1 5 10 15
Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr Arg Ile Tyr Trp
20 25 30
Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser Gly Asp Met Asn
35 40 45
Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp Ile Thr Asn Asn
50 55 60
Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp Glu Gly Thr Tyr
65 70 75 80
Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg Glu His
85 90 95
Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe Pro Thr Pro Ser
100 105 110
<210> 42
<211> 208
<212> PRT
<213> Artificial sequence
<400> 42
Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala Thr Leu Ser Cys
1 5 10 15
Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr Arg Ile Tyr Trp
20 25 30
Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser Gly Asp Met Asn
35 40 45
Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp Ile Thr Asn Asn
50 55 60
Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp Glu Gly Thr Tyr
65 70 75 80
Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg Glu His
85 90 95
Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe Pro Thr Pro Ser
100 105 110
Ile Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile Ile Cys
115 120 125
Ser Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu Glu Asn
130 135 140
Gly Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu
145 150 155 160
Thr Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr
165 170 175
Asn His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg Val Asn
180 185 190
Gln Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn
195 200 205
<210> 43
<211> 16
<212> PRT
<213> Artificial sequence
<400> 43
Ala Lys Thr Thr Pro Lys Leu Glu Glu Gly Glu Phe Ser Glu Ala Arg
1 5 10 15
<210> 44
<211> 17
<212> PRT
<213> Artificial sequence
<400> 44
Ala Lys Thr Thr Pro Lys Leu Glu Glu Gly Glu Phe Ser Glu Ala Arg
1 5 10 15
Val
<210> 45
<211> 9
<212> PRT
<213> Artificial sequence
<400> 45
Ala Lys Thr Thr Pro Lys Leu Gly Gly
1 5
<210> 46
<211> 10
<212> PRT
<213> Artificial sequence
<400> 46
Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly
1 5 10
<210> 47
<211> 6
<212> PRT
<213> Artificial sequence
<400> 47
Ser Ala Lys Thr Thr Pro
1 5
<210> 48
<211> 6
<212> PRT
<213> Artificial sequence
<400> 48
Arg Ala Asp Ala Ala Pro
1 5
<210> 49
<211> 9
<212> PRT
<213> Artificial sequence
<400> 49
Arg Ala Asp Ala Ala Pro Thr Val Ser
1 5
<210> 50
<211> 12
<212> PRT
<213> Artificial sequence
<400> 50
Arg Ala Asp Ala Ala Ala Ala Gly Gly Pro Gly Ser
1 5 10
<210> 51
<211> 7
<212> PRT
<213> Artificial sequence
<400> 51
Arg Ala Asp Ala Ala Ala Ala
1 5
<210> 52
<211> 18
<212> PRT
<213> Artificial sequence
<400> 52
Ser Ala Lys Thr Thr Pro Lys Leu Glu Glu Gly Glu Phe Ser Glu Ala
1 5 10 15
Arg Val
<210> 53
<211> 5
<212> PRT
<213> Artificial sequence
<400> 53
Ala Asp Ala Ala Pro
1 5
<210> 54
<211> 11
<212> PRT
<213> Artificial sequence
<400> 54
Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro
1 5 10
<210> 55
<211> 5
<212> PRT
<213> Artificial sequence
<400> 55
Thr Val Ala Ala Pro
1 5
<210> 56
<211> 12
<212> PRT
<213> Artificial sequence
<400> 56
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro
1 5 10
<210> 57
<211> 6
<212> PRT
<213> Artificial sequence
<400> 57
Gln Pro Lys Ala Ala Pro
1 5
<210> 58
<211> 13
<212> PRT
<213> Artificial sequence
<400> 58
Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro
1 5 10
<210> 59
<211> 6
<212> PRT
<213> Artificial sequence
<400> 59
Ala Lys Thr Thr Pro Pro
1 5
<210> 60
<211> 13
<212> PRT
<213> Artificial sequence
<400> 60
Ala Lys Thr Thr Pro Pro Ser Val Thr Pro Leu Ala Pro
1 5 10
<210> 61
<211> 6
<212> PRT
<213> Artificial sequence
<400> 61
Ala Lys Thr Thr Ala Pro
1 5
<210> 62
<211> 13
<212> PRT
<213> Artificial sequence
<400> 62
Ala Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro
1 5 10
<210> 63
<211> 6
<212> PRT
<213> Artificial sequence
<400> 63
Ala Ser Thr Lys Gly Pro
1 5
<210> 64
<211> 13
<212> PRT
<213> Artificial sequence
<400> 64
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro
1 5 10
<210> 65
<211> 15
<212> PRT
<213> Artificial sequence
<400> 65
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10 15
<210> 66
<211> 15
<212> PRT
<213> Artificial sequence
<400> 66
Gly Glu Asn Lys Val Glu Tyr Ala Pro Ala Leu Met Ala Leu Ser
1 5 10 15
<210> 67
<211> 15
<212> PRT
<213> Artificial sequence
<400> 67
Gly Pro Ala Lys Glu Leu Thr Pro Leu Lys Glu Ala Lys Val Ser
1 5 10 15
<210> 68
<211> 15
<212> PRT
<213> Artificial sequence
<400> 68
Gly His Glu Ala Ala Ala Val Met Gln Val Gln Tyr Pro Ala Ser
1 5 10 15
<210> 69
<211> 16
<212> PRT
<213> Artificial sequence
<400> 69
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala
1 5 10 15
<210> 70
<211> 19
<212> PRT
<213> Artificial sequence
<400> 70
Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Ser Gly Gly Gly
1 5 10 15
Gly Ser Gly
<210> 71
<211> 20
<212> PRT
<213> Artificial sequence
<400> 71
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
1 5 10 15
Gly Gly Gly Ser
20
<210> 72
<211> 723
<212> DNA
<213> Artificial sequence
<400> 72
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgagattgt gctgacacag tcccccgcta ctctgagcct gagccctggc 120
gagagggcta cactgtcttg cagagcttct cagtccgtgt cttcttacct cgcttggtat 180
cagcagaagc ccggccaggc tccaagactg ctgatctatg acgcttctaa ccgcgctaca 240
ggcattcctg ctaggttcag cggcagcggc tctggcaccg acttcacact cacaattagc 300
tctcttgaac ctgaggactt cgccgtgtac tactgccagc agtctagcaa ctggcctaga 360
acattcggcc agggcactaa ggtggagatt aagagaaccg tggccgcccc cagcgtgttc 420
atcttccctc ccagcgacga gcagctgaag tctggcaccg ccagcgtggt gtgcctgctg 480
aacaacttct acccccgcga ggccaaggtg cagtggaagg tggacaacgc cctgcagagc 540
ggcaacagcc aggagagcgt gaccgagcag gactccaagg acagcaccta cagcctgagc 600
agcaccctga ccctgagcaa ggccgactac gagaagcaca aggtgtacgc ctgcgaggtg 660
acccaccagg gactgtctag ccccgtgacc aagagcttca accggggcga gtgctaagaa 720
ttc 723
<210> 73
<211> 234
<212> PRT
<213> Artificial sequence
<400> 73
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Ser
100 105 110
Asn Trp Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
115 120 125
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
130 135 140
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
145 150 155 160
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
165 170 175
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
180 185 190
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
195 200 205
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
210 215 220
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230
<210> 74
<211> 1401
<212> DNA
<213> Artificial sequence
<400> 74
tctagagcca ccatggagac cgacaccctg ctgctgtggg tgctgctcct gtgggtgcct 60
ggctccacag gccaggtgca gctcgtggag tccggcggcg gcgtggtgca gcccggcaga 120
tccctcagac tggactgcaa ggcatccggc attacattct ctaactctgg aatgcactgg 180
gtgagacagg ctcctggcaa gggcctggaa tgggtggccg tgatttggta cgacggctct 240
aagagatact acgctgactc cgtgaagggc cggttcacaa ttagcagaga caactccaag 300
aacactctgt tcctccagat gaacagcctg agagccgagg acaccgctgt gtactactgc 360
gccaccaacg acgactactg gggccagggc accctcgtga cagtgtcttc cgcctccacc 420
aagggccctt ccgtgttccc tctggcccct tgctcccgct ccacctccga gtccaccgcc 480
gccctgggct gcctggtgaa ggactacttc cctgagcctg tgaccgtgtc ctggaactcc 540
ggcgccctga cctccggcgt gcacaccttc cctgccgtgc tgcagtcctc cggcctgtac 600
tccctgtcct ccgtggtgac cgtgccttcc tcctccctgg gcaccaagac ctacacctgc 660
aacgtggacc acaagccttc caacaccaag gtggacaagc gcgtggagtc caagtacggc 720
cctccttgcc ctccttgccc tgcccctgag ttcctgggcg gcccttccgt gttcctgttc 780
cctcctaagc ctaaggacac cctgatgatc tcccgcaccc ctgaggtgac ctgcgtggtg 840
gtggacgtgt cccaggagga ccctgaggtg cagttcaact ggtacgtgga cggcgtggag 900
gtgcacaacg ccaagaccaa gcctcgcgag gagcagttca actccaccta ccgcgtggtg 960
tccgtgctga ccgtgctgca ccaggactgg ctgaacggca aggagtacaa gtgcaaggtg 1020
tccaacaagg gcctgccttc ctccatcgag aagaccatct ccaaggccaa gggccagcct 1080
cgcgagcctc aggtgtacac cctgcctcct tcccaggagg agatgaccaa gaaccaggtg 1140
tccctgacct gcctggtgaa gggcttctac ccttccgaca tcgccgtgga gtgggagtcc 1200
aacggccagc ctgagaacaa ctacaagacc acccctcctg tgctggactc cgacggctcc 1260
ttcttcctgt actcccgcct gaccgtggac aagtcccgct ggcaggaggg caacgtgttc 1320
tcctgctccg tgatgcacga ggccctgcac aaccactaca cccagaagtc cctgtccctg 1380
tccctgggca agtaagtcga c 1401
<210> 75
<211> 460
<212> PRT
<213> Artificial sequence
<400> 75
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val
20 25 30
Gln Pro Gly Arg Ser Leu Arg Leu Asp Cys Lys Ala Ser Gly Ile Thr
35 40 45
Phe Ser Asn Ser Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly
50 55 60
Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr
65 70 75 80
Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys
85 90 95
Asn Thr Leu Phe Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala
100 105 110
Val Tyr Tyr Cys Ala Thr Asn Asp Asp Tyr Trp Gly Gln Gly Thr Leu
115 120 125
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
130 135 140
Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
145 150 155 160
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
165 170 175
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
180 185 190
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
195 200 205
Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn
210 215 220
Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro
225 230 235 240
Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe
245 250 255
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
260 265 270
Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe
275 280 285
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
290 295 300
Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
305 310 315 320
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
325 330 335
Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala
340 345 350
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln
355 360 365
Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
370 375 380
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
385 390 395 400
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
405 410 415
Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu
420 425 430
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
435 440 445
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
450 455 460
<210> 76
<211> 723
<212> DNA
<213> Artificial sequence
<400> 76
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgagattgt gctgacacag tcccccgcta ctctgagcct gagccctggc 120
gagagggcta cactgtcttg cagagcttct cagtccgtgt cttcttacct cgcttggtat 180
cagcagaagc ccggccaggc tccaagactg ctgatctatg acgcttctaa ccgcgctaca 240
ggcattcctg ctaggttcag cggcagcggc tctggcaccg acttcacact cacaattagc 300
tctcttgaac ctgaggactt cgccgtgtac tactgccagc agtctagcaa ctggcctaga 360
acattcggcc agggcactaa ggtggagatt aagagaaccg tggccgcccc cagcgtgttc 420
atcttccctc ccagcgacga gcagctgaag tctggcaccg ccagcgtggt gtgcctgctg 480
aacaacttct acccccgcga ggccaaggtg cagtggaagg tggacaacgc cctgcagagc 540
ggcaacagcc aggagagcgt gaccgagcag gactccaagg acagcaccta cagcctgagc 600
agcaccctga ccctgagcaa ggccgactac gagaagcaca aggtgtacgc ctgcgaggtg 660
acccaccagg gactgtctag ccccgtgacc aagagcttca accggggcga gtgctaagaa 720
ttc 723
<210> 77
<211> 234
<212> PRT
<213> Artificial sequence
<400> 77
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Ser
100 105 110
Asn Trp Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
115 120 125
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
130 135 140
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
145 150 155 160
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
165 170 175
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
180 185 190
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
195 200 205
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
210 215 220
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230
<210> 78
<211> 1776
<212> DNA
<213> Artificial sequence
<400> 78
tctagagcca ccatggagac cgacaccctg ctgctgtggg tgctgctcct gtgggtgcct 60
ggctccacag gccaggtgca gctcgtggag tccggcggcg gcgtggtgca gcccggcaga 120
tccctcagac tggactgcaa ggcatccggc attacattct ctaactctgg aatgcactgg 180
gtgagacagg ctcctggcaa gggcctggaa tgggtggccg tgatttggta cgacggctct 240
aagagatact acgctgactc cgtgaagggc cggttcacaa ttagcagaga caactccaag 300
aacactctgt tcctccagat gaacagcctg agagccgagg acaccgctgt gtactactgc 360
gccaccaacg acgactactg gggccagggc accctcgtga cagtgtcttc cgcctccacc 420
aagggccctt ccgtgttccc tctggcccct tgctcccgct ccacctccga gtccaccgcc 480
gccctgggct gcctggtgaa ggactacttc cctgagcctg tgaccgtgtc ctggaactcc 540
ggcgccctga cctccggcgt gcacaccttc cctgccgtgc tgcagtcctc cggcctgtac 600
tccctgtcct ccgtggtgac cgtgccttcc tcctccctgg gcaccaagac ctacacctgc 660
aacgtggacc acaagccttc caacaccaag gtggacaagc gcgtggagtc caagtacggc 720
cctccttgcc ctccttgccc tgcccctgag ttcctgggcg gcccttccgt gttcctgttc 780
cctcctaagc ctaaggacac cctgatgatc tcccgcaccc ctgaggtgac ctgcgtggtg 840
gtggacgtgt cccaggagga ccctgaggtg cagttcaact ggtacgtgga cggcgtggag 900
gtgcacaacg ccaagaccaa gcctcgcgag gagcagttca actccaccta ccgcgtggtg 960
tccgtgctga ccgtgctgca ccaggactgg ctgaacggca aggagtacaa gtgcaaggtg 1020
tccaacaagg gcctgccttc ctccatcgag aagaccatct ccaaggccaa gggccagcct 1080
cgcgagcctc aggtgtacac cctgcctcct tcccaggagg agatgaccaa gaaccaggtg 1140
tccctgacct gcctggtgaa gggcttctac ccttccgaca tcgccgtgga gtgggagtcc 1200
aacggccagc ctgagaacaa ctacaagacc acccctcctg tgctggactc cgacggctcc 1260
ttcttcctgt actcccgcct gaccgtggac aagtcccgct ggcaggaggg caacgtgttc 1320
tcctgctccg tgatgcacga ggccctgcac aaccactaca cccagaagtc cctgtccctg 1380
tccctgggcg gcggaggatc tggcggcgga ggcagtggag gcggcggaag tgtgatccat 1440
gtaacaaaag aagtgaagga agtggctaca ctctcttgcg gccacaacgt gtccgtggag 1500
gaactagctc agacccggat ctattggcag aaagaaaaga agatggtgct gaccatgatg 1560
tccggcgaca tgaacatttg gccagagtac aagaaccgca caattttcga cattacaaac 1620
aacctctcta ttgtgattct ggctctcagg cctagcgacg agggcacata cgagtgcgtg 1680
gtgctcaagt acgagaagga cgctttcaag cgggagcacc tcgctgaggt gaccctgtcc 1740
gtgaaggccg acttccctac tccatcttaa gtcgac 1776
<210> 79
<211> 585
<212> PRT
<213> Artificial sequence
<400> 79
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val
20 25 30
Gln Pro Gly Arg Ser Leu Arg Leu Asp Cys Lys Ala Ser Gly Ile Thr
35 40 45
Phe Ser Asn Ser Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly
50 55 60
Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr
65 70 75 80
Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys
85 90 95
Asn Thr Leu Phe Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala
100 105 110
Val Tyr Tyr Cys Ala Thr Asn Asp Asp Tyr Trp Gly Gln Gly Thr Leu
115 120 125
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
130 135 140
Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
145 150 155 160
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
165 170 175
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
180 185 190
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
195 200 205
Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn
210 215 220
Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro
225 230 235 240
Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe
245 250 255
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
260 265 270
Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe
275 280 285
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
290 295 300
Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
305 310 315 320
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
325 330 335
Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala
340 345 350
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln
355 360 365
Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
370 375 380
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
385 390 395 400
Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
405 410 415
Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu
420 425 430
Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
435 440 445
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Gly Gly Gly Ser Gly
450 455 460
Gly Gly Gly Ser Gly Gly Gly Gly Ser Val Ile His Val Thr Lys Glu
465 470 475 480
Val Lys Glu Val Ala Thr Leu Ser Cys Gly His Asn Val Ser Val Glu
485 490 495
Glu Leu Ala Gln Thr Arg Ile Tyr Trp Gln Lys Glu Lys Lys Met Val
500 505 510
Leu Thr Met Met Ser Gly Asp Met Asn Ile Trp Pro Glu Tyr Lys Asn
515 520 525
Arg Thr Ile Phe Asp Ile Thr Asn Asn Leu Ser Ile Val Ile Leu Ala
530 535 540
Leu Arg Pro Ser Asp Glu Gly Thr Tyr Glu Cys Val Val Leu Lys Tyr
545 550 555 560
Glu Lys Asp Ala Phe Lys Arg Glu His Leu Ala Glu Val Thr Leu Ser
565 570 575
Val Lys Ala Asp Phe Pro Thr Pro Ser
580 585
<210> 80
<211> 786
<212> DNA
<213> Artificial sequence
<400> 80
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgagatcaa gcggaccgtg gccgccccat ccgtgttcat tttcccacct 120
tccgagattg tgctgacaca gtcccccgct actctgagcc tgagccctgg cgagagggct 180
acactgtctt gcagagcttc caagggcgtg agcacatccg gctactccta cctccactgg 240
tatcagcaga agccaggcca ggccccaaga ctgctgatat acctcgcttc ttacttagag 300
tctggcgtgc ccgctcggtt cagcggctcc ggctctggca ccgacttcac cctgacaatt 360
tctagcctgg agcccgagga cttcgccgtg tactactgcc agcactctag ggacctgcct 420
ctcacattcg gcggcggcac taaggtggag attaagagaa ccgtggccgc ccccagcgtg 480
ttcatcttcc ctcccagcga cgagcagctg aagtctggca ccgccagcgt ggtgtgcctg 540
ctgaacaact tctacccccg cgaggccaag gtgcagtgga aggtggacaa cgccctgcag 600
agcggcaaca gccaggagag cgtgaccgag caggactcca aggacagcac ctacagcctg 660
agcagcaccc tgaccctgag caaggccgac tacgagaagc acaaggtgta cgcctgcgag 720
gtgacccacc agggactgtc tagccccgtg accaagagct tcaaccgggg cgagtgctaa 780
gaattc 786
<210> 81
<211> 238
<212> PRT
<213> Artificial sequence
<400> 81
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Lys Gly
35 40 45
Val Ser Thr Ser Gly Tyr Ser Tyr Leu His Trp Tyr Gln Gln Lys Pro
50 55 60
Gly Gln Ala Pro Arg Leu Leu Ile Tyr Leu Ala Ser Tyr Leu Glu Ser
65 70 75 80
Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
85 90 95
Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys
100 105 110
Gln His Ser Arg Asp Leu Pro Leu Thr Phe Gly Gly Gly Thr Lys Val
115 120 125
Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro
130 135 140
Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu
145 150 155 160
Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn
165 170 175
Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser
180 185 190
Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala
195 200 205
Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly
210 215 220
Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235
<210> 82
<211> 2082
<212> DNA
<213> Artificial sequence
<400> 82
tctagagcca ccatggagac cgacaccctg ctgctgtggg tgctgctcct gtgggtgcct 60
ggctccacag gccaggtgca gctcgtgcag tctggcgtgg aggtgaagaa gcctggcgcc 120
tctgtgaagg tgtcttgcaa ggcttccggc tacactttca ctaactacta catgtactgg 180
gtgagacagg ctcccggcca gggcctagag tggatgggcg gcattaaccc tagcaacggc 240
ggcacaaact tcaacgagaa gttcaagaac cgcgtgaccc tgaccacaga ctctagcaca 300
acaactgctt acatggagct gaagtctctc cagttcgacg acaccgctgt gtactactgc 360
gctcggaggg actacagatt cgacatgggc ttcgactact ggggccaggg caccactgtg 420
acagtgtcta cagcctccac caagggccct tccgtgttcc ctctggcccc ttgctcccgc 480
tccacctccg agtccaccgc cgccctgggc tgcctggtga aggactactt ccctgagcct 540
gtgaccgtgt cctggaactc cggcgccctg acctccggcg tgcacacctt ccctgccgtg 600
ctgcagtcct ccggcctgta ctccctgtcc tccgtggtga ccgtgccttc ctccaacttc 660
ggcacccaga catacacatg caacgtggac cacaagcctt ctaacacaaa ggtggacaag 720
accgtggagc ggaagtgctg cgtggagtgc ccaccttgcc ccgctcctcc tgtggccggc 780
ccttctgtgt tcctgttccc acctaagcca aaggacacac tcatgatcag cagaacccct 840
gaggtgacct gcgtggtggt ggacgtgagc cacgaggacc ccgaggtgca gttcaactgg 900
tatgtggacg gcgtggaggt gcacaacgct aagaccaagc ctagagaaga acagttcaac 960
agcacattca gagtggtgtc cgtgctcacc gtggtgcacc aggactggct gaacggcaaa 1020
gagtacaagt gcaaggtgtc caacaagggc ctgccagccc ctatcgaaaa aacaatcagc 1080
aagaccaagg gccagcctag agagcctcag gtgtacacac tgcctccatc tcgggaagaa 1140
atgacaaaga accaggtgtc cctcacatgc ctcgtgaagg gcttctaccc atccgacatc 1200
gctgtggagt gggagtctaa cggccagccc gagaacaact acaagaccac ccctcctatg 1260
ctcgactccg acggctcttt cttcctgtac tctaagctga ccgtggacaa gtccagatgg 1320
cagcagggca acgtgttctc ttgcagcgtg atgcacgagg ctctccacaa ccactacacc 1380
cagaagtccc tgagcctgtc tccaggcggc ggaggatctg gcggcggagg cagtggaggc 1440
ggcggaagcg tcattcacgt cactaaggag gtcaaggagg tcgcaaccct cagttgcgga 1500
cacaacgtca gcgtggagga gcttgcacag acacgcatct actggcagaa ggagaagaag 1560
atggtgctga ccatgatgtc cggcgatatg aacatttggc cagagtacaa gaatcggacc 1620
atcttcgata ttacaaataa cctgtccatc gtgatcctcg ctctgcgccc tagcgacgag 1680
ggaacatacg agtgtgtggt gctgaagtac gagaaggatg catttaagcg cgagcacctg 1740
gctgaggtga cactctccgt caaggccgat tttcctactc cttctatctc cgactttgag 1800
attccaacat caaatattag gcgcattatc tgttctacat ccggcggatt cccagagccc 1860
cacctctctt ggttggagaa cggcgaggaa cttaatgcta tcaatacaac cgtgtctcaa 1920
gatcccgaga ctgagctgta cgccgtgtct agtaagctgg actttaacat gactaccaat 1980
cacagtttca tgtgcctgat taagtacggc cacctgcggg tgaatcagac ctttaattgg 2040
aatactacca agcaggagca cttcccagat aactaagtcg ac 2082
<210> 83
<211> 687
<212> PRT
<213> Artificial sequence
<400> 83
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Gln Val Gln Leu Val Gln Ser Gly Val Glu Val Lys
20 25 30
Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr
35 40 45
Phe Thr Asn Tyr Tyr Met Tyr Trp Val Arg Gln Ala Pro Gly Gln Gly
50 55 60
Leu Glu Trp Met Gly Gly Ile Asn Pro Ser Asn Gly Gly Thr Asn Phe
65 70 75 80
Asn Glu Lys Phe Lys Asn Arg Val Thr Leu Thr Thr Asp Ser Ser Thr
85 90 95
Thr Thr Ala Tyr Met Glu Leu Lys Ser Leu Gln Phe Asp Asp Thr Ala
100 105 110
Val Tyr Tyr Cys Ala Arg Arg Asp Tyr Arg Phe Asp Met Gly Phe Asp
115 120 125
Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Thr Ala Ser Thr Lys
130 135 140
Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu
145 150 155 160
Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
165 170 175
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
180 185 190
Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
195 200 205
Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn
210 215 220
Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg
225 230 235 240
Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly
245 250 255
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
260 265 270
Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
275 280 285
Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
290 295 300
Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg
305 310 315 320
Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys
325 330 335
Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu
340 345 350
Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
355 360 365
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu
370 375 380
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
385 390 395 400
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met
405 410 415
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
420 425 430
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
435 440 445
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
450 455 460
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Val
465 470 475 480
Ile His Val Thr Lys Glu Val Lys Glu Val Ala Thr Leu Ser Cys Gly
485 490 495
His Asn Val Ser Val Glu Glu Leu Ala Gln Thr Arg Ile Tyr Trp Gln
500 505 510
Lys Glu Lys Lys Met Val Leu Thr Met Met Ser Gly Asp Met Asn Ile
515 520 525
Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp Ile Thr Asn Asn Leu
530 535 540
Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp Glu Gly Thr Tyr Glu
545 550 555 560
Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe Lys Arg Glu His Leu
565 570 575
Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe Pro Thr Pro Ser Ile
580 585 590
Ser Asp Phe Glu Ile Pro Thr Ser Asn Ile Arg Arg Ile Ile Cys Ser
595 600 605
Thr Ser Gly Gly Phe Pro Glu Pro His Leu Ser Trp Leu Glu Asn Gly
610 615 620
Glu Glu Leu Asn Ala Ile Asn Thr Thr Val Ser Gln Asp Pro Glu Thr
625 630 635 640
Glu Leu Tyr Ala Val Ser Ser Lys Leu Asp Phe Asn Met Thr Thr Asn
645 650 655
His Ser Phe Met Cys Leu Ile Lys Tyr Gly His Leu Arg Val Asn Gln
660 665 670
Thr Phe Asn Trp Asn Thr Thr Lys Gln Glu His Phe Pro Asp Asn
675 680 685
<210> 84
<211> 2232
<212> DNA
<213> Artificial sequence
<400> 84
tctagagcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgtcatcca tgtgaccaaa gaggtcaaag aagtcgcaac tctgtcttgc 120
ggacacaacg tctccgtcga agaactcgcc cagactagaa tatattggca gaaggaaaag 180
aagatggtgc tcaccatgat gtccggcgat atgaacattt ggcctgagta caagaaccgg 240
acaatcttcg atattactaa taacctgagt atcgtgattc tcgctctgcg ccctagcgac 300
gagggcacat acgagtgtgt ggtgctgaag tacgagaagg atgcattcaa gcgggagcac 360
ctcgcagagg tgacactctc cgtgaaggcc gacttcccaa ccccatctgg ccagggcact 420
aaggtggaga ttaagagagg cggctctggc ggcggaggca gtggagagat tgtgctgaca 480
cagtcccccg ctactctgag cctgagccct ggcgagaggg ctacactgtc ttgcagagct 540
tctcagtccg tgtcttctta cctcgcttgg tatcagcaga agcccggcca ggctccaaga 600
ctgctgatct atgacgcttc taaccgcgct acaggcattc ctgctaggtt cagcggcagc 660
ggctctggca ccgacttcac actcacaatt agctctcttg aacctgagga cttcgccgtg 720
tactactgcc agcagtctag caactggcct agaacattcg gccagggcac taaggtggag 780
attaagagaa ccgtggccgc ccccagcgtg ttcatcttcc ctcccagcga cgagcagctg 840
aagtctggca ccgccagcgt ggtgtgcctg ctgaacaact tctacccccg cgaggccaag 900
gtgcagtgga aggtggacaa cgccctgcag agcggcaaca gccaggagag cgtgaccgag 960
caggactcca aggacagcac ctacagcctg agcagcaccc tgaccctgag caaggccgac 1020
tacgagaagc acaaggtgta cgcctgcgag gtgacccacc agggactgtc tagccccgtg 1080
accaagagct tcaaccgggg cgagtgctaa gtcgactcta gagccaccat ggagaccgac 1140
acactcctcc tgtgggtgct gctgctgtgg gtgcctggct ccactggcgt catccatgtg 1200
accaaagagg tcaaagaagt cgcaactctg tcttgcggac acaacgtctc cgtcgaagaa 1260
ctcgcccaga ctagaatata ttggcagaag gaaaagaaga tggtgctcac catgatgtcc 1320
ggcgatatga acatttggcc tgagtacaag aaccggacaa tcttcgatat tactaataac 1380
ctgagtatcg tgattctcgc tctgcgccct agcgacgagg gcacatacga gtgtgtggtg 1440
ctgaagtacg agaaggatgc attcaagcgg gagcacctcg cagaggtgac actctccgtg 1500
aaggccgact tcccaacccc atctggccag ggcactaagg tggagattaa gagaggcggc 1560
tctggcggcg gaggcagtgg agagattgtg ctgacacagt cccccgctac tctgagcctg 1620
agccctggcg agagggctac actgtcttgc agagcttctc agtccgtgtc ttcttacctc 1680
gcttggtatc agcagaagcc cggccaggct ccaagactgc tgatctatga cgcttctaac 1740
cgcgctacag gcattcctgc taggttcagc ggcagcggct ctggcaccga cttcacactc 1800
acaattagct ctcttgaacc tgaggacttc gccgtgtact actgccagca gtctagcaac 1860
tggcctagaa cattcggcca gggcactaag gtggagatta agagaaccgt ggccgccccc 1920
agcgtgttca tcttccctcc cagcgacgag cagctgaagt ctggcaccgc cagcgtggtg 1980
tgcctgctga acaacttcta cccccgcgag gccaaggtgc agtggaaggt ggacaacgcc 2040
ctgcagagcg gcaacagcca ggagagcgtg accgagcagg actccaagga cagcacctac 2100
agcctgagca gcaccctgac cctgagcaag gccgactacg agaagcacaa ggtgtacgcc 2160
tgcgaggtga cccaccaggg actgtctagc cccgtgacca agagcttcaa ccggggcgag 2220
tgctaagtcg ac 2232
<210> 85
<211> 365
<212> PRT
<213> Artificial sequence
<400> 85
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala
20 25 30
Thr Leu Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr
35 40 45
Arg Ile Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser
50 55 60
Gly Asp Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp
65 70 75 80
Ile Thr Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp
85 90 95
Glu Gly Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe
100 105 110
Lys Arg Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe
115 120 125
Pro Thr Pro Ser Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly
130 135 140
Ser Gly Gly Gly Gly Ser Gly Glu Ile Val Leu Thr Gln Ser Pro Ala
145 150 155 160
Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala
165 170 175
Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly
180 185 190
Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly
195 200 205
Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
210 215 220
Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln
225 230 235 240
Gln Ser Ser Asn Trp Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu
245 250 255
Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser
260 265 270
Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn
275 280 285
Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala
290 295 300
Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys
305 310 315 320
Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp
325 330 335
Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu
340 345 350
Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
355 360 365
<210> 86
<211> 1797
<212> DNA
<213> Artificial sequence
<400> 86
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgtcatcca tgtgaccaaa gaggtcaaag aagtcgcaac tctgtcttgc 120
ggacacaacg tctccgtcga agaactcgcc cagactagaa tatattggca gaaggaaaag 180
aagatggtgc tcaccatgat gtccggcgat atgaacattt ggcctgagta caagaaccgg 240
acaatcttcg atattactaa taacctgagt atcgtgattc tcgctctgcg ccctagcgac 300
gagggcacat acgagtgtgt ggtgctgaag tacgagaagg atgcattcaa gcgggagcac 360
ctcgcagagg tgacactctc cgtgaaggcc gacttcccaa ccccatctgg ccagggcaca 420
ctcgtgaccg tgtctagcgg cggcggaggc agtggcggcg gaggcagtca ggtgcagctc 480
gtggagtccg gcggcggcgt ggtgcagccc ggcagatccc tcagactgga ctgcaaggca 540
tccggcatta cattctctaa ctctggaatg cactgggtga gacaggctcc tggcaagggc 600
ctggaatggg tggccgtgat ttggtacgac ggctctaaga gatactacgc tgactccgtg 660
aagggccggt tcacaattag cagagacaac tccaagaaca ctctgttcct ccagatgaac 720
agcctgagag ccgaggacac cgctgtgtac tactgcgcca ccaacgacga ctactggggc 780
cagggcaccc tcgtgacagt gtcttccgcc tccaccaagg gcccttccgt gttccctctg 840
gccccttgct cccgctccac ctccgagtcc accgccgccc tgggctgcct ggtgaaggac 900
tacttccctg agcctgtgac cgtgtcctgg aactccggcg ccctgacctc cggcgtgcac 960
accttccctg ccgtgctgca gtcctccggc ctgtactccc tgtcctccgt ggtgaccgtg 1020
ccttcctcct ccctgggcac caagacctac acctgcaacg tggaccacaa gccttccaac 1080
accaaggtgg acaagcgcgt ggagtccaag tacggccctc cttgccctcc ttgccctgcc 1140
cctgagttcc tgggcggccc ttccgtgttc ctgttccctc ctaagcctaa ggacaccctg 1200
atgatctccc gcacccctga ggtgacctgc gtggtggtgg acgtgtccca ggaggaccct 1260
gaggtgcagt tcaactggta cgtggacggc gtggaggtgc acaacgccaa gaccaagcct 1320
cgcgaggagc agttcaactc cacctaccgc gtggtgtccg tgctgaccgt gctgcaccag 1380
gactggctga acggcaagga gtacaagtgc aaggtgtcca acaagggcct gccttcctcc 1440
atcgagaaga ccatctccaa ggccaagggc cagcctcgcg agcctcaggt gtacaccctg 1500
cctccttccc aggaggagat gaccaagaac caggtgtccc tgacctgcct ggtgaagggc 1560
ttctaccctt ccgacatcgc cgtggagtgg gagtccaacg gccagcctga gaacaactac 1620
aagaccaccc ctcctgtgct ggactccgac ggctccttct tcctgtactc ccgcctgacc 1680
gtggacaagt cccgctggca ggagggcaac gtgttctcct gctccgtgat gcacgaggcc 1740
ctgcacaacc actacaccca gaagtccctg tccctgtccc tgggcaagta agaattc 1797
<210> 87
<211> 592
<212> PRT
<213> Artificial sequence
<400> 87
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala
20 25 30
Thr Leu Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr
35 40 45
Arg Ile Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser
50 55 60
Gly Asp Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp
65 70 75 80
Ile Thr Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp
85 90 95
Glu Gly Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe
100 105 110
Lys Arg Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe
115 120 125
Pro Thr Pro Ser Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly
130 135 140
Gly Gly Ser Gly Gly Gly Gly Ser Gln Val Gln Leu Val Glu Ser Gly
145 150 155 160
Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Asp Cys Lys Ala
165 170 175
Ser Gly Ile Thr Phe Ser Asn Ser Gly Met His Trp Val Arg Gln Ala
180 185 190
Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser
195 200 205
Lys Arg Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg
210 215 220
Asp Asn Ser Lys Asn Thr Leu Phe Leu Gln Met Asn Ser Leu Arg Ala
225 230 235 240
Glu Asp Thr Ala Val Tyr Tyr Cys Ala Thr Asn Asp Asp Tyr Trp Gly
245 250 255
Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
260 265 270
Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala
275 280 285
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
290 295 300
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
305 310 315 320
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
325 330 335
Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His
340 345 350
Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly
355 360 365
Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser
370 375 380
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
385 390 395 400
Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro
405 410 415
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
420 425 430
Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val
435 440 445
Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
450 455 460
Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr
465 470 475 480
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
485 490 495
Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
500 505 510
Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
515 520 525
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
530 535 540
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser
545 550 555 560
Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
565 570 575
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
580 585 590
<210> 88
<211> 1797
<212> DNA
<213> Artificial sequence
<400> 88
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgtcatcca tgtgaccaaa gaggtcaaag aagtcgcaac tctgtcttgc 120
ggacacaacg tctccgtcga agaactcgcc cagactagaa tatattggca gaaggaaaag 180
aagatggtgc tcaccatgat gtccggcgat atgaacattt ggcctgagta caagaaccgg 240
acaatcttcg atattactaa taacctgagt atcgtgattc tcgctctgcg ccctagcgac 300
gagggcacat acgagtgtgt ggtgctgaag tacgagaagg atgcattcaa gcgggagcac 360
ctcgcagagg tgacactctc cgtgaaggcc gacttcccaa ccccatctga caagcgcgtg 420
gagtccaagt acggccctcc ttgccctcct tgccctgccc ctgagttcct gggcggccct 480
tccgtgttcc tgttccctcc taagcctaag gacaccctga tgatctcccg cacccctgag 540
gtgacctgcg tggtggtgga cgtgtcccag gaggaccctg aggtgcagtt caactggtac 600
gtggacggcg tggaggtgca caacgccaag accaagcctc gcgaggagca gttcaactcc 660
acctaccgcg tggtgtccgt gctgaccgtg ctgcaccagg actggctgaa cggcaaggag 720
tacaagtgca aggtgtccaa caagggcctg ccttcctcca tcgagaagac catctccaag 780
gccaagggcc agcctcgcga gcctcaggtg tacaccctgc ctccttccca ggaggagatg 840
accaagaacc aggtgtccct gacctgcctg gtgaagggct tctacccttc cgacatcgcc 900
gtggagtggg agtccaacgg ccagcctgag aacaactaca agaccacccc tcctgtgctg 960
gactccgacg gctccttctt cctgtactcc cgcctgaccg tggacaagtc ccgctggcag 1020
gagggcaacg tgttctcctg ctccgtgatg cacgaggccc tgcacaacca ctacacccag 1080
aagtccctgt ccctgtccct gggcggcgga ggatctggcg gcggaggcag tggaggcggc 1140
ggaagtgaga ttgtgctgac acagtccccc gctactctga gcctgagccc tggcgagagg 1200
gctacactgt cttgcagagc ttctcagtcc gtgtcttctt acctcgcttg gtatcagcag 1260
aagcccggcc aggctccaag actgctgatc tatgacgctt ctaaccgcgc tacaggcatt 1320
cctgctaggt tcagcggcag cggctctggc accgacttca cactcacaat tagctctctt 1380
gaacctgagg acttcgccgt gtactactgc cagcagtcta gcaactggcc tagaacattc 1440
ggccagggca ctaaggtgga gattaagaga accgtggccg cccccagcgt gttcatcttc 1500
cctcccagcg acgagcagct gaagtctggc accgccagcg tggtgtgcct gctgaacaac 1560
ttctaccccc gcgaggccaa ggtgcagtgg aaggtggaca acgccctgca gagcggcaac 1620
agccaggaga gcgtgaccga gcaggactcc aaggacagca cctacagcct gagcagcacc 1680
ctgaccctga gcaaggccga ctacgagaag cacaaggtgt acgcctgcga ggtgacccac 1740
cagggactgt ctagccccgt gaccaagagc ttcaaccggg gcgagtgcta agaattc 1797
<210> 89
<211> 592
<212> PRT
<213> Artificial sequence
<400> 89
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala
20 25 30
Thr Leu Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr
35 40 45
Arg Ile Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser
50 55 60
Gly Asp Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp
65 70 75 80
Ile Thr Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp
85 90 95
Glu Gly Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe
100 105 110
Lys Arg Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe
115 120 125
Pro Thr Pro Ser Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys
130 135 140
Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu
145 150 155 160
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
165 170 175
Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
180 185 190
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
195 200 205
Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu
210 215 220
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
225 230 235 240
Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys
245 250 255
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
260 265 270
Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
275 280 285
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
290 295 300
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
305 310 315 320
Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln
325 330 335
Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
340 345 350
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Gly Gly Gly Ser
355 360 365
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln
370 375 380
Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser
385 390 395 400
Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln
405 410 415
Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg
420 425 430
Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
435 440 445
Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr
450 455 460
Tyr Cys Gln Gln Ser Ser Asn Trp Pro Arg Thr Phe Gly Gln Gly Thr
465 470 475 480
Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe
485 490 495
Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys
500 505 510
Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
515 520 525
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln
530 535 540
Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser
545 550 555 560
Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His
565 570 575
Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
580 585 590
<210> 90
<211> 720
<212> DNA
<213> Artificial sequence
<400> 90
tctagagcca ccatggagac cgacaccctg ctgctgtggg tgctgctcct gtgggtgcct 60
ggctccacag gccaggtgca gctcgtggag tccggcggcg gcgtggtgca gcccggcaga 120
tccctcagac tggactgcaa ggcatccggc attacattct ctaactctgg aatgcactgg 180
gtgagacagg ctcctggcaa gggcctggaa tgggtggccg tgatttggta cgacggctct 240
aagagatact acgctgactc cgtgaagggc cggttcacaa ttagcagaga caactccaag 300
aacactctgt tcctccagat gaacagcctg agagccgagg acaccgctgt gtactactgc 360
gccaccaacg acgactactg gggccagggc accctcgtga cagtgtcttc cgcctccacc 420
aagggccctt ccgtgttccc tctggcccct tgctcccgct ccacctccga gtccaccgcc 480
gccctgggct gcctggtgaa ggactacttc cctgagcctg tgaccgtgtc ctggaactcc 540
ggcgccctga cctccggcgt gcacaccttc cctgccgtgc tgcagtcctc cggcctgtac 600
tccctgtcct ccgtggtgac cgtgccttcc tcctccctgg gcaccaagac ctacacctgc 660
aacgtggacc acaagccttc caacaccaag gtggacaagc gcgtggagtc ctaagtcgac 720
<210> 91
<211> 233
<212> PRT
<213> Artificial sequence
<400> 91
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val
20 25 30
Gln Pro Gly Arg Ser Leu Arg Leu Asp Cys Lys Ala Ser Gly Ile Thr
35 40 45
Phe Ser Asn Ser Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly
50 55 60
Leu Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Lys Arg Tyr Tyr
65 70 75 80
Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys
85 90 95
Asn Thr Leu Phe Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala
100 105 110
Val Tyr Tyr Cys Ala Thr Asn Asp Asp Tyr Trp Gly Gln Gly Thr Leu
115 120 125
Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
130 135 140
Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
145 150 155 160
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
165 170 175
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
180 185 190
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
195 200 205
Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn
210 215 220
Thr Lys Val Asp Lys Arg Val Glu Ser
225 230
<210> 92
<211> 724
<212> DNA
<213> Artificial sequence
<400> 92
tctagagcca ccaatggaga ccgacaccct gctgctgtgg gtgctgctcc tgtgggtgcc 60
tggctccaca ggcgagattg tgctgacaca gtcccccgct actctgagcc tgagccctgg 120
cgagagggct acactgtctt gcagagcttc tcagtccgtg tcttcttacc tcgcttggta 180
tcagcagaag cccggccagg ctccaagact gctgatctat gacgcttcta accgcgctac 240
aggcattcct gctaggttca gcggcagcgg ctctggcacc gacttcacac tcacaattag 300
ctctcttgaa cctgaggact tcgccgtgta ctactgccag cagtctagca actggcctag 360
aacattcggc cagggcacta aggtggagat taagagaacc gtggccgccc ccagcgtgtt 420
catcttccct cccagcgacg agcagctgaa gtctggcacc gccagcgtgg tgtgcctgct 480
gaacaacttc tacccccgcg aggccaaggt gcagtggaag gtggacaacg ccctgcagag 540
cggcaacagc caggagagcg tgaccgagca ggactccaag gacagcacct acagcctgag 600
cagcaccctg accctgagca aggccgacta cgagaagcac aaggtgtacg cctgcgaggt 660
gacccaccag ggactgtcta gccccgtgac caagagcttc aaccggggcg agtgctaagt 720
cgac 724
<210> 93
<211> 234
<212> PRT
<213> Artificial sequence
<400> 93
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Ser
100 105 110
Asn Trp Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
115 120 125
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
130 135 140
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
145 150 155 160
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
165 170 175
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
180 185 190
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
195 200 205
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
210 215 220
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230
<210> 94
<211> 1784
<212> DNA
<213> Artificial sequence
<400> 94
ctcgaggcca ccatggagac cgacacactc ctcctgtggg tgctgctgct gtgggtgcct 60
ggctccactg gcgtcatcca tgtgaccaaa gaggtcaaag aagtcgcaac tctgtcttgc 120
ggacacaacg tctccgtcga agaactcgcc cagactagaa tatattggca gaaggaaaag 180
aagatggtgc tcaccatgat gtccggcgat atgaacattt ggcctgagta caagaaccgg 240
acaatcttcg atattactaa taacctgagt atcgtgattc tcgctctgcg ccctagcgac 300
gagggcacat acgagtgtgt ggtgctgaag tacgagaagg atgcattcaa gcgggagcac 360
ctcgcagagg tgacactctc cgtgaaggcc gacttcccaa ccccatctga caagcgcgtg 420
gagtccaagt acggccctcc ttgccctcct tgccctgccc ctgagttcct gggcggccct 480
tccgtgttcc tgttccctcc taagcctaag gacaccctga tgatctcccg cacccctgag 540
gtgacctgcg tggtggtgga cgtgtcccag gaggaccctg aggtgcagtt caactggtac 600
gtggacggcg tggaggtgca caacgccaag accaagcctc gcgaggagca gttcaactcc 660
acctaccgcg tggtgtccgt gctgaccgtg ctgcaccagg actggctgaa cggcaaggag 720
tacaagtgca aggtgtccaa caagggcctg ccttcctcca tcgagaagac catctccaag 780
gccaagggcc agcctcgcga gcctcaggtg tacaccctgc ctccttccca ggaggagatg 840
accaagaacc aggtgtccct gacctgcctg gtgaagggct tctacccttc cgacatcgcc 900
gtggagtggg agtccaacgg ccagcctgag aacaactaca agaccacccc tcctgtgctg 960
gactccgacg gctccttctt cctgtactcc cgcctgaccg tggacaagtc ccgctggcag 1020
gagggcaacg tgttctcctg ctccgtgatg cacgaggccc tgcacaacca ctacacccag 1080
aagtccctgt ccctgtccct gggcggcgga ggatctggcg gcggaggcag tggaggcggc 1140
ggaagtcagg tgcagctcgt ggagtccggc ggcggcgtgg tgcagcccgg cagatccctc 1200
agactggact gcaaggcatc cggcattaca ttctctaact ctggaatgca ctgggtgaga 1260
caggctcctg gcaagggcct ggaatgggtg gccgtgattt ggtacgacgg ctctaagaga 1320
tactacgctg actccgtgaa gggccggttc acaattagca gagacaactc caagaacact 1380
ctgttcctcc agatgaacag cctgagagcc gaggacaccg ctgtgtacta ctgcgccacc 1440
aacgacgact actggggcca gggcaccctc gtgacagtgt cttccgcctc caccaagggc 1500
ccttccgtgt tccctctggc cccttgctcc cgctccacct ccgagtccac cgccgccctg 1560
ggctgcctgg tgaaggacta cttccctgag cctgtgaccg tgtcctggaa ctccggcgcc 1620
ctgacctccg gcgtgcacac cttccctgcc gtgctgcagt cctccggcct gtactccctg 1680
tcctccgtgg tgaccgtgcc ttcctcctcc ctgggcacca agacctacac ctgcaacgtg 1740
gaccacaagc cttccaacac caaggtggac aagcgcgtgg agtc 1784
<210> 95
<211> 591
<212> PRT
<213> Artificial sequence
<400> 95
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15
Gly Ser Thr Gly Val Ile His Val Thr Lys Glu Val Lys Glu Val Ala
20 25 30
Thr Leu Ser Cys Gly His Asn Val Ser Val Glu Glu Leu Ala Gln Thr
35 40 45
Arg Ile Tyr Trp Gln Lys Glu Lys Lys Met Val Leu Thr Met Met Ser
50 55 60
Gly Asp Met Asn Ile Trp Pro Glu Tyr Lys Asn Arg Thr Ile Phe Asp
65 70 75 80
Ile Thr Asn Asn Leu Ser Ile Val Ile Leu Ala Leu Arg Pro Ser Asp
85 90 95
Glu Gly Thr Tyr Glu Cys Val Val Leu Lys Tyr Glu Lys Asp Ala Phe
100 105 110
Lys Arg Glu His Leu Ala Glu Val Thr Leu Ser Val Lys Ala Asp Phe
115 120 125
Pro Thr Pro Ser Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys
130 135 140
Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu
145 150 155 160
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
165 170 175
Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
180 185 190
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
195 200 205
Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu
210 215 220
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
225 230 235 240
Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys
245 250 255
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
260 265 270
Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
275 280 285
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
290 295 300
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
305 310 315 320
Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln
325 330 335
Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
340 345 350
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Gly Gly Gly Ser
355 360 365
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val Gln Leu Val Glu
370 375 380
Ser Gly Gly Gly Val Val Gln Pro Gly Arg Ser Leu Arg Leu Asp Cys
385 390 395 400
Lys Ala Ser Gly Ile Thr Phe Ser Asn Ser Gly Met His Trp Val Arg
405 410 415
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Val Ile Trp Tyr Asp
420 425 430
Gly Ser Lys Arg Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile
435 440 445
Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe Leu Gln Met Asn Ser Leu
450 455 460
Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Thr Asn Asp Asp Tyr
465 470 475 480
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly
485 490 495
Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser
500 505 510
Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val
515 520 525
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe
530 535 540
Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val
545 550 555 560
Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val
565 570 575
Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser
580 585 590

Claims (32)

1. A fusion protein that blocks the PD-1/PD-L1 signaling pathway and activates T cells, comprising (i) an antigen binding fragment derived from an anti-PD-1 antibody that is Fab, Fab ', F (ab') derived from an anti-PD-1 antibody2Fv, single chain Fv comprising SEQ ID NO: 1/2 for the heavy chain variable region sequence/the light chain variable region sequence comprises all 6 heavy chain CDRs and light chain CDRs; (ii) an immunoglobulin Fc domain; and (iii) a CD80 extracellular domain, also abbreviated as CD80ECD, which is SEQ ID NO: 41 or 42, wherein the fusion protein is from N-terminus to C-terminus in the order of (i), (ii), and (iii); (iii) the order of (i), (ii) and (iii); or the order of (iii), (ii) and (i) are operably linked and the peptide linker between said (i), (ii) and/or (iii) is selected from the group consisting of SEQ ID NO: 43-71.
2. the fusion protein of claim 1, wherein said (i) comprises the heavy chain variable region and the light chain variable region of nivolumab.
3. The fusion protein of claim 1, wherein said (ii) is a human immunoglobulin Fc domain.
4. The fusion protein of claim 3, wherein the (ii) is an Fc domain of human IgG1, IgG2, IgG3, or IgG 4.
5. The fusion protein of claim 4, wherein the (ii) polypeptide comprises the amino acid sequence of SEQ ID NO: 38. 39 or 40.
6. The fusion protein of claim 1, comprising
(a) An anti-PD-1 antibody; and a CD80ECD operably linked C-terminal to each of the two heavy chains of the antibody;
(b) an anti-PD-1 antibody; a CD80ECD operably linked at the N-terminus of each of the two heavy chains of the antibody; and a CD80ECD operably linked N-terminal to each of the two light chains of the antibody; or
(c) CD80 ECD; an immunoglobulin Fc domain in dimeric form operatively linked at the C-terminus of the CD80 ECD; and an antigen-binding fragment derived from an anti-PD-1 antibody operatively linked at the C-terminus of the immunoglobulin Fc domain in dimeric form.
7. The fusion protein of claim 6, wherein the antibody is an IgG class antibody.
8. The fusion protein of claim 7, wherein the antibody is an IgG1Subclass, IgG2Subclass, or IgG4Subclass antibody.
9. The fusion protein of claim 8, wherein the antibody is an IgG4A subclass of antibody, and comprises at position S228 in the Fc domainAnd (3) amino acid substitution.
10. The fusion protein of claim 9, wherein the antibody is an IgG4Subclass antibody, and comprises the amino acid substitution S228P at position S228 in the Fc domain.
11. The fusion protein of claim 6, wherein the light chain type of the antibody is kappa type or lambda type.
12. The fusion protein of claim 6, wherein the anti-PD-1 antibody is nivolumab.
13. The fusion protein of claim 6 selected from
(1) A fusion protein comprising a first subunit of the fusion protein of SEQ ID NO. 77 and a second subunit of the fusion protein of SEQ ID NO. 79;
(2) a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO. 81 and a second subunit of the fusion protein of SEQ ID NO. 83;
(3) a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO. 85 and a second subunit of the fusion protein of SEQ ID NO. 87;
(4) a fusion protein comprising a first subunit of the fusion protein of SEQ ID NO. 89 and a second subunit of the fusion protein of SEQ ID NO. 91; or
(5) A fusion protein comprising a first subunit of the fusion protein of SEQ ID NO 93 and a second subunit of the fusion protein of SEQ ID NO 95.
14. A polynucleotide encoding the fusion protein of any one of claims 1-13.
15. A vector comprising the polynucleotide of claim 14.
16. The vector of claim 15, which is an expression vector.
17. The vector of claim 16, wherein the expression vector is a glutamine synthetase expression vector having a dual expression cassette.
18. A host cell comprising the polynucleotide of claim 14 or the vector of any one of claims 15-17.
19. The host cell of claim 18, which is a CHO, HEK293 or NSO cell.
20. A method for producing the fusion protein of any one of claims 1-13, the method comprising the steps of (i) culturing the host cell of claim 18 under conditions suitable for expression of the fusion protein, and (ii) recovering the fusion protein.
21. A pharmaceutical composition comprising the fusion protein of any one of claims 1-13 and a pharmaceutically acceptable carrier.
22. Use of the fusion protein of any one of claims 1-13, the pharmaceutical composition of claim 21, for the manufacture of a medicament for treating or preventing a cancerous disease associated with PD-1 activity, PD-L1 activity, and CD28 activity in an individual, wherein the cancerous disease is melanoma, breast cancer, colon cancer, esophageal cancer, gastrointestinal stromal tumor, kidney cancer, liver cancer, non-small cell lung cancer, ovarian cancer, pancreatic cancer, prostate cancer, head and neck tumors, stomach cancer, hematologic malignancies, and the individual is a mammal.
23. The use of claim 22, wherein the renal cancer is renal cell carcinoma; the hematological malignancy is lymphoma.
24. The use of claim 22, wherein the breast cancer is triple negative breast cancer.
25. The use of claim 22, wherein the subject is a human.
26. A diagnostic kit comprising the fusion protein of any one of claims 1-13 and optionally a label or a reagent for conjugation.
27. The diagnostic kit of claim 26, comprising the fusion protein of any one of claims 1-13 labeled with a positron emission tomography detectable label.
28. The diagnostic kit of claim 27, wherein the marker is18F-fluorodeoxyglucose.
29. Use of a diagnostic kit of any one of claims 26-28 for the manufacture of a reagent for diagnosing a cancerous disease associated with PD-1 activity, PD-L1 activity and CD28 activity in an individual, wherein the cancerous disease is melanoma, breast cancer, colon cancer, esophageal cancer, gastrointestinal stromal tumor, kidney cancer, liver cancer, non-small cell lung cancer, ovarian cancer, pancreatic cancer, prostate cancer, head and neck tumors, gastric cancer, hematological malignancies, and the individual is a mammal.
30. The use of claim 29, wherein the renal cancer is renal cell carcinoma; the hematological malignancy is lymphoma.
31. The use of claim 29, wherein the breast cancer is triple negative breast cancer.
32. The use of claim 29, wherein the subject is a human.
CN201711053256.9A 2017-10-27 2017-10-27 Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof Active CN109721657B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711053256.9A CN109721657B (en) 2017-10-27 2017-10-27 Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof
PCT/CN2018/111652 WO2019080872A1 (en) 2017-10-27 2018-10-24 Fusion protein for blocking pd-1/pd-l1 signaling pathway and activating t cells and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711053256.9A CN109721657B (en) 2017-10-27 2017-10-27 Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof

Publications (2)

Publication Number Publication Date
CN109721657A CN109721657A (en) 2019-05-07
CN109721657B true CN109721657B (en) 2021-11-02

Family

ID=66247178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711053256.9A Active CN109721657B (en) 2017-10-27 2017-10-27 Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof

Country Status (2)

Country Link
CN (1) CN109721657B (en)
WO (1) WO2019080872A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3334763B1 (en) 2015-08-11 2024-08-07 WuXi Biologics Ireland Limited Novel anti-pd-1 antibodies
CN110563851B (en) * 2019-08-20 2020-06-12 启辰生生物科技(珠海)有限公司 Fusion protein with immunoregulation function, pharmaceutical composition, cell and application
WO2021037184A1 (en) * 2019-08-30 2021-03-04 正大天晴药业集团南京顺欣制药有限公司 FUSION PROTEIN TARGETING PD-L1 AND TGF-β AND USE THEREOF
US20220411513A1 (en) * 2019-09-30 2022-12-29 Harbour Biomed (Shanghai) Co., Ltd Anti-pd-l1 antigen binding protein and application thereof
CN110694061B (en) * 2019-11-21 2020-09-11 启辰生生物科技(珠海)有限公司 Composition for enhancing T lymphocyte immunity, immune cell and application
CN110732021B (en) * 2019-11-21 2020-08-25 北京启辰生生物科技有限公司 Composition for relieving tumor immunosuppression and application thereof
WO2021108109A1 (en) * 2019-11-26 2021-06-03 Beijing Xuanyi Pharmasciences Co., Ltd. Modulators of t-cell activity
CN110904133B (en) * 2019-12-13 2021-09-21 北京启辰生生物科技有限公司 Composition for synergistically relieving T cell failure and application
CN110917342B (en) * 2019-12-17 2020-12-18 北京启辰生生物科技有限公司 Immunomodulatory compositions and uses thereof
JP7489468B2 (en) * 2020-03-20 2024-05-23 レメゲン シーオー.,エルティーディー. Bispecific fusion proteins and their applications
WO2021226984A1 (en) * 2020-05-15 2021-11-18 三生国健药业(上海)股份有限公司 Tetravalent bispecific antibody against pd-1 and pd-l1
CN115943165A (en) * 2020-05-25 2023-04-07 北京比洋生物技术有限公司 Fc-CD80 fusion proteins and conjugates thereof and their uses
KR102607909B1 (en) 2020-08-19 2023-12-01 젠코어 인코포레이티드 Anti-CD28 composition
CN112285352A (en) * 2020-10-02 2021-01-29 朱吉安 Method for measuring biological activity of anti-PD-1 monoclonal antibody
CN116063401B (en) * 2021-08-13 2023-12-01 中国人民解放军总医院 Blocking type PD-L1 targeted ultra-high affinity small protein and application thereof
WO2023066322A1 (en) * 2021-10-21 2023-04-27 杭州阿诺生物医药科技有限公司 Fusion polypeptide and use thereof
CN116987198B (en) * 2023-09-28 2023-12-26 军科正源(北京)药物研究有限责任公司 Fusion protein of targeting human PD-L1 and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014144960A2 (en) * 2013-03-15 2014-09-18 Abbvie Biotherapeutics Inc. Fc variants
WO2015050663A1 (en) * 2013-10-01 2015-04-09 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of bim
CN105037540A (en) * 2015-05-13 2015-11-11 北京比洋生物技术有限公司 Anti-phosphatidylinositol proteoglycan 3 complete humanized antibody

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2445538A2 (en) * 2009-06-23 2012-05-02 University Of Miami Aptamer-targeted sirna to inhibit nonsense mediated decay
AU2010343057B2 (en) * 2009-12-29 2017-02-23 Aptevo Research And Development Llc Heterodimer binding proteins and uses thereof
CA2973641A1 (en) * 2015-02-04 2016-08-11 Universitat Zurich Use of hla-b27 homodimers for cancer treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014144960A2 (en) * 2013-03-15 2014-09-18 Abbvie Biotherapeutics Inc. Fc variants
WO2015050663A1 (en) * 2013-10-01 2015-04-09 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of bim
CN105037540A (en) * 2015-05-13 2015-11-11 北京比洋生物技术有限公司 Anti-phosphatidylinositol proteoglycan 3 complete humanized antibody

Also Published As

Publication number Publication date
WO2019080872A1 (en) 2019-05-02
CN109721657A (en) 2019-05-07

Similar Documents

Publication Publication Date Title
CN109721657B (en) Fusion protein for blocking PD-1/PD-L1 signal transduction pathway and activating T cells and application thereof
CN109575140B (en) Dual-targeting fusion proteins targeting PD-1 or PD-L1 and targeting the VEGF family and uses thereof
CN113831417A (en) Bispecific recombinant protein and application thereof
CN108727504A (en) The fusion protein and its application of a kind of IFN and anti-PD-L1 antibody
KR20130118363A (en) Mutant interleukin-2 polypetides
WO2020168555A1 (en) Cd3 antigen binding fragment and application thereof
CN111423512B (en) Multi-targeting fusion protein for blocking vascular endothelial cell growth and activating T cells and pharmaceutical composition comprising same
TW201741337A (en) CD40L-Fc fusion polypeptides and methods of use thereof
JP2023523628A (en) ILT binding agent and method of use thereof
CN109988240B (en) anti-GPC-3 antibodies and uses thereof
WO2022100590A1 (en) Adcc-enhanced humanized antibody for claudin 18a2 and application thereof
WO2021238904A1 (en) Fc-cd80 fusion protein and conjugate thereof, and use thereof
JP2024506626A (en) Anti-CD112R antibody and its uses
JP2022553129A (en) Antibodies against poliovirus receptor (PVR) and uses thereof
JP2024534795A (en) Bispecific antibodies and uses thereof
CN109627340B (en) CD3 and PRLR bispecific antibody and construction and application thereof
JP2023554422A (en) Multispecific antibodies for cancer treatment
US20240141070A1 (en) Ox40/pd-l1 bispecific antibody
US20220251207A1 (en) Substance and method for treating tumor
CN114349867A (en) Fusion protein and application thereof
WO2022117569A1 (en) A ccr8 antagonist antibody in combination with a lymphotoxin beta receptor agonist antibody in therapy against cancer
KR20230069961A (en) Single domain antibody to CD33
TW202206099A (en) Pharmaceutical composition and method for preventing or treating cancer with combined use of anti-human fn14 antibody and immune checkpoint inhibitor
JP2021104050A (en) Highly potent antibody binding to death receptor 4 and death receptor 5
CN114773485B (en) Bifunctional fusion protein molecules of anti-human PD-L1 antibodies and TGF-beta RII

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant