CN109716151A - 用于估计电池电压的方法和设备 - Google Patents

用于估计电池电压的方法和设备 Download PDF

Info

Publication number
CN109716151A
CN109716151A CN201680087154.6A CN201680087154A CN109716151A CN 109716151 A CN109716151 A CN 109716151A CN 201680087154 A CN201680087154 A CN 201680087154A CN 109716151 A CN109716151 A CN 109716151A
Authority
CN
China
Prior art keywords
model
rate
battery
threshold
battery model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680087154.6A
Other languages
English (en)
Other versions
CN109716151B (zh
Inventor
本诺·施魏格尔
马蒂亚斯·弗莱肯施泰因
爱德温·克诺贝
穆罕默德·法拉格
赛义德·哈比比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMW Canada Inc
Bayerische Motoren Werke AG
Original Assignee
BMW Canada Inc
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMW Canada Inc, Bayerische Motoren Werke AG filed Critical BMW Canada Inc
Publication of CN109716151A publication Critical patent/CN109716151A/zh
Application granted granted Critical
Publication of CN109716151B publication Critical patent/CN109716151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

在一种估计电池电压的方法中,提供给定的电池模型(BM),其中,所述给定的电池模型(BM)是单粒子模型。确定电池的C速率。基于C速率对电池模型(BM)进行调整。借助于调整后的电池模型(BM)估计电池的电压。

Description

用于估计电池电压的方法和设备
本发明涉及用于估计电池电压的方法。本发明还涉及相应的设备。
在过去的几年中,汽车制造商已经经历了采用电动汽车的初步阶段。电动汽车(EV)采用后逐渐增加的趋势表明,电能存储系统将在电动汽车的发展中发挥重要作用。锂离子电池由于其轻质、高比能、低自放电率和无记忆效应,已成为电动汽车储能系统的最具吸引力的选择之一。为了充分地利用锂电子储能系统同时避免它的物理局限性,需要精确的电池管理系统(BMS)。在EV中,BMS负责性能管理,该性能管理包括但不限于充电状态(SOC)、健康状态(SOH)、功能状态(SOF)估计算法、功率管理和热管理等。BMS的关键问题中的一个是电池模型。为了模拟在恶劣环境中的电池动态行为,需要一种稳固、精确和高保真的电池模型。
本发明的目的是借助于精确的模型估计电池的电压。
该目的通过独立权利要求的特征来实现。本发明的有利实施例在从属权利要求中给出。
本发明的特征在于一种估计电池电压的方法。本发明的特征还在于用于估计电池电压的相应设备。在该方法中,提供了给定的电池模型,其中所述给定的电池模型是单粒子模型。确定电池的C速率。基于C速率对电池模型进行调整。借助于调整后的电池模型估计电池电压。
例如,估计的电池电压能够用于估计电池的充电状态。
C速率与电池容量、充电或放电电流有关。例如,1C的C速率指当电池容量为2000mAh时充电或放电电流为2000mAh或当电池容量为700mAh时充电或放电电流为700mAh,并且2C的C速率指当电池容量为2000mAh时充电或放电电流为4000mA或当电池容量为700mAh时充电或放电电流为1400mA。
精确的电池充电状态(SoC)估计算法由于其在电力输送和能量存储系统中的应用而具有极其重要的意义。为了确保安全性、耐用性和性能,这些先进的输送和能源基础设施中的电池管理系统必须精确了解内部电池的能量水平。这样的了解能使它们能够高效地再利用能量同时满足功率需求和设备级操作约束。
由于几个技术原因,监测电池的SOC和健康状态(SoH)特别具有挑战性。首先,在专业实验室环境之外直接测量电池成分的Li浓度或电池成分的物理检查是不切实际的。其次,动力学由根据电化学原理导出的偏微分代数方程控制。仅有的可测量量(电压和电流)通过边界值与状态相关。最后,模型的参数随电极化学、电解质、封装和时间而变化很大。
在电池SOC/SOH估计方面的研究经历了相当大的发展。这可按电池模型来划分,每个算法采用:第一类别,其考虑基于等效电路模型(ECM)的估计量。这些模型使用电路元件以模拟电池的现象行为。ECM的主要优点是它们的简单性。然而,它们常常需要大量的参数来进行精确的预测。这通常产生具有非物理参数的模型,其复杂性变得与电化学模型相当。第二类别,其考虑电化学模型,该模型考虑扩散、插层和电化学动力。虽然这些模型能够精确地预测内部状态变量,但是它们的数学结构对于控制器/观测器设计来说通常过于复杂。因此,这些方法结合了模型简化和估计技术。
这一类别中的一个可能的模型是使用结合扩展卡尔曼滤波器的电化学电池动力学的“单粒子模型”(SPM)。另一种方法是使用残留分组进行模型简化和对观测器使用线性卡尔曼滤波器。此外,简化可应用于电解质和固相浓度动力学以执行SOC估计。
然而,由于已经在该模型上实现了简化,所有简化的电化学模型都在低C速率下进行参数化和测试。
SPM的核心思想是,每个电极的固相可以理想化为单个球形粒子。如果假设电解质锂浓度在空间和时间上是恒定的,则该模型的结果是精确的。这种假设对于小电流或具有大电子电导率的电解质很有效。然而,它在大电流充放电速率(C速率)下会引起误差,导致在较高C速率下的SOC估计较差。
对于较高的C速率,复杂模型具有更好的精度,但是不能够在实时应用中实现。
上述用于估计电池电压的方法直接解决了前面所述的技术挑战。借助于C速率适应模型,该模型能够减少高C速率工作范围内的误差,并且从而改善充电状态估计精确性。
根据一个实施例,将电池的C速率与第一阈值进行比较。如果C速率高于第一阈值,则调整电池模型,使得实现复杂模型,如果C速率低于第一阈值,则调整电池模型,使得实现简化模型。
由于复杂模型对于较高的C速率也具有更好的精确性,但是不能够在实时应用中实现,而简化模型能够用于实时应用中,并且对于低C速率也是精确的,所以将C速率与阈值进行比较以选择能够使用复杂模型还是简单模型是有利的。
根据另一实施例,将电池的C速率与第一阈值和比第一阈值小的第二阈值进行比较。如果C速率高于第一阈值,则调整电池模型使得实现复杂模型。如果C速率低于第一阈值且高于第二阈值,则调整电池模型使得实现简化模型。如果C速率低于第一阈值且高于第二阈值,则调整电池模型使得实现比简化模型更简单的模型。
借助于两个阈值,可以对电池模型进行更详细的修改。
根据另一实施例,第二阈值的值为2C至4C,例如是2C、3C或4C。
特别是对于低于2C到4C的C速率,一个非常简单的电池模型对于电压的估计是足够精确的。因此,选择2C到4C的第二阈值的值是有利的。
由于该方法能够用于充电和放电,所以第二阈值也能够为-2C到-4C,例如是-2C、-3C或-4C。
根据另一实施例,第一阈值的值为8C至12C,例如是8C、9C、10C、11C或12C。
特别是对于高于8C到12C的C速率,需要一个非常复杂的电池模型来估计电压。因此,选择8C到12C的第一阈值的值是有利的。
由于该方法能够用于充电和放电,所以第二阈值也能够为-8C到-12C,例如是-8C、-9C、-10C、-11C或-12C。
根据另一实施例,基于C速率对电池模型的给定模型参数进行调整。
根据另一实施例,基于C速率对电池模型的给定方程组进行调整。
以下借助于附图对本发明的示例性实施例进行说明。
这些附图如下:
图1是单粒子模型的示意图;
图2是用于估计电池电压的程序的流程图;和
图3是电池模型的调整的实施例。
图1是单粒子模型(SPM)的示意图。
SPM于2005年通过“Review of models for predicting the cyclingperformance of lithium ion batteries”首次应用于锂电池系统。图1是提出了SPM概念的示意图。在数学上,该模型由控制每个电极浓度动力学的两个扩散偏微分方程(PDE)组成,其中将输入电流作为诺依曼边界条件输入。输出电压由输入电流和边界处的状态值的非线性函数给出。虽然该模型比其他基于电化学的估计模型捕获的动态行为更少,但是其数学结构适于实时实现。
该SPM对于具有大电子电导率的电解质或小电流很有效。然而,它在大电流充电和放电速率(C速率)下会引起误差,导致对较高C速率下的SOC估计较差。
复杂模型对于较高的C速率也具有更好的精确性,但是不能够在实时应用中实现。
图2示出了用于估计电池电压的程序的流程图。该程序能够由设备1执行。
在步骤S1中,启动程序,例如,初始化变量。
在步骤S3中,提供给定的电池模型(BM),其中给定电池模型(BM)是单粒子模型,例如,如上所述的SPM。
在步骤S5中,确定电池的C速率,其中C速率与电池容量、充电或放电电流有关。
在步骤S7中,基于C速率对电池模型BM进行调整。
为了调整电池模型BM,例如,将电池的C速率与第一阈值进行比较,如果C速率高于第一阈值,则调整电池模型BM使得实现复杂模型,如果C速率低于第一阈值,则调整电池模型BM使得实现简化模型。
调整电池模型BM的另一种方式是,例如,将电池的C速率与第一阈值和比第一阈值小的第二阈值进行比较。如果C速率高于第一阈值,则调整电池模型BM使得实现复杂模型。如果C速率低于第一阈值且高于第二阈值,则调整电池模型BM使得实现简化模型。如果C速率低于第一阈值且高于第二阈值,则调整电池模型BM使得实现比简化模型更简单的模型。
例如,可以如图3所示选择第一阈值和第二阈值。第一阈值的值例如为8C到12C,例如是8C、9C、10C、11C或12C,和/或,由于该方法能够用于充电和放电,所以第一阈值也能够为-8C到-12C,例如是-8C、-9C、-10C、-11C或-12C。第二阈值的值例如为2C到4C,例如是2C、3C或4C,和/或,由于该方法能够用于充电和放电,所以第二阈值也能够为-2C到-4C,例如是-2C、-3C或-4C。
为了调整电池模型BM,例如,基于C速率对电池模型BM的给定模型参数进行调整,或者基于C速率对电池模型BM的给定方程组进行调整。
在步骤S9中,借助于调整后的电池模型BM估计电池的电压。
在步骤S11中,程序结束并能够在步骤S1中再次启动。
图3示出了调整的示例。基于第二阈值和第一阈值以及C速率,电池被划分为三个操作范围,即,高C速率操作范围HCR(C速率高于第一阈值)、中C速率操作范围MCR(C速率高于第二阈值且低于第一阈值)以及低C速率操作范围LCR(C速率低于第二阈值)。基于操作范围选择参数集,即,用于高C速率操作范围HCR的高C速率参数集HPS、用于中C速率操作范围MCR的中C速率参数集MPS以及用于低C速率操作范围LCR的低C速率参数集LPS。
基于选择的参数集对电池模型(BM)进行调整。因此,模型参数和方程组随着C速率而变化,以更好地调整电池在实时应用中的高动态操作。在需要复杂模型的高C速率下,会启用参数集以允许利用例如整个方程组来运行模型,而在简单模型就足够的低C速率下,会启用另一组参数集。
因此,借助于上述方法,该模型能够减少在高C速率操作范围下的误差,从而提高充电状态估计的精确性。

Claims (8)

1.一种用于估计电池电压的方法,其中,
-提供给定的电池模型(BM),其中,所述给定的电池模型(BM)是单粒子模型,
-确定电池的C速率,
-基于C速率对电池模型(BM)进行调整,
-借助于调整后的电池模型(BM)估计电池的电压。
2.根据权利要求1所述的方法,其中,将电池的C速率与第一阈值进行比较,如果C速率高于第一阈值,则调整电池模型(BM)使得实现复杂模型,如果C速率低于第一阈值,则调整电池模型(BM)使得实现简化模型。
3.根据权利要求1所述的方法,其中,将电池的C速率与第一阈值和比第一阈值小的第二阈值进行比较,并且
-如果C速率高于第一阈值,则调整电池模型(BM)使得实现复杂模型,
-如果C速率低于第一阈值且高于第二阈值,则调整电池模型(BM)使得实现简化模型,
-如果C速率低于第一阈值且高于第二阈值,则调整电池模型(BM)使得实现比所述简化模型更简单的模型。
4.根据权利要求3所述的方法,其中,所述第二阈值的值为2C至4C。
5.根据权利要求2、3或4所述的方法,其中,所述第一阈值的值为8C至12C。
6.根据权利要求1至5中任一项所述的方法,其中,基于C速率对电池模型(BM)的给定模型参数进行调整。
7.根据权利要求1至6中任一项所述的方法,其中,基于C速率对电池模型(BM)的给定方程组进行调整。
8.一种用于估计电池电压的设备(1),其中,所述设备(1)被设计用于执行根据权利要求1至7中任一项所述的方法。
CN201680087154.6A 2016-06-28 2016-06-28 用于估计电池电压的方法和设备 Active CN109716151B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/064998 WO2018001460A1 (en) 2016-06-28 2016-06-28 Method and device for estimating a voltage of a battery

Publications (2)

Publication Number Publication Date
CN109716151A true CN109716151A (zh) 2019-05-03
CN109716151B CN109716151B (zh) 2021-07-23

Family

ID=56289503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680087154.6A Active CN109716151B (zh) 2016-06-28 2016-06-28 用于估计电池电压的方法和设备

Country Status (5)

Country Link
US (1) US11333710B2 (zh)
EP (1) EP3475711A1 (zh)
CN (1) CN109716151B (zh)
CA (1) CA3026957A1 (zh)
WO (1) WO2018001460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084693A (zh) * 2022-06-28 2022-09-20 上海玫克生储能科技有限公司 一种锂电池固相浓度修正方法、系统及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747467A3 (en) 2019-06-03 2021-03-03 Nanobacterie A cryosystem comprising nanoparticles for treating a body part of an individual by cryotherapy
DE102022125518A1 (de) 2022-10-04 2024-04-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534954B1 (en) * 2002-01-10 2003-03-18 Compact Power Inc. Method and apparatus for a battery state of charge estimator
KR20120028000A (ko) * 2010-09-14 2012-03-22 충북대학교 산학협력단 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
EP2551687A1 (en) * 2010-03-23 2013-01-30 Furukawa Electric Co., Ltd. Device for estimating internal state of battery, and method for estimating internal state of battery
US20150355283A1 (en) * 2014-06-05 2015-12-10 Ford Global Technologies, Llc Method and System for Estimating Battery Model Parameters to Update Battery Models Used for Controls
KR20160035698A (ko) * 2014-09-23 2016-04-01 주식회사 실리콘마이터스 배터리잔량 측정 장치 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040106B2 (en) * 2008-05-29 2011-10-18 Honda Motor Co., Ltd. Method of controlling battery charging
US7919966B2 (en) * 2008-09-23 2011-04-05 Honda Motor Co., Ltd. Method of estimating surface ion density
US8332342B1 (en) * 2009-11-19 2012-12-11 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Model-based prognostics for batteries which estimates useful life and uses a probability density function
DE102013000572A1 (de) * 2013-01-15 2014-07-17 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren und System zur Bestimmung der Modellparameter eines elektrochemischen Energiespeichers
US9077182B2 (en) * 2013-01-29 2015-07-07 Mitsubishi Electric Research Laboratories, Inc. Method for estimating state of charge for lithium-ion batteries
US20140244193A1 (en) 2013-02-24 2014-08-28 Fairchild Semiconductor Corporation Battery state of charge tracking, equivalent circuit selection and benchmarking
US10094881B2 (en) * 2013-02-28 2018-10-09 Dongguan Cellwise Microelectronics Co., Ltd. Battery fuel gauging system
US9446678B2 (en) * 2014-03-05 2016-09-20 Ford Global Technologies, Llc Battery model with robustness to cloud-specific communication issues
US20150349385A1 (en) 2014-04-01 2015-12-03 Medtronic, Inc. Method and System for Predicting Useful Life of a Rechargeable Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534954B1 (en) * 2002-01-10 2003-03-18 Compact Power Inc. Method and apparatus for a battery state of charge estimator
EP2551687A1 (en) * 2010-03-23 2013-01-30 Furukawa Electric Co., Ltd. Device for estimating internal state of battery, and method for estimating internal state of battery
KR20120028000A (ko) * 2010-09-14 2012-03-22 충북대학교 산학협력단 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
US20150355283A1 (en) * 2014-06-05 2015-12-10 Ford Global Technologies, Llc Method and System for Estimating Battery Model Parameters to Update Battery Models Used for Controls
KR20160035698A (ko) * 2014-09-23 2016-04-01 주식회사 실리콘마이터스 배터리잔량 측정 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084693A (zh) * 2022-06-28 2022-09-20 上海玫克生储能科技有限公司 一种锂电池固相浓度修正方法、系统及存储介质

Also Published As

Publication number Publication date
US11333710B2 (en) 2022-05-17
US20190154762A1 (en) 2019-05-23
CN109716151B (zh) 2021-07-23
EP3475711A1 (en) 2019-05-01
CA3026957A1 (en) 2018-01-04
WO2018001460A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
Chen et al. A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity
Meng et al. A simplified model-based state-of-charge estimation approach for lithium-ion battery with dynamic linear model
Fotouhi et al. Lithium–sulfur battery state-of-charge observability analysis and estimation
Roscher et al. Reliable state estimation of multicell lithium-ion battery systems
Saha et al. Modeling Li-ion battery capacity depletion in a particle filtering framework
Castano et al. Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications
Dai et al. Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles
Gong et al. A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications
Wang et al. Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms
Chaoui et al. Adaptive state of charge estimation of lithium-ion batteries with parameter and thermal uncertainties
Makinejad et al. A lumped electro-thermal model for Li-ion cells in electric vehicle application
Xu et al. A comparison study of the model based SOC estimation methods for lithium-ion batteries
KR100901252B1 (ko) 슬라이딩 모드 관측기를 이용한 2차 전지 soc 예측방법 및 장치
Chen et al. Sliding mode observer for state of charge estimation based on battery equivalent circuit in electric vehicles
JP2023541417A (ja) バッテリの充電状態を推定する方法
KR20130049920A (ko) 차량용 배터리 상태 예측 방법
CN109716151A (zh) 用于估计电池电压的方法和设备
Sepasi et al. SOC estimation for aged lithium-ion batteries using model adaptive extended Kalman filter
KR102483644B1 (ko) 충전가능한 배터리의 용량 저하율을 예측하는 방법 및 장치
Koirala et al. Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles
Chayratsami et al. Hysteresis modeling of lithium-silicon half cells using discrete preisach model
Sarıkurt et al. An analytical battery state of health estimation method
Sarıkurt et al. A hybrid battery model and state of health estimation method for lithium-ion batteries
Tong et al. Comprehensive battery equivalent circuit based model for battery management application
Gorny et al. Monitoring and Health prognosis of Lithium-Ion battery system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant