CN109714400A - 一种面向容器集群的能耗优化资源调度系统及其方法 - Google Patents

一种面向容器集群的能耗优化资源调度系统及其方法 Download PDF

Info

Publication number
CN109714400A
CN109714400A CN201811517271.9A CN201811517271A CN109714400A CN 109714400 A CN109714400 A CN 109714400A CN 201811517271 A CN201811517271 A CN 201811517271A CN 109714400 A CN109714400 A CN 109714400A
Authority
CN
China
Prior art keywords
container
energy consumption
model
real
server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811517271.9A
Other languages
English (en)
Other versions
CN109714400B (zh
Inventor
林伟伟
王泽涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811517271.9A priority Critical patent/CN109714400B/zh
Publication of CN109714400A publication Critical patent/CN109714400A/zh
Application granted granted Critical
Publication of CN109714400B publication Critical patent/CN109714400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种面向容器集群的能耗优化资源调度系统及其方法。该系统包括服务器资源监控器、容器性能测试池、容器能耗模型管理器、容器能耗缓存模块、容器调度决策器、动态调整模块和多个服务器;该调度方法的步骤为:周期性采集容器运行环境的特征参数并检查容器能耗估算模型状态,根据容器能耗估算模型的能耗估算值进行动态优化调度决策,同时将生产环境的容器复制到容器性能测试池迭代训练数据集并更新模型,提升容器能耗估算值的准确度。本发明以数据中心整体能耗最小为目标定制调度策略,实时调度请求的容器到合适的服务器上达到能耗最优,并有自我更新和迭代的能力,在降低能耗同时整合服务器资源,提升了资源利用率,节约了数据中心的运营成本。

Description

一种面向容器集群的能耗优化资源调度系统及其方法
技术领域
本发明涉及到能耗资源管理领域,具体涉及一种面向容器集群的能耗优化资源调度系统及其方法。
背景技术
能耗问题一直以来是数据中心的一个突出问题,尤其是随着云计算时代的到来,更多的计算资源和存储资源集中在云端,给能耗的高效管理带来更大的挑战。来自美国能源部的数据表明,数据中心的能耗占全美所有能耗的1.5%,并且对电能的需求仍在以每年12%的速度增长,到2011年,数据中心会消耗1000亿千瓦时的电能,每年花费约74亿美元。数据中心的高能耗问题不仅造成电能的浪费、系统运行的不稳定,同时也对环境造成不良影响。美国联邦机构已经指出高能耗问题将对空气质量、国家安全、气候变化、电网可靠性等方面造成严重影响。因此,云数据中心的节能刻不容缓,能耗优化管理已经成为当前云数据中心亟待解决的重要问题。
由于传统的云计算数据中心是以虚拟机为核心,IaaS以虚拟机为提供计算资源的基本单元,PaaS以虚拟机为部署应用的基础设施,因此传统的能耗模型和基于能耗优化的调度算法主要是针对虚拟机的,并且虽同为虚拟化技术,但是传统虚拟机与容器有较大差异,一些应用于虚拟机的能耗建模和优化技术无法直接应用于容器使用的场景。
不同于对虚拟机能耗模型与虚拟机调度算法的广泛研究,目前只有少量的关于容器能耗模型和容器调度方向上的研究。就能耗建模方面来说,由于容器不需要对硬件进行虚拟化,也不需要安装独立的操作系统而是复用宿主机操作系统内核,因此容器的能耗模型与虚拟机有着很大的区别,部分适用于虚拟机能耗建模的方法不使用于容器。在目前大多数研究中,研究对象大多普遍为虚拟机,缺乏对容器能耗建模问题的解决方案,同时在容器能耗建模时除了需要像虚拟机能耗建模一样考虑到服务器的异构性又需要对容器本身的负载特性进行鉴别与区分。再从能耗优化调度算法方面来说,随着容器技术的发展,近年来已经有许多在容器调度上的研究。Vakilinia讨论了数据中心内基于能耗的容器管理模式,但是并没有对容器的能耗模型进行公式化的描述。Mohamed Faten Zhani等人提出了一种动态的基于资源异构的容器调度策略,通过k-means算法对输入任务按资源需求进行聚类,动态优化执行不同种类任务的容器数量,以此来降低数据中心能耗,但聚类的过程是线下的并只是采用服务器历史数据,模型无法做到随时间演进。Chanwit Kaewkasi等人提出了基于蚁群算法(ACO)的容器调度技术来提高资源的负载均衡性和容器化应用的性能。与Chanwit Kaewkasi类似的是,国内卢胜林等人针对容器调度也提出了一种权值调度策略,根据CPU使用率、内存使用率、平均网络负载和节点上已为容器分配出去但未使用的内存资源占总内存资源大小的比例,通过加权平均的方式,计算每个节点的权重W(Ni),权重越大说明节点负载越高,从而阻止容器调度到该节点上,但以上两者均没有考虑能耗带来的影响,提升负载均衡和应用性能可能会使容器离散地分布在数据中心所有的服务器上,从而造成维持服务器运行产生的能耗增加可能会远大于节点负载降低带来的能耗收益。在工业界,目前也有许多用于管理容器的容器编排系统(COS,Container OrchestrationSystems),比如Apache的Mesos,Google的Kubernetes以及Docker的Swarmkit。但是它们仅使用了简单的容器调度策略来维护容器应用的可用性和扩展性(HPA,Horizontal PodAutoscaler),而随着数据中心内容器数量的增加,调度的场景也越来越复杂,因此这些系统的调度短板也愈发明显。
随着容器技术的成熟,新一代云数据中心的建设开始逐步以容器为核心,容器即服务(Container as a Service,CaaS)将把第一代云计算的IaaS层和PaaS层合二为一,成为新一代的云计算架构。因此建立好一个容器能耗模型并据此给出一个基于能耗优化的容器调度算法是目前云计算领域亟待解决的重要问题。
发明内容
为克服现有技术的步骤,本发明提供一种面向容器集群的能耗优化资源调度系统及其方法,改进基于CaaS架构的云数据中心的能耗管理系统及其方法,节省能源和降低云数据中心的运营成本,并为云数据中心用户提供经济的资源服务。
为了达到上述目的,本发明采用以下技术方案:
本发明提供一种面向容器集群的能耗优化资源调度系统,包括
服务器资源监控器、容器性能测试池、容器能耗模型管理器、容器能耗缓存模块、容器调度决策器、动态调整模块和多个服务器,
所述服务器给容器提供运行环境,
所述服务器资源监控器用于采集容器的环境运行特征向量,
所述容器性能测试池用于提供容器能耗训练数据集,
所述容器能耗模型管理器用于接收容器性能测试池中的容器能耗训练数据集,构建实时估算容器能耗模型和检查当前容器能耗实时估算模型的状态,
所述容器能耗缓存模块用于存储请求容器的能耗估算值,
所述容器调度决策器用于根据请求容器的能耗估算值生成容器调度决策表,
所述动态调整模块用于调整服务器数量和状态。
本发明还提供一种面向容器集群的能耗优化资源调度方法,包括下述步骤:
S1:服务器资源监控器周期性采集容器的运行环境特征向量;
S2:容器能耗模型管理器检查当前的容器能耗实时估算模型状态,提取请求容器的自身特征向量;
S3:合并步骤S1中的运行环境特征向量和步骤S2中的容器自身特征向量后,通过容器能耗实时估算模型估算出请求容器的能耗估算值,并存储到容器能耗缓存模块;
S4:根据步骤S3中容器能耗缓存模块存储的容器能耗估算值,容器调度决策器以总能耗最小为目标进行容器调度计算,获得最优的容器调度决策表,并发送调度决策表到服务器;
S5:遍历决策表,如果请求处理完则执行步骤S6;如果请求未处理完,动态调整模块则选择容器进行调度,依据调度决策表,
激活被调度的服务器,生成并运行容器,或者
将容器迁移到特定的服务器,或者
将没有容器运行的服务器设置为休眠模式;
S6:重复执行步骤S1-S5,直到系统运行结束。
作为优选的技术方案,步骤S2中所述容器能耗实时估算模型状态包括未初始化状态,在未初始化状态下,所述容器能耗实时估算模型执行初始化模型的预处理,具体步骤如下:
构建一个容器性能测试池,并预先向池中添加不同负载特征的容器;
提取容器自身特征和容器运行环境特征,并结合获取容器运行时的实际能耗值,构建初始化的容器能耗训练数据集;
采用初始化的容器能耗训练数据集训练容器能耗实时估算模型。
作为优选的技术方案,步骤S2中所述容器能耗实时估算模型状态包括过期状态,在过期状态下,所述容器能耗实时估算模型执行更新模型的预处理,具体步骤如下:
从实际生产环境中周期性地复制容器到容器性能测试池,迭代更新容器能耗训练数据集;
根据更新后的容器能耗训练数据集,训练容器能耗实时估算模型。
作为优选的技术方案,所述预处理的步骤在主流程之外,采用并行的工作模式执行,与主流程之间通过容器能耗实时估算模型的状态进行同步。
作为优选的技术方案,所述容器能耗实时估算模型的建模步骤具体如下:
初始化训练集,预先向容器性能测试池添加不同负载模式的容器;
提取容器自身特征向量C=(c1,...,cm);
提取容器性能测试池中容器所在的运行环境特征向量R=(r1,...,rk);
构建容器能耗训练数据集的样本空间:合并容器自身特征向量C=(c1,...,cm)和运行环境特征向量R=(r1,...,rk)后形成单个容器能耗样本特征向量x=(R,C),样本数量设为n,形成的样本空间为X=(x1,x2,...,xn)T∈Rn×p,其中xi∈Rp表示维度长为p=k+m的单个容器能耗样本,样本的标签列数据为容器的实际能耗参数Y=(y1,y2,...,yn)T∈Rn
从实际生产环境中周期性地复制容器到容器性能测试池中,迭代更新容器能耗训练数据集;
容器能耗模型管理器接收容器性能测试池中的容器能耗训练数据集,构建容器能耗实时估算模型。
作为优选的技术方案,所述提取容器自身特征向量具体步骤为:提取容器镜像的元数据信息和运行参数,归一化处理后形成容器自身特征向量。
作为优选的技术方案,所述容器能耗实时估算模型采用局部加权线性回归算法训练。
作为优选的技术方案,所述容器能耗实时估算模型的训练步骤具体如下:
估算单个容器能耗样本xi的输出值f(xi),如公式(1)所示:
其中wm,w0均表示为模型参数,xim表示样本xi的特征m,w为模型参数的矩阵表示,wT表示模型参数矩阵w的转置;
提取单个容器能耗估算值f(xi)和单个容器能耗实际值yi的均方差为损失函数J(w),如公式(2)所示:
其中X为样本空间矩阵表示,y为训练集容器能耗数据的矩阵表示;
计算目标函数J(w)的最小值,得到模型参数的解析解,其中XT表示样本空间X的转置,如公式(3)所示:
采用局部加权的方式提升容器能耗实时估算模型的拟合度,得到模型参数如公式(4)所示:
其中W是一个矩阵,用于给每个数据点赋予权重,使用高斯核对权重赋值,如公式(5)所示:
其中x(i)与x为样本点,k为设定的参数,w(i,i)构成了一个对角矩阵W。
作为优选的技术方案,步骤S4中的所述容器调度决策器以总能耗最小为目标进行容器调度计算的具体步骤如下:
根据容器能耗实时估算模型获得在t时刻到达系统的容器请求在不同的服务器的能耗估算值其中下标i表示服务器编号,上标表示分配给服务器的容器请求为
设置容器调度决策器,将在t时刻的容器调度决策表记为集合计算获得总体能耗最优的容器调度决策表χbest,约束条件为:
其中将在t时刻新容器请求集合记为rci表示容器所需服务器资源i的数量,表示在t时刻的服务资源i已使用的量,表示在t时刻的服务器资源i的上限,表示在t时刻分配给服务器i容器请求的副本数量。
本发明与现有技术相比,具有如下优点和有益效果:
(1)与一般云数据中心能耗调度中将虚拟机作为调度研究目标不同,本发明将容器作为调度研究目标,提出了在CaaS的云计算架构下面向容器集群的能耗优化资源调度系统及其方法,节省了以容器虚拟化为基础的云计算数据中心的能耗。
(2)本发明在研究容器能耗实时估算模型时充分考虑了容器负载特征,以及服务器节点、容器运行时环境的异构性,通过构建容器性能测试池来获取训练模型需要的训练数据集,并充分利用容器轻量、容器生成、迁移成本低、快速启动等特性,在运行过程中复制生产环境中的容器来扩充容器能耗训练数据集,来使容器能耗训练数据集更接近真实环境,从而能够在线优化容器能耗实时估算模型。
(3)本发明提出面向容器集群的能耗优化资源调度系统及其方法,不仅从容器自身能耗角度优化了集群总能耗,还充分发挥异构服务器的不同物理资源特性,利用资源的互补性来优化容器的分配,可以组合多个资源利用率较低的容器到同一个性能较强的服务器节点上,将一些没有容器运行的服务器状态转变为休眠模式,从而更大程度上降低了数据中心的能耗。
附图说明
图1为本发明的面向容器集群的能耗优化资源调度方法的系统架构图;
图2为本发明的训练容器能耗实时估算模型的流程图;
图3为本发明的面向容器集群的能耗优化资源调度方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本实施例构建了一种面向容器集群的能耗优化资源调度系统(Container Scheduling Brokering System for Energy Optimization,CSEO),通过建立容器能耗实时估算模型,先估算出输入系统的容器请求在所有可能被调度到的运行环境中的能耗,再找出总体能耗最优的调度方案,然后由该系统根据调度方案下发请求到具体的服务器节点来执行容器的生成/删除/运行/停止/迁移等操作,对于没有容器运行的服务器则将其状态转变为休眠态。该系统包括以下模块:
(1)容器性能测试池(Training Bench Container Set,TBCS)负责提供容器能耗实时估算模型的容器能耗训练数据集。为了解决模型训练的冷启动问题,在初始化时,会预先向池中添加不同负载特征的容器,让它们在异构的容器运行环境中运行,并通过物理能耗测量工具如Yocto-Watt获取容器能耗的真实值。容器性能测试池会将这些数据作为训练集发送给容器能耗模型管理器,然后训练出初始阶段的容器能耗实时估算模型。为了保证模型准确性,在整个系统运行期间,会从生产服务器集群中复制多组容器到测试区域来扩充训练集,执行在线的模型优化;
(2)容器能耗模型管理器(Container Energy Model Manager,CEMM)负责训练和管理容器能耗实时估算模型,用于接收容器性能测试池中的容器能耗训练数据集,构建实时估算容器能耗模型和检查当前容器能耗实时估算模型的状态。用户请求会先调用该管理器,传入容器和运行环境的特征向量,估算出该容器在不同运行环境中的能耗值。在本实施例中,容器的运行环境为服务器节点;
(3)容器能耗缓存模块(Power consumption Per Container Table Manager,PPC)负责缓存由CEMM预测出的每一个请求容器ci在服务器节点(运行环境)sj上运行产生的能耗估算值
(4)动态调整模块(Dynamic Right Sizing Triggering Module,DRS)用于调整服务器数量和状态,负责调整处于运行状态(active)的服务器数量,并将没有容器运行的服务器节点转变为休眠模式;
(5)服务器资源监控器(Server Resource Monitor,SRM)用于采集容器的环境运行特征向量,会周期性收集每个服务器节点的CPU利用率、内存、硬盘IO及网络带宽使用情况,以及该节点上容器运行时(container runtime)如docker、rkt信息、go语言环境、GC工作时间与内存占用情况、容器镜像存储驱动类型(Graph Driver)等,作为容器运行环境的特征参数;
(6)容器调度决策器(Container Scheduler,CSer)用于根据请求容器的能耗估算值生成容器调度决策表,会根据PPC模块中存储的容器能耗估算值按照运行容器所需服务器总能耗最小的目标进行容器调度计算,获得能耗最优的容器调度结果。其中容器调度的计算方式为:比较请求容器放置(调度)到服务器节点上的每种调度方式服务器总能耗的预测值大小,选择服务器总能耗最小的一种调度方式作为容器调度的决策结果;
(7)服务器(Server)给容器提供运行环境,多个服务器组成服务器集群,放置于服务器机架上。
在本实施例中,还提供一种面向容器集群的能耗优化资源调度方法,该方法以局部加权线性回归(LWLR)的容器能耗实时估算模型为基础。
在本实施例中,基于局部加权回归(LWLR)的容器能耗实时估算模型建模步骤如下所示:
M0.在初始化时,构建一个容器性能测试池,即TBCS(Training Bench ContainerSet,TBCS)。通过预先向池中添加不同负载特征的容器,来解决模型冷启动问题;
M1.由于容器的运行模式是由该容器的镜像和运行参数同时决定的,因此提取容器镜像的元数据信息(metadata),结合容器的运行参数,执行归一化处理,形成容器自身特征向量C=(c1,...,cm);
M2.考虑到服务器硬件异构、容器运行时(容器引擎、库/Go语言版本等)异构和服务器当前负载信息对容器能耗的影响,提出容器运行环境的概念,即该环境包含了在某一服务器上影响容器运行的软硬件设施及其状态信息。提取TBCS中容器所在的运行环境的特征向量为R=(r1,...,rk);
M3.合并M1和M2中的特征向量成为单个容器能耗样本x=(R,C)。假设样本数量为n,因此整个样本空间为X=(x1,x2,...,xn)T∈Rn×p,其中xi∈Rp表示维度长为p=k+m的单个容器能耗样本。将容器的实际能耗参数作为样本标签Y=(y1,y2,...,yn)T∈Rn,从而形成初始化的训练数据集;
M4.容器能耗模型管理器(Container Energy Model Manager,CEMM)模块会接收到容器性能测试池TBCS中的容器能耗训练数据集,构建实时估算容器能耗模型;
M5.周期性从实际生产环境中复制容器到TBCS,迭代更新容器能耗训练数据集,然后再转入步骤M4。
本实施例在实施过程中需要先训练出容器能耗实时估算模型,模型训练的步骤如图2所示。首先为了解决冷启动问题,会通过预先向容器性能测试池添加不同负载模式的容器的方式来初始化训练数据集;镜像作为容器运行的基础和运行参数一同决定了容器的运行模式,是影响容器运行时能耗的静态因素,在本实施例中可以通过提取该容器镜像的元数据信息(metadata)和运行参数作为数据集中容器的特征向量,表1为容器特征向量参数提取参考表,实际可提取得参数不仅限于此表。
表1容器特征向量参数提取参考
除了容器本身,服务器实时负载信息、服务器硬件参数、容器运行时信息等容器运行环境特征都会成为影响容器运行能耗动态因素,因此在本实施例中通过提取这些动态因素并与上文所述的静态因素结合,形成了容器在特定运行环境下的特征向量,然后根据实际测得容器能耗值构建出训练数据集;通过构造回归方程对数据进行拟合的方式,训练得到模型参数,并为每个模型设置一个有效时间或者误差范围;当模型过期或者估算误差过大时,就从生产环境复制部分实际运行的容器到容器性能测试池中,扩展训练数据集,并用新的数据集来更新模型。
在本实施例中,模型具体的训练方法与过程如下:
对于一个样本xi,它的输出值(估算的能耗)为公式1所示:
其中wm,w0均表示为模型参数,xim表示样本xi的特征m,w为模型参数的矩阵表示,wT表示模型参数矩阵w的转置,在表示多元一次多项式乘积之和(方程含有多个一次幂的元,它们与各自的系数相乘)的时候,可以将公式写成矩阵与向量相乘的形式,为了满足矩阵相乘的数学条件,需要将矩阵进行转置;
提取单个容器能耗估算值f(xi)和单个容器能耗实际值yi的均方差为损失函数J(w),如公式2所示:
其中X为样本空间矩阵表示,y为训练集容器能耗数据的矩阵表示;
为了使模型误差最小化,即目标函数J(w)取最小值,可以得到模型参数的解析解,其中XT表示样本空间X的转置,如公式3所示:
为了解决传统回归模型估算时模型的欠拟合问题,采用局部加权的方式(LWLR),提升模型的拟合度,最终模型参数如公式4所示:
其中W是一个矩阵,用来给每个数据点赋予权重,此处使用高斯核来对权重赋值,如公式5所示:
其中x(i)与x为样本点,k为可设定的参数,决定了对附近的点赋予多大的权重,w(i,i)构成了一个对角矩阵W。
在本实施例中,当获得一个处于激活状态的容器能耗实时估算模型时,对于输入到系统的请求,将通过如图3所示的流程来进行容器调度,具体步骤如下:
S1:服务器资源监视器会周期性地采集服务器实时负载信息、服务器硬件参数和容器运行时信息,形成容器运行环境的特征向量;
S2:容器请求到来时,会先检查容器能耗实时估算模型状态并进行相应的预处理,然后提取请求容器的特征向量;
S3:结合步骤S1中容器运行环境的特征向量和步骤S2中请求容器的自身特征向量,通过容器能耗估算模型估算出请求容器在不同的环境下(服务器节点)运行时所产生的能耗值,并将结果存储到缓存模块;
S4:根据步骤S3中容器能耗缓存模块存储的容器能耗估算值,容器调度决策器以总能耗最小为目标进行容器调度计算,获得最优的容器调度决策表,并发送调度决策表到服务器;
S5:遍历决策表,如果请求处理完则转到步骤S6。如果请求未处理完,动态调整模块则选择一个容器进行调度,依据决策结果,激活被调度的服务器(若服务器已激活则忽略)后生成并运行容器,或者将某个容器迁移到特定的服务器,没有容器运行的服务器将进入休眠模式;
S6:重复执行以上步骤S1-S5,直到系统运行结束。
在本实施例中,步骤S2中容器能耗实时估算模型的状态共有未初始化态、激活态和过期态三种。除了处于激活态的模型,对于其它两种状态的模型,步骤S2会执行不同的预处理过程。
在本实施例中,当模型处于未初始化状态时,预处理过程的具体步骤如下:
S2P1:构建一个容器性能测试池,并预先向池中添加不同负载特征的容器,来解决模型冷启动问题;
S2P2:提取容器自身特征、容器运行环境特征等并获取容器运行时的实际能耗值,构建初始化的容器能耗训练数据集;
S2P3:基于局部加权线性回归(LWLR)方法,使用S2P2中的容器能耗训练数据集训练容器能耗实时估算模型;
S2P4:标记模型已激活,预处理过程结束。
在本实施例中,当模型处于过期状态时,预处理过程的具体步骤如下:
S2Q1:周期性从实际生产环境中复制容器到容器性能测试池,迭代更新训练数据集;
S2Q2:根据S2Q1中新的数据集,重新训练容器能耗实时估算模型;
S2Q3:标记模型已激活,预处理过程结束。
在本实施例中,为了提升整个系统的运行效率,解决因为预处理过程而造成主流程阻塞的问题,上述S2P1-S2P4和S2Q1-S2Q3均在主流程之外以并行工作流模式执行,与主流程之间只通过模型状态进行同步。
在本实施例中,步骤S2中容器能耗实时估算模型的训练数据集样本空间构建过程为:
容器的自身特征向量为容器镜像的元数据信息(metadata)和容器运行参数,表示为向量C=(c1,...,cm)。容器运行环境的特征向量为服务器当前负载信息、服务器硬件参数和容器运行时(容器引擎、库/Go语言版本等)信息,表示为向量R=(r1,...,rk)。因此可以得出容器能耗训练数据集的样本空间如下:
样本的特征向量为向量C和R合并后的向量,表示为x=(R,C)。假设样本数量为n,那么整个样本空间可记为X=(x1,x2,...,xn)T∈Rn×p,其中xi∈Rp表示维度长为p=k+m的单个容器能耗样本;
样本的标签列数据为容器的实际能耗参数Y=(y1,y2,...,yn)T∈Rn
在本实施例中,步骤S4中的调度决策器以总体能耗最优为目标进行容器调度计算的具体步骤为:
假设依据上述容器能耗实时估算模型计算出容器j在服务器(运行环境)i上运行时的能耗估算值为在t时刻新容器请求集合为在t时刻的调度决策为其中代表在t时刻分配给运行环境i新容器请求的副本数量;表示分配给该运行环境的容器请求为RC=(rc1,...,rck)代表容器请求所需的资源向量;代表在t时刻运行环境使用的资源向量;表示运行环境上资源i的限额。
由于在本实施例中调度的优化目标是总体能耗值最小化,因此可以获得如下目标函数:
约束关系为:
求解以上目标方程即可获得最优的调度结果χbest。根据最优的调度结果,下发执行命令到具体的运行环境上,当某个服务器节点上容器数量为0,则表明该服务器节点需要处于休眠状态,执行休眠操作,反之则应该处于启动状态。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种面向容器集群的能耗优化资源调度系统,其特征在于,包括
服务器资源监控器、容器性能测试池、容器能耗模型管理器、容器能耗缓存模块、容器调度决策器、动态调整模块和多个服务器,
所述服务器用于给容器提供运行环境,
所述服务器资源监控器用于采集容器的环境运行特征向量,
所述容器性能测试池用于提供容器能耗训练数据集,
所述容器能耗模型管理器用于接收容器性能测试池中的容器能耗训练数据集,构建实时估算容器能耗模型和检查当前容器能耗实时估算模型的状态,
所述容器能耗缓存模块用于存储请求容器的能耗估算值,
所述容器调度决策器用于根据请求容器的能耗估算值生成容器调度决策表,
所述动态调整模块用于调整服务器数量和状态。
2.一种面向容器集群的能耗优化资源调度方法,其特征在于,包括下述步骤:
S1:服务器资源监控器周期性采集容器的运行环境特征向量;
S2:容器能耗模型管理器检查当前的容器能耗实时估算模型状态,提取请求容器的自身特征向量;
S3:合并步骤S1中的运行环境特征向量和步骤S2中的容器自身特征向量后,通过容器能耗实时估算模型估算出请求容器的能耗估算值,并存储到容器能耗缓存模块;
S4:根据步骤S3中容器能耗缓存模块存储的容器能耗估算值,容器调度决策器以总能耗最小为目标进行容器调度计算,获得最优的容器调度决策表,并发送调度决策表到服务器;
S5:遍历决策表,如果请求处理完则执行步骤S6;如果请求未处理完,动态调整模块则选择容器进行调度,依据调度决策表,
激活被调度的服务器,生成并运行容器,或者
将容器迁移到特定的服务器,或者
将没有容器运行的服务器设置为休眠模式;
S6:重复执行步骤S1-S5,直到系统运行结束。
3.根据权利要求2所述一种面向容器集群的能耗优化资源调度方法,其特征在于,步骤S2中所述容器能耗实时估算模型状态包括未初始化状态,在未初始化状态下,所述容器能耗实时估算模型执行初始化模型的预处理,具体步骤如下:
构建一个容器性能测试池,并预先向池中添加不同负载特征的容器;
提取容器自身特征和容器运行环境特征,并结合获取容器运行时的实际能耗值,构建初始化的容器能耗训练数据集;
采用初始化的容器能耗训练数据集训练容器能耗实时估算模型。
4.根据权利要求2所述一种面向容器集群的能耗优化资源调度方法,其特征在于,步骤S2中所述容器能耗实时估算模型状态包括过期状态,在过期状态下,所述容器能耗实时估算模型执行更新模型的预处理,具体步骤如下:
从实际生产环境中周期性地复制容器到容器性能测试池,迭代更新容器能耗训练数据集;
根据更新后的容器能耗训练数据集,训练容器能耗实时估算模型。
5.根据权利要求3或4所述一种面向容器集群的能耗优化资源调度方法,其特征在于,所述预处理的步骤在主流程之外,采用并行的工作模式执行,与主流程之间通过容器能耗实时估算模型的状态进行同步。
6.根据权利要求2所述一种面向容器集群的能耗优化资源调度方法,其特征在于,所述容器能耗实时估算模型的建模步骤具体如下:
初始化训练集,预先向容器性能测试池添加不同负载模式的容器;
提取容器自身特征向量C=(c1,...,cm);
提取容器性能测试池中容器所在的运行环境特征向量R=(r1,...,rk);
构建容器能耗训练数据集的样本空间:合并容器自身特征向量C=(c1,...,cm)和运行环境特征向量R=(r1,...,rk)后形成单个容器能耗样本特征向量x=(R,C),样本数量设为n,形成的样本空间为X=(x1,x2,...,xn)T∈Rn×p,其中xi∈Rp表示维度长为p=k+m的单个容器能耗样本,样本的标签列数据为容器的实际能耗参数Y=(y1,y2,...,yn)T∈Rn
从实际生产环境中周期性地复制容器到容器性能测试池中,迭代更新容器能耗训练数据集;
容器能耗模型管理器接收容器性能测试池中的容器能耗训练数据集,构建容器能耗实时估算模型。
7.根据权利要求2或6所述一种面向容器集群的能耗优化资源调度方法,其特征在于,所述提取容器自身特征向量具体步骤为:提取容器镜像的元数据信息和运行参数,归一化处理后形成容器自身特征向量。
8.根据权利要求2、3、4或6任意一项所述一种面向容器集群的能耗优化资源调度方法,其特征在于,所述容器能耗实时估算模型采用局部加权线性回归算法训练。
9.根据权利要求8所述一种面向容器集群的能耗优化资源调度方法,其特征在于,所述容器能耗实时估算模型的训练步骤具体如下:
估算单个容器能耗样本xi的输出值f(xi),如公式(1)所示:
其中wm,w0均表示为模型参数,xim表示样本xi的特征m,w为模型参数的矩阵表示,wT表示模型参数矩阵w的转置;
提取单个容器能耗估算值f(xi)和单个容器能耗实际值yi的均方差为损失函数J(w),如公式(2)所示:
其中X为样本空间矩阵表示,y为训练集容器能耗数据的矩阵表示;
计算目标函数J(w)的最小值,得到模型参数的解析解,其中XT表示样本空间X的转置,如公式(3)所示:
采用局部加权的方式提升容器能耗实时估算模型的拟合度,得到模型参数如公式(4)所示:
其中W是一个矩阵,用于给每个数据点赋予权重,使用高斯核对权重赋值,如公式(5)所示:
其中x(i)与x为样本点,k为设定的参数,w(i,i)构成了一个对角矩阵W。
10.根据权利要求2所述的一种面向容器集群的能耗优化资源调度方法,其特征在于,步骤S4中的所述容器调度决策器以总能耗最小为目标进行容器调度计算的具体步骤如下:
根据容器能耗实时估算模型获得在t时刻到达系统的容器请求在不同的服务器的能耗估算值其中下标i表示服务器编号,上标表示分配给服务器的容器请求为
设置容器调度决策器,将在t时刻的容器调度决策表记为集合计算获得总体能耗最优的容器调度决策表χbest,约束条件为:
其中将在t时刻新容器请求集合记为rci表示容器所需服务器资源i的数量,表示在t时刻的服务资源i已使用的量,表示在t时刻的服务器资源i的上限,表示在t时刻分配给服务器i容器请求的副本数量。
CN201811517271.9A 2018-12-12 2018-12-12 一种面向容器集群的能耗优化资源调度系统及其方法 Active CN109714400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811517271.9A CN109714400B (zh) 2018-12-12 2018-12-12 一种面向容器集群的能耗优化资源调度系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811517271.9A CN109714400B (zh) 2018-12-12 2018-12-12 一种面向容器集群的能耗优化资源调度系统及其方法

Publications (2)

Publication Number Publication Date
CN109714400A true CN109714400A (zh) 2019-05-03
CN109714400B CN109714400B (zh) 2020-09-22

Family

ID=66255690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811517271.9A Active CN109714400B (zh) 2018-12-12 2018-12-12 一种面向容器集群的能耗优化资源调度系统及其方法

Country Status (1)

Country Link
CN (1) CN109714400B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231808A (zh) * 2019-05-24 2019-09-13 重庆邮电大学 一种生产过程能效跨尺度智能协同控制系统与方法
CN110457131A (zh) * 2019-07-31 2019-11-15 华中科技大学 基于Docker容器的电力系统超算平台任务调度方法
CN111045791A (zh) * 2019-12-16 2020-04-21 武汉智领云科技有限公司 一种大数据容器化中心调度系统和方法
CN111488052A (zh) * 2020-04-16 2020-08-04 中国工商银行股份有限公司 应用于物理机集群的容器启用方法和装置、计算机系统
CN111694636A (zh) * 2020-05-11 2020-09-22 国网江苏省电力有限公司南京供电分公司 一种面向边缘网络负载均衡的电力物联网容器迁移方法
CN112463301A (zh) * 2020-11-30 2021-03-09 常州微亿智造科技有限公司 基于容器的模型训练测试调优和部署方法和装置
CN112559142A (zh) * 2019-09-26 2021-03-26 贵州白山云科技股份有限公司 容器的控制方法、装置、边缘计算系统、介质及设备
CN113127446A (zh) * 2021-04-01 2021-07-16 山东英信计算机技术有限公司 一种基于Ottertune服务的集群调优方法及装置
CN113296892A (zh) * 2021-05-28 2021-08-24 联仁健康医疗大数据科技股份有限公司 开发环境的休眠方法、装置、电子设备及存储介质
CN113535409A (zh) * 2021-08-10 2021-10-22 天津大学 一种面向能耗优化的无服务器计算资源分配系统
CN113556375A (zh) * 2020-04-26 2021-10-26 阿里巴巴集团控股有限公司 云计算服务方法、装置、电子设备和计算机存储介质
WO2022041996A1 (en) * 2020-08-24 2022-03-03 Kyndryl, Inc Intelligent backup and restoration of containerized environment
WO2022048557A1 (zh) * 2020-09-07 2022-03-10 华为云计算技术有限公司 Ai模型的训练方法、装置、计算设备和存储介质
CN114265704A (zh) * 2022-03-03 2022-04-01 环球数科集团有限公司 一种基于凸优化的混合容器云调度系统
CN114301972A (zh) * 2021-12-17 2022-04-08 杭州谐云科技有限公司 一种基于云边协同的区块链节点分级部署方法和系统
CN114841298A (zh) * 2022-07-06 2022-08-02 山东极视角科技有限公司 一种训练算法模型的方法、装置、电子设备和存储介质
CN114901057A (zh) * 2022-07-12 2022-08-12 联通(广东)产业互联网有限公司 一种数据中心机房内部多点能耗检测与动态调节系统
WO2023066224A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 一种部署容器服务的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023492A1 (en) * 2010-07-26 2012-01-26 Microsoft Corporation Workload interference estimation and performance optimization
CN104991830A (zh) * 2015-07-10 2015-10-21 山东大学 基于服务等级协议的yarn资源分配和节能调度方法及系统
CN106878343A (zh) * 2017-04-18 2017-06-20 北京百悟科技有限公司 一种云计算环境下提供网络安全即服务的系统
CN107908457A (zh) * 2017-11-08 2018-04-13 河海大学 一种基于稳定匹配的容器化云资源分配方法
CN108780415A (zh) * 2016-03-22 2018-11-09 英特尔公司 用于应用容器的功率消耗和能量效率的估计的控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023492A1 (en) * 2010-07-26 2012-01-26 Microsoft Corporation Workload interference estimation and performance optimization
CN104991830A (zh) * 2015-07-10 2015-10-21 山东大学 基于服务等级协议的yarn资源分配和节能调度方法及系统
CN108780415A (zh) * 2016-03-22 2018-11-09 英特尔公司 用于应用容器的功率消耗和能量效率的估计的控制装置
CN106878343A (zh) * 2017-04-18 2017-06-20 北京百悟科技有限公司 一种云计算环境下提供网络安全即服务的系统
CN107908457A (zh) * 2017-11-08 2018-04-13 河海大学 一种基于稳定匹配的容器化云资源分配方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231808A (zh) * 2019-05-24 2019-09-13 重庆邮电大学 一种生产过程能效跨尺度智能协同控制系统与方法
CN110457131A (zh) * 2019-07-31 2019-11-15 华中科技大学 基于Docker容器的电力系统超算平台任务调度方法
CN110457131B (zh) * 2019-07-31 2021-08-20 华中科技大学 基于Docker容器的电力系统超算平台任务调度方法
CN112559142B (zh) * 2019-09-26 2023-12-19 贵州白山云科技股份有限公司 容器的控制方法、装置、边缘计算系统、介质及设备
CN112559142A (zh) * 2019-09-26 2021-03-26 贵州白山云科技股份有限公司 容器的控制方法、装置、边缘计算系统、介质及设备
CN111045791A (zh) * 2019-12-16 2020-04-21 武汉智领云科技有限公司 一种大数据容器化中心调度系统和方法
CN111488052A (zh) * 2020-04-16 2020-08-04 中国工商银行股份有限公司 应用于物理机集群的容器启用方法和装置、计算机系统
CN113556375A (zh) * 2020-04-26 2021-10-26 阿里巴巴集团控股有限公司 云计算服务方法、装置、电子设备和计算机存储介质
CN111694636A (zh) * 2020-05-11 2020-09-22 国网江苏省电力有限公司南京供电分公司 一种面向边缘网络负载均衡的电力物联网容器迁移方法
WO2022041996A1 (en) * 2020-08-24 2022-03-03 Kyndryl, Inc Intelligent backup and restoration of containerized environment
GB2612448A (en) * 2020-08-24 2023-05-03 Kyndryl Inc Intelligent backup and restoration of containerized environment
WO2022048557A1 (zh) * 2020-09-07 2022-03-10 华为云计算技术有限公司 Ai模型的训练方法、装置、计算设备和存储介质
CN112463301A (zh) * 2020-11-30 2021-03-09 常州微亿智造科技有限公司 基于容器的模型训练测试调优和部署方法和装置
CN113127446A (zh) * 2021-04-01 2021-07-16 山东英信计算机技术有限公司 一种基于Ottertune服务的集群调优方法及装置
CN113296892A (zh) * 2021-05-28 2021-08-24 联仁健康医疗大数据科技股份有限公司 开发环境的休眠方法、装置、电子设备及存储介质
CN113296892B (zh) * 2021-05-28 2024-02-06 联仁健康医疗大数据科技股份有限公司 开发环境的休眠方法、装置、电子设备及存储介质
CN113535409A (zh) * 2021-08-10 2021-10-22 天津大学 一种面向能耗优化的无服务器计算资源分配系统
CN113535409B (zh) * 2021-08-10 2022-08-05 天津大学 一种面向能耗优化的无服务器计算资源分配系统
WO2023066224A1 (zh) * 2021-10-21 2023-04-27 华为技术有限公司 一种部署容器服务的方法及装置
CN114301972A (zh) * 2021-12-17 2022-04-08 杭州谐云科技有限公司 一种基于云边协同的区块链节点分级部署方法和系统
CN114265704B (zh) * 2022-03-03 2022-05-17 环球数科集团有限公司 一种基于凸优化的混合容器云调度系统
CN114265704A (zh) * 2022-03-03 2022-04-01 环球数科集团有限公司 一种基于凸优化的混合容器云调度系统
CN114841298A (zh) * 2022-07-06 2022-08-02 山东极视角科技有限公司 一种训练算法模型的方法、装置、电子设备和存储介质
CN114901057B (zh) * 2022-07-12 2022-09-27 联通(广东)产业互联网有限公司 一种数据中心机房内部多点能耗检测与动态调节系统
CN114901057A (zh) * 2022-07-12 2022-08-12 联通(广东)产业互联网有限公司 一种数据中心机房内部多点能耗检测与动态调节系统

Also Published As

Publication number Publication date
CN109714400B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN109714400A (zh) 一种面向容器集群的能耗优化资源调度系统及其方法
Wan et al. Application deployment using Microservice and Docker containers: Framework and optimization
Mustafa et al. Resource management in cloud computing: Taxonomy, prospects, and challenges
Li et al. Online optimization for scheduling preemptable tasks on IaaS cloud systems
Liu et al. Resource preprocessing and optimal task scheduling in cloud computing environments
Fox et al. Energy efficient scheduling of parallelizable jobs
Zhang et al. A statistical based resource allocation scheme in cloud
Mousavi Nik et al. Task replication to improve the reliability of running workflows on the cloud
Hamid et al. Comparative analysis of task level heuristic scheduling algorithms in cloud computing
Than et al. Energy-saving resource allocation in cloud data centers
Chen et al. Research on workflow scheduling algorithms in the cloud
Kim et al. Scale-Train: A Scalable DNN Training Framework for a Heterogeneous GPU Cloud
Qu et al. Improving the energy efficiency and performance of data-intensive workflows in virtualized clouds
Tang et al. Edge computing energy-efficient resource scheduling based on deep reinforcement learning and imitation learning
Zhang et al. Learning driven parallelization for large-scale video workload in hybrid CPU-GPU cluster
Menouer et al. Containers scheduling consolidation approach for cloud computing
Liu A Programming Model for the Cloud Platform
Park et al. A fast hybrid time-synchronous/event approach to parallel discrete event simulation of queuing networks
Garrido et al. Continuous-action reinforcement learning for memory allocation in virtualized servers
Jin et al. Adaptive and optimized agent placement scheme for parallel agent‐based simulation
Zhang et al. A makespan-optimized task-level scheduling strategy for cloud workflow systems
Zhao et al. A holistic cross-layer optimization approach for mitigating stragglers in in-memory data processing
Tan et al. Cloudless-Training: A Framework to Improve Efficiency of Geo-Distributed ML Training
Zhao et al. Multitask oriented GPU resource sharing and virtualization in cloud environment
Rubab et al. Proactive job scheduling and migration using artificial neural networks for volunteer grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant