CN109713696A - 考虑用户行为的电动汽车光伏充电站优化调度方法 - Google Patents

考虑用户行为的电动汽车光伏充电站优化调度方法 Download PDF

Info

Publication number
CN109713696A
CN109713696A CN201811332993.7A CN201811332993A CN109713696A CN 109713696 A CN109713696 A CN 109713696A CN 201811332993 A CN201811332993 A CN 201811332993A CN 109713696 A CN109713696 A CN 109713696A
Authority
CN
China
Prior art keywords
battery
electric car
power
discharge
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811332993.7A
Other languages
English (en)
Other versions
CN109713696B (zh
Inventor
罗平
程晟
陈潇瑞
姜淏予
闫文乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou E&c Electric Power Equipment Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201811332993.7A priority Critical patent/CN109713696B/zh
Publication of CN109713696A publication Critical patent/CN109713696A/zh
Application granted granted Critical
Publication of CN109713696B publication Critical patent/CN109713696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种考虑用户行为的电动汽车光伏充电站优化调度方法,也就是只有当购电电价高于车载蓄电池放电损耗时,电动汽车才给电网供电。为此,本发明根据实测数据,利用B样条曲线经过初步拟合和局部修正两个步骤分别建立了放电深度和环境温度对蓄电池循环寿命影响的数学模型,并利用放电深度因子和温度因子综合考虑两者对蓄电池循环寿命的影响,从而得到车载蓄电池每次放电行为所对应的放电损耗。在此基础上,以储能系统的出力和与大电网的交互功率为优化变量,系统运行成本最小为优化目标,建立了该系统的日前优化调度模型,并采用自适应遗传优化算法对其进行求解。本发明对延长电动汽车蓄电池的使用寿命和推动可再生能源发展有一定的意义。

Description

考虑用户行为的电动汽车光伏充电站优化调度方法
技术领域
本发明属于电动汽车光伏充电站技术领域,具体涉及考虑用户行为的电动汽车光伏充电站优化调度方法。
背景技术
随着电动汽车产量的迅速增长,其对应的充电设施规划与建设问题也引起了社会各界的广泛关注。电动汽车光伏充电站作为城市环境下实现可再生能源就地利用的典型方式,能够有效提高可再生能源利用率,降低碳排放量。在国内外多地都已开展了相关的示范工程建设。
电动汽车光伏充电站系统通常由光伏电池组、储能系统、中央控制单元、DC-DC变换器、AC-DC变流器、直流母线和充电桩等部分组成。当电动汽车规模化后,为了充分发挥电动汽车光伏充电站的效益,需根据光伏发电情况和用户充电需求,执行合理的优化运行策略。随着智能量测系统的发展和普及,电动汽车不再单纯的只从大电网购电,而且可以在电价高峰时段对大电网进行售电(Vehicle to grid,V2G)。在电动汽车用户可以与大电网进行双向电能互动的情况下,需要考虑电动汽车蓄电池寿命对用户选择V2G模式的影响。而现有的电动汽车光伏充电站优化调度研究中,电动汽车蓄电池储能寿命损耗模型较为复杂,并且在电动汽车用户V2G行为中对电动汽车蓄电池寿命损耗的影响考虑的不够。
发明内容
本发明针对电动汽车光伏充电站系统的日前优化调度问题,基于蓄电池的实测数据,利用B样条插值函数,建立蓄电池的循环使用寿命模型。在此基础上,提出了考虑V2G模式下电动汽车蓄电池寿命对用户放电行为影响的日前优化调度方法。电动汽车光伏充电站位于居民区,以慢充的方式给电动汽车提供电能。电网电价采用峰谷分时电价,在电价高峰时段电动汽车可以向大电网售电获得收益。具体按照以下步骤实施:
步骤1、由以往的光伏发电数据和天气预报数据预测第二天电动汽车光伏充电站每个时刻的光伏发电功率。
步骤2、根据历史数据的分析,给出每台电动汽车蓄电池初始SOC状态、到达和停泊时间。
步骤3、建立电动汽车蓄电池循环寿命与蓄电池的放电深度和环境温度之间的函数关系式。为了得到蓄电池的循环寿命与蓄电池放电深度和环境温度之间的关系,利用B样条曲线根据实测的实验数据分别对其进行拟合。为了提高曲线拟合的精度,拟合的过程都分为初次拟合和局部修正两个环节。
首先利用B样条曲线拟合蓄电池放电深度与循环寿命之间的关系。由于在众多影响因素中,蓄电池放电深度对循环寿命的影响最大,因此选择三次B样条曲线对其进行拟合和修正。根据实测的实验数据,基于三次B样条对其进行初次拟合,可以得到循环寿命与实时放电深度D之间的函数关系式如(1)所示:
LDb(D)=α0·D41·D32·D23D+α4 (1)
式中,LDb为初步拟合的受放电深度影响的蓄电池循环寿命,α0,α1,α2,α3和α4为对应的系数。
将拟合曲线与实测数据进行对比,找到拟合误差大于E的区域。对拟合误差大于E的区域,在初次拟合得到的曲线上对应的区域选择采样点,再次利用三次B样条曲线基于这些采样点和该区间原有的实验数据进行局部修正拟合,直到拟合结果误差小于E’的范围。从而得到局部拟合曲线的表达式如(2)所示:
λ1(D)=ε0·D41·D32·D23D+ε4 (2)
式中,λ1为局部修正的受放电深度影响的蓄电池循环寿命,εi为局部修正拟合后对应的系数,其中i=0,1,2,3,4。此时,D的取值范围为拟合误差大于E的区域。其他取值范围内λ1(D)=0。
因此,最终蓄电池放电深度D与蓄电池循环寿命LD的函数关系式如(3)所示:
LD=LDb1 (3)
同理,利用二次B样条曲线得到蓄电池环境温度T与循环寿命之间的初始拟合函数关系为
式中,LTb为初步拟合的受温度影响的蓄电池循环寿命,为拟合多项式的系数,其中t=0,1,2。
通过拟合曲线与实测数据的对比,找到拟合误差大于S的区域,对拟合误差大于S的区域,在初次拟合得到的曲线上对应的区域选择采样点,再次利用二次B样条曲线基于这些采样点和该区间原有的实验数据进行局部修正拟合,直到拟合结果误差降低到3%以下。得到的局部修正拟合曲线的表达式如(5)所示:
λ2=κ0·T21·T+κ2 (5)
其中,λ2为受环境温度影响的蓄电池循环寿命,κj为拟合多项式的系数,其中j=0,1,2。
由此,最终得到的环境温度T与蓄电池循环寿命LT关系式如(6)所示:
LT=LTb2 (6)
综合放电深度和温度对镍氢蓄电池的循环寿命的影响,采用权重的方法,定义蓄电池循环寿命的放电深度因子ηDOD如式(7)所示,蓄电池循环寿命的温度因子ηTEM如式(8)所示,则温度和放电深度共同影响下蓄电池循环寿命L的计算方法如式(9)所示。
L=ηDOD·ηTEMLN (9)
式(7)-(9)中,LN为蓄电池的额定循环寿命。
步骤4、对于在电价高峰时段停靠在电动汽车光伏充电站的电动汽车,计算每台电动汽车蓄电池此时V2G的放电损耗费用W。W可由式(10)-(11)计算得到。
Γ=L·CR (11)
式中,CZ为蓄电池的初始投资;Γ为蓄电池的实际吞吐量,CR为蓄电池的额定容量。
将该费用与电网提供的购电电价进行比较,若是电动汽车的放电损耗费用高于购电电价,电动汽车用户将不参与V2G模式;反之,则电动汽车用户参与V2G模式,在高峰期给电网供能,缓解电网供电压力,用户也可通过此途径获得收益。从而可以确定所有参与V2G的车辆台数。
步骤5、而对于非高峰电价到达光伏充电站的电动汽车,是不参与V2G的。根据每辆电动汽车蓄电池自身荷电状态SOC,判断是否需要充电。电动汽车充电采用恒功率充电计算每一时刻需要充电的电动汽车台数,进而确定各个时刻的充电负荷。
步骤6、比较每个时刻光伏发电功率与电动汽车充电负荷的大小。若光伏发电功率大于电动汽车充电负荷时,多余的光伏发电功率优先给光伏充电站自带的储能系统充电。若储能系统充满后仍有剩余功率,则光伏充电站向大电网进行售点;反之当光伏发电功率小于电动汽车充电负荷时,则优先利用储能系统给电动汽车进行充电,若仍不能满足充电负荷的需求时,则从大电网进行购电以满足光伏充电站功率平衡的要求。
步骤7、本发明以储能系统蓄电池每个时刻的SOC为优化变量,以最小化光伏充电站运营成本F为调度目标,其中光伏充电站的运营成本包括光伏发电成本、储能系统充放电成本、电动汽车充放电成本和向大电网买电和卖电的成本,如式(12)所示。
式中,C1、C2分别为每kW功率对应的光伏发电成本、储能设备出力成本;C3为电动汽车参与V2G每kW功率的收益费用;PPV,t为第t个时刻光伏系统的发电功率;PCD,t为第t个时刻蓄电池的出力;Psell,t为第t个时刻的卖电功率;Pbuy,t为第t个时刻的买电功率;Pevsell,t为第t个时刻V2G的卖电功率。
该优化调度问题的约束分为两类:一是设备模型约束,包括储能系统蓄电池和电动汽车蓄电池,为防止储能设备过充和过放的发生,其荷电状态SOC应满足上、下限的限制约束。另一类约束为系统运行约束,即系统在运行中应该满足的约束,这类约束包括系统运行时每个时刻都应该满足功率平衡约束和在调度周期内的初始和终止时刻储能系统蓄电池的SOC应当保持一致。
步骤8、采用自适应遗传算法在寻优过程中对遗传参数进行自适应调整,并利用罚函数法来处理约束条件,得到该优化问题对应的优化变量和目标函数值,即储能系统蓄电池和大电网在各时段的出力以及光伏充电站总的运行成本。
本发明方法具有的优点及有益结果为:
1)本发明中电动汽车参与V2G模式时,考虑了电动汽车用户对电动汽车蓄电池寿命的担忧,即电动汽车还是优先满足用户的使用需求,在此基础上才会参与V2G模式提高用户受益。因此本发明中用户通过比较电动汽车蓄电池的放电损耗与电网购电电价决定电动汽车是否参与V2G模式,尽可能延长电动汽车蓄电池的循环使用寿命。在电动汽车光伏充电站的日前优化调度问题中,以此方法来考虑电动汽车蓄电池的循环寿命对用户充电行为的影响,使得优化调度的结果更接近实际。
2)本发明为了准确衡量电动汽车蓄电池每次放电行为的损耗,不仅考虑了放电深度对蓄电池循环寿命的影响,还考虑环境温度对蓄电池循环寿命的影响。利用B样条插值建立了放电深度和环境温度对蓄电池循环寿命影响的数学模型,只需要少量实测数据点就可以得到较为精确的蓄电池循环寿命计算模型,从而简化了蓄电池循环寿命的计算。尽管现有文献中已有蓄电池循环寿命的模型,但是由于数据难以获取,模型过于复杂,限制了它们的使用范围。
3)本发明采用自适应遗传算法在寻优过程中对遗传参数进行自适应调整,并利用罚函数法来处理约束条件,从而提高了算法的计算速度和全局搜索能力。
附图说明
图1是本发明所研究的电动汽车光伏充电站的结构图;
图2是本发明的一个具体实例中预测得到的光伏发电功率曲线;
图3是本发明的一个具体实例中20台电动汽车每台的到达和离开的时间散点图;
图4是本发明对某种镍氢蓄电池放电深度与循环寿命关系的初次拟合曲线;
图5是本发明的对某种镍氢蓄电池放电深度与循环寿命关系的局部修正后拟合曲线;
图6是本发明对某种镍氢蓄电池环境温度与循环寿命关系的初次拟合曲线;
图7是本发明的对某种镍氢蓄电池环境温度与循环寿命关系的局部修正后拟合曲线;
图8本发明的一个具体实例中两种案例下的充电负荷曲线;
图9是本发明的一个具体实例案例2中24小时储能系统的SOC、充放电功率和与大电网的交互功率图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但不应该理解为本发明上述主体范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
本实施例中,电动汽车光伏充电站的结构如图1所示。该充电站包括20个充电桩,光伏发电系统额定功率100kW,存储系统额定容量300kWh。储能系统蓄电池的最小和最大SOC限制为0.2和0.95。光伏充电桩对电动汽车充电的恒定功率为3kW/h,光伏发电系统发电的价格为0.4Yuan/kWh,每次充放电的储能系统成本为0.45Yuan/kWh,电动汽车用户参与V2G模式在高峰期的补偿价格为0.73Yuan/kWh。电动汽车蓄电池的相对参数如表1所示。
表1电动汽车蓄电池参数
参数 数值
单台电动汽车蓄电池电压/V 2.1
单台电动汽车蓄电池最大容量(KWh) 30
电动汽车蓄电池和储能蓄电池最小SOC值 0.20
电动汽车蓄电池和储能蓄电池最大SOC值 0.95
电动汽车蓄电池额定放电深度 0.5
电动汽车蓄电池初始投资/Yuan 25000
配电网的电价是采用峰值和谷值时间电价机制,如表2所示。高峰时间为上午10:00至下午2:00以及下午5:00到下午7:00,谷值时间是从早上0:00到早上6:00。
表2不同时期配电网的电价
步骤1、由以往的光伏发电数据和天气预报数据预测第二天电动汽车光伏充电站每个时刻的光伏发电功率如图2所示。
步骤2、根据历史数据的分析,假设电动汽车蓄电池的初始SOC服从0.4和0.6之间的均匀分布,并且储能系统的初始SOC服从0.2和0.95之间的均匀分布。前16台电动汽车的到达和离开时间在第二天的16:00-19:00和14:00-16:00之间均匀分布,后4台电动汽车的到达和离开时间在第二天的8:00-10:00和5:00-7:00之间均匀分布,如图3所示。
步骤3、建立电动汽车蓄电池循环寿命与蓄电池的放电深度和环境温度之间的函数关系式。
本发明研究的是以镍氢蓄电池作为动力的电动汽车。镍氢蓄电池循环寿命与蓄电池放电深度之间的实测数据如图4中圆圈所示。利用三次B样条对实测数据进行拟合得到如式(1)所示表达式中的各个系数分别为:α0=40020,α1=-106530,α2=103910,α3=-45740,α4=8860,并将其也画在图4中。
通过拟合曲线与实测数据的对比,可以看出在放电深度为0.2至0.4之间的拟合值与实际测量值之间存在超过10%的误差,因此需要对该区域进行拟合曲线的局部修正。在放电深度为0.2至0.4之间通过式(1)所得到的曲线进行多次选取采样点,结合该区域原有的实测数据,对该区域再利用三次B样条曲线进行局部修正拟合,从而得到修正曲线表达式(2)中各系数分别为:ε0=12820,ε1=-30350,ε2=24770,ε3=-7870,ε4=720,各个点的拟合结果误差都降低到了3%以下。
最终蓄电池放电深度D与电动汽车蓄电池循环寿命LD的函数关系式可由式(3)计算出,拟合曲线如图5所示。
镍氢蓄电池循环寿命与电动汽车蓄电池环境温度之间的实测数据如图6中圆圈所示。利用二次B样条对实测数据进行拟合得到如式(4)所示表达式中的各个系数分别为:并将其也画在图6中。
通过拟合曲线与实测数据的对比,可以看出在温度为30摄氏度和45摄氏度附近拟合值与实际测量值之间存在超过3%偏差,在温度为30摄氏度和45摄氏度附近对式(4)得到的曲线进行多次选取采样点,结合该区域原有的实测数据,对该区域再利用二次B样条曲线进行局部修正拟合,从而得到修正曲线表达式(5)中各系数分别为:κ0=-0.1,κ1=2.1,κ2=-13.6,各个点的拟合结果误差降低到1%以内。
最终得到的环境温度T与电动汽车蓄电池循环寿命LT关系式如(6)所示,最终拟合曲线如图7所示。
步骤4、对于在电价高峰时段停靠在电动汽车光伏充电站的电动汽车,根据式(7)-(11)计算每台电动汽车蓄电池此时参与V2G的放电损耗费用W。将该费用与电网提供的购电电价进行比较,若是电动汽车的放电损耗费用高于购电电价,电动汽车用户将不参与V2G模式;反之,则电动汽车用户参与V2G模式,在高峰期给电网供能,缓解电网供电压力,用户也可通过此途径获得收益。从而可以确定所有参与V2G的车辆台数。
步骤5、对于非高峰电价到达光伏充电站的电动汽车,是不参与V2G的。根据每辆电动汽车蓄电池自身荷电状态(State of Charge,SOC),判断是否需要充电。由于充电站中的充电桩均采用恒功率直充的方式给电动汽车充电,因此根据每个时刻停留在充电站电动汽车的充放状态,即可以确定每个时刻充电站的充电负荷。
步骤6、比较每个时刻光伏发电功率与电动汽车充电负荷的大小。若光伏发电功率大于电动汽车充电负荷时,多余的光伏发电功率优先给光伏充电站自带的储能系统充电。若储能系统充满后仍有剩余功率,则光伏充电站向大电网进行售点;反之当光伏发电功率小于电动汽车充电负荷时,则优先利用储能系统给电动汽车进行充电,若仍不能满足充电负荷的需求时,则从大电网进行购电以满足光伏充电站功率平衡的要求。
步骤7、本发明以储能系统蓄电池每个时刻的SOC为优化变量,以最小化光伏充电站运营成本F为调度目标,其中光伏充电站的运营成本包括光伏发电成本、储能系统充放电成本、电动汽车充放电成本和向大电网买电和卖电的成本,如式(12)所示。
式中,C1、C2分别为每kW功率对应的光伏发电成本、储能设备出力成本;C3为电动汽车参与V2G每kW功率的收益费用,这些数据均为已知。PPV,t为第t个时刻光伏系统的发电功率;PCD,t为第t个时刻蓄电池的出力;Psell,t为第t个时刻的卖电功率;Pbuy,t为第t个时刻的买电功率;Pevsell,t为第t个时刻V2G的卖电功率。
该优化调度问题的约束分为两类:一是设备模型约束,包括储能系统蓄电池和电动汽车蓄电池,为防止储能设备过充和过放的发生,其荷电状态SOC应满足上、下限的限制约束。另一类约束为系统运行约束,即系统在运行中应该满足的约束,这类约束包括系统运行时每个时刻都应该满足功率平衡约束和在调度周期内的初始和终止时刻储能系统蓄电池的SOC应当保持一致。SOC的限制前面也已给出。
步骤8、采用自适应遗传算法在寻优过程中对遗传参数进行自适应调整,并利用罚函数法来处理约束条件,得到该优化问题对应的优化变量和目标函数值,即储能系统蓄电池和大电网在各时段的出力以及光伏充电站总的运行成本。
在本发明中,研究了两种不同的案例。在案例1中,当电动汽车用户参与V2G模式时,不考虑放电对电动汽车蓄电池循环寿命的影响。但在案例2中,电动汽车用户将在比较补偿电价与每次放电对应的电动车蓄电池寿命损失成本后,决定是否参与V2G模式,即本发明所考虑的情况。
通过考虑20台电动汽车蓄电池的充电和放电状态,可以获得电动汽车蓄电池的负荷曲线。如图8所示,两条曲线分别代表案例1和案例2中的充电负载。
从图8中可以看出,在案例1的高峰期间,所有电动汽车均参与V2G模式。因此在这些时段期间充电负载为0kW。但在案例2中,电动汽车蓄电池的循环寿命损失成本将影响用户参与V2G模式的意愿,因此此时电动汽车充电负荷要高于同一时刻的情况1中的充电负荷。另一方面,由于在高峰时段期间有较少的放电功率,在其他时段,案例2中的电动汽车的充电负载小于案例1中的充电负载。
本发明所考虑案例得到的24小时储能系统的SOC、充放电功率和与大电网的交互功率结果如图9所示,光伏充电站每日最低运营成本为320.33元。
为了直观的表现在V2G模式下电动汽车每次放电相对应的蓄电池寿命损失的影响,在高峰时段的第16台和第17台电动汽车蓄电池电池放电损耗成本如表3所示。
表3第16台和第17台电动车在高峰时段的电池放电损失成本
从表3中可以很容易地得出结论,第16台电动汽车将不会在13:00和14:00参与V2G模式而第17台电动汽车将不会在14:00和19:00参与V2G模式,因为电池放电成本损失在这些时刻损耗价格大于补偿价格。还可以发现,电动汽车蓄电池的放电成本会随着放电次数的增加而增加。因此,电动汽车用户应减少放电次数,以延长电动车电池的使用寿命。当不考虑蓄电池放电损耗时,第16台电动汽车蓄电池的循环寿命是900,而在考虑电池的放电损失之后蓄电池的循环寿命延长到1214。
从以上分析可以看出,考虑放电对电动汽车蓄电池寿命影响将关系到用户参与V2G模式的意愿,从而影响光伏充电站的运行成本和电动汽车蓄电池的循环寿命。因此,在光伏充电站的实际操作调度中,案例2比案例1的优化调度结果更合理,更实用。

Claims (1)

1.考虑用户行为的电动汽车光伏充电站优化调度方法,该方法具体包括以下步骤:
步骤1、由以往的光伏发电数据和天气预报数据预测第二天电动汽车光伏充电站每个时刻的光伏发电功率。
步骤2、根据历史数据的分析,给出每台电动汽车蓄电池初始SOC状态、到达和停泊时间。
步骤3、建立电动汽车蓄电池循环寿命与蓄电池的放电深度和环境温度之间的函数关系式。为了得到蓄电池的循环寿命与蓄电池放电深度和环境温度之间的关系,利用B样条曲线根据实测的实验数据分别对其进行拟合。为了提高曲线拟合的精度,拟合的过程都分为初次拟合和局部修正两个环节。
首先利用B样条曲线拟合蓄电池放电深度与循环寿命之间的关系。由于在众多影响因素中,蓄电池放电深度对循环寿命的影响最大,因此选择三次B样条曲线对其进行拟合和修正。根据实测的实验数据,基于三次B样条对其进行初次拟合,得到循环寿命与实时放电深度D之间的函数关系式如(1)所示:
LDb(D)=α0·D41·D32·D23D+α4(1)
式中,LDb为初步拟合的受放电深度影响的蓄电池循环寿命,α0,α1,α2,α3和α4为对应的系数。
将拟合曲线与实测数据进行对比,找到拟合误差大于E的区域。对拟合误差大于E的区域,在初次拟合得到的曲线上对应的区域选择采样点,再次利用三次B样条曲线基于这些采样点和该区间原有的实验数据进行局部修正拟合,直到拟合结果误差小于E’的范围。从而得到局部拟合曲线的表达式如(2)所示:
λ1(D)=ε0·D41·D32·D23D+ε4 (2)
式中,λ1为局部修正的受放电深度影响的蓄电池循环寿命,εi为局部修正拟合后对应的系数,其中i=0,1,2,3,4。此时,D的取值范围为拟合误差大于E的区域。其他取值范围内λ1(D)=0。
因此,最终蓄电池放电深度D与蓄电池循环寿命LD的函数关系式如(3)所示:
LD=LDb1 (3)
同理,利用二次B样条曲线得到蓄电池环境温度T与循环寿命之间的初始拟合函数关系为
式中,LTb为初步拟合的受温度影响的蓄电池循环寿命,为拟合多项式的系数,其中t=0,1,2。
通过拟合曲线与实测数据的对比,找到拟合误差大于S的区域,对拟合误差大于S的区域,在初次拟合得到的曲线上对应的区域选择采样点,再次利用二次B样条曲线基于这些采样点和该区间原有的实验数据进行局部修正拟合,直到拟合结果误差降低到3%以下。得到的局部修正拟合曲线的表达式如(5)所示:
λ2=κ0·T21·T+κ2 (5)
其中,λ2为受环境温度影响的蓄电池循环寿命,κj为拟合多项式的系数,其中j=0,1,2。
由此,最终得到的环境温度T与蓄电池循环寿命LT关系式如(6)所示:
LT=LTb2 (6)
综合放电深度和温度对镍氢蓄电池的循环寿命的影响,采用权重的方法,定义蓄电池循环寿命的放电深度因子ηDOD如式(7)所示,蓄电池循环寿命的温度因子ηTEM如式(8)所示,则温度和放电深度共同影响下蓄电池循环寿命L的计算方法如式(9)所示。
L=ηDOD·ηTEMLN (9)
式(7)-(9)中,LN为蓄电池的额定循环寿命。
步骤4、对于在电价高峰时段停靠在电动汽车光伏充电站的电动汽车,计算每台电动汽车蓄电池此时V2G的放电损耗费用W。W由式(10)-(11)计算得到。
Γ=L·CR (11)
式中,CZ为蓄电池的初始投资;Γ为蓄电池的实际吞吐量,CR为蓄电池的额定容量。
将该费用与电网提供的购电电价进行比较,若是电动汽车的放电损耗费用高于购电电价,电动汽车用户将不参与V2G模式;反之,则电动汽车用户参与V2G模式,在高峰期给电网供能,缓解电网供电压力,用户也可通过此途径获得收益。从而确定所有参与V2G的车辆台数。
步骤5、而对于非高峰电价到达光伏充电站的电动汽车,是不参与V2G的。根据每辆电动汽车蓄电池自身荷电状态SOC,判断是否需要充电。电动汽车充电采用恒功率充电计算每一时刻需要充电的电动汽车台数,进而确定各个时刻的充电负荷。
步骤6、比较每个时刻光伏发电功率与电动汽车充电负荷的大小。若光伏发电功率大于电动汽车充电负荷时,多余的光伏发电功率优先给光伏充电站自带的储能系统充电。若储能系统充满后仍有剩余功率,则光伏充电站向大电网进行售点;反之当光伏发电功率小于电动汽车充电负荷时,则优先利用储能系统给电动汽车进行充电,若仍不能满足充电负荷的需求时,则从大电网进行购电以满足光伏充电站功率平衡的要求。
步骤7、以储能系统蓄电池每个时刻的SOC为优化变量,以最小化光伏充电站运营成本F为调度目标,其中光伏充电站的运营成本包括光伏发电成本、储能系统充放电成本、电动汽车充放电成本和向大电网买电和卖电的成本,如式(12)所示。
式中,C1、C2分别为每kW功率对应的光伏发电成本、储能设备出力成本;C3为电动汽车参与V2G每kW功率的收益费用;PPV,t为第t个时刻光伏系统的发电功率;PCD,t为第t个时刻蓄电池的出力;Psell,t为第t个时刻的卖电功率;Pbuy,t为第t个时刻的买电功率;Pevsell,t为第t个时刻V2G的卖电功率。
该优化调度问题的约束分为两类:一是设备模型约束,包括储能系统蓄电池和电动汽车蓄电池,为防止储能设备过充和过放的发生,其荷电状态SOC应满足上、下限的限制约束。另一类约束为系统运行约束,即系统在运行中应该满足的约束,这类约束包括系统运行时每个时刻都应该满足功率平衡约束和在调度周期内的初始和终止时刻储能系统蓄电池的SOC应当保持一致。
步骤8、采用自适应遗传算法在寻优过程中对遗传参数进行自适应调整,并利用罚函数法来处理约束条件,得到该优化问题对应的优化变量和目标函数值,即储能系统蓄电池和大电网在各时段的出力以及光伏充电站总的运行成本。
CN201811332993.7A 2018-11-09 2018-11-09 考虑用户行为的电动汽车光伏充电站优化调度方法 Active CN109713696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811332993.7A CN109713696B (zh) 2018-11-09 2018-11-09 考虑用户行为的电动汽车光伏充电站优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811332993.7A CN109713696B (zh) 2018-11-09 2018-11-09 考虑用户行为的电动汽车光伏充电站优化调度方法

Publications (2)

Publication Number Publication Date
CN109713696A true CN109713696A (zh) 2019-05-03
CN109713696B CN109713696B (zh) 2020-09-01

Family

ID=66254202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811332993.7A Active CN109713696B (zh) 2018-11-09 2018-11-09 考虑用户行为的电动汽车光伏充电站优化调度方法

Country Status (1)

Country Link
CN (1) CN109713696B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048462A (zh) * 2019-05-17 2019-07-23 广东工业大学 一种并网型光伏储能系统的能量调度方法、装置及系统
CN110165687A (zh) * 2019-05-20 2019-08-23 南京邮电大学 一种基于遗传算法的电动汽车快速充电站最优化设计方法
CN110208717A (zh) * 2019-05-08 2019-09-06 复变时空(武汉)数据科技有限公司 基于大数据的动力电池寿命预测方法
CN110281809A (zh) * 2019-05-28 2019-09-27 北京航盛新能科技有限公司 一种基于粒子群优化算法的电动汽车v2g控制系统
CN110428105A (zh) * 2019-08-01 2019-11-08 国网江苏省电力有限公司苏州供电分公司 一种电动公交车日前充放电优化调度方法
CN110503246A (zh) * 2019-07-30 2019-11-26 南方电网科学研究院有限责任公司 一种用电区域的用电费用优化模型的构建方法及装置
CN110739690A (zh) * 2019-10-31 2020-01-31 山东大学 考虑电动汽车快充站储能设施的配电网优化调度方法及系统
CN111355259A (zh) * 2020-01-19 2020-06-30 中国电力科学研究院有限公司 一种光储充电站的能量协调控制方法
CN111404185A (zh) * 2020-03-20 2020-07-10 阳光电源股份有限公司 一种充电系统控制方法、控制器及系统
CN111724080A (zh) * 2020-06-29 2020-09-29 南京工程学院 一种考虑电池组健康状态平衡的移动充电桩群体调度方法
CN112103911A (zh) * 2020-11-19 2020-12-18 国网江西省电力有限公司电力科学研究院 一种用于继电保护系统的隐藏故障判别方法及装置
CN112906234A (zh) * 2021-03-09 2021-06-04 廊坊市阳光建设工程质量检测有限公司 一种混凝土强度回弹法测强曲线数据回归的方法
CN113111584A (zh) * 2021-04-15 2021-07-13 天津大学 一种考虑电动汽车充电负荷的建筑蓄电池配置方法
CN113159578A (zh) * 2021-04-22 2021-07-23 杭州电子科技大学 基于强化学习的大型电动汽车充电站的充电优化调度方法
CN113991719A (zh) * 2021-12-03 2022-01-28 华北电力大学 一种电动船舶参与的海岛群用能优化调度方法及系统
CN114566989A (zh) * 2022-02-28 2022-05-31 广东工业大学 电动汽车v2g能量交换方法、系统、介质及设备
CN116385209A (zh) * 2023-06-06 2023-07-04 国网安徽省电力有限公司经济技术研究院 中低压直流配电网储能系统接入效益评估方法
CN117040091A (zh) * 2023-10-10 2023-11-10 国网天津市电力公司营销服务中心 光伏发电与电动汽车充电站联动系统、方法及装置
CN113138344B (zh) * 2021-04-23 2024-03-05 安徽理工大学 一种基于分数阶扩展卡尔曼滤波算法的soc估计方法
DE102022130660A1 (de) 2022-11-21 2024-05-23 Bayerische Motoren Werke Aktiengesellschaft Bidirektionales Laden eines Elektrofahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385660A (zh) * 2010-09-03 2012-03-21 湘潭大学 一种充电站电池soc的估计方法
CN103679302A (zh) * 2013-12-31 2014-03-26 电子科技大学 一种基于电动汽车储能特性的家庭用电优化方法
CN105512475A (zh) * 2015-12-03 2016-04-20 电子科技大学 一种参与电网调度的电动汽车电池损耗支出计算方法
CN106649962A (zh) * 2016-10-13 2017-05-10 哈尔滨工业大学 一种考虑电池寿命的电动汽车动力电池参与电力系统调频建模方法
US20180147944A1 (en) * 2016-11-26 2018-05-31 Henry Allen Perkins Superaaacharge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385660A (zh) * 2010-09-03 2012-03-21 湘潭大学 一种充电站电池soc的估计方法
CN103679302A (zh) * 2013-12-31 2014-03-26 电子科技大学 一种基于电动汽车储能特性的家庭用电优化方法
CN105512475A (zh) * 2015-12-03 2016-04-20 电子科技大学 一种参与电网调度的电动汽车电池损耗支出计算方法
CN106649962A (zh) * 2016-10-13 2017-05-10 哈尔滨工业大学 一种考虑电池寿命的电动汽车动力电池参与电力系统调频建模方法
US20180147944A1 (en) * 2016-11-26 2018-05-31 Henry Allen Perkins Superaaacharge

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208717A (zh) * 2019-05-08 2019-09-06 复变时空(武汉)数据科技有限公司 基于大数据的动力电池寿命预测方法
CN110048462B (zh) * 2019-05-17 2023-09-12 广东工业大学 一种并网型光伏储能系统的能量调度方法、装置及系统
CN110048462A (zh) * 2019-05-17 2019-07-23 广东工业大学 一种并网型光伏储能系统的能量调度方法、装置及系统
CN110165687A (zh) * 2019-05-20 2019-08-23 南京邮电大学 一种基于遗传算法的电动汽车快速充电站最优化设计方法
CN110165687B (zh) * 2019-05-20 2022-08-26 南京邮电大学 一种基于遗传算法的电动汽车快速充电站最优化设计方法
CN110281809B (zh) * 2019-05-28 2021-06-08 北京航盛新能科技有限公司 一种基于粒子群优化算法的电动汽车v2g控制系统
CN110281809A (zh) * 2019-05-28 2019-09-27 北京航盛新能科技有限公司 一种基于粒子群优化算法的电动汽车v2g控制系统
CN110503246A (zh) * 2019-07-30 2019-11-26 南方电网科学研究院有限责任公司 一种用电区域的用电费用优化模型的构建方法及装置
CN110428105A (zh) * 2019-08-01 2019-11-08 国网江苏省电力有限公司苏州供电分公司 一种电动公交车日前充放电优化调度方法
CN110428105B (zh) * 2019-08-01 2022-07-05 国网江苏省电力有限公司苏州供电分公司 一种电动公交车日前充放电优化调度方法
CN110739690A (zh) * 2019-10-31 2020-01-31 山东大学 考虑电动汽车快充站储能设施的配电网优化调度方法及系统
CN111355259A (zh) * 2020-01-19 2020-06-30 中国电力科学研究院有限公司 一种光储充电站的能量协调控制方法
CN111404185A (zh) * 2020-03-20 2020-07-10 阳光电源股份有限公司 一种充电系统控制方法、控制器及系统
CN111724080A (zh) * 2020-06-29 2020-09-29 南京工程学院 一种考虑电池组健康状态平衡的移动充电桩群体调度方法
CN112103911A (zh) * 2020-11-19 2020-12-18 国网江西省电力有限公司电力科学研究院 一种用于继电保护系统的隐藏故障判别方法及装置
CN112906234A (zh) * 2021-03-09 2021-06-04 廊坊市阳光建设工程质量检测有限公司 一种混凝土强度回弹法测强曲线数据回归的方法
CN113111584A (zh) * 2021-04-15 2021-07-13 天津大学 一种考虑电动汽车充电负荷的建筑蓄电池配置方法
CN113159578A (zh) * 2021-04-22 2021-07-23 杭州电子科技大学 基于强化学习的大型电动汽车充电站的充电优化调度方法
CN113159578B (zh) * 2021-04-22 2022-05-20 杭州电子科技大学 基于强化学习的大型电动汽车充电站的充电优化调度方法
CN113138344B (zh) * 2021-04-23 2024-03-05 安徽理工大学 一种基于分数阶扩展卡尔曼滤波算法的soc估计方法
CN113991719A (zh) * 2021-12-03 2022-01-28 华北电力大学 一种电动船舶参与的海岛群用能优化调度方法及系统
CN113991719B (zh) * 2021-12-03 2023-11-24 华北电力大学 一种电动船舶参与的海岛群用能优化调度方法及系统
CN114566989A (zh) * 2022-02-28 2022-05-31 广东工业大学 电动汽车v2g能量交换方法、系统、介质及设备
CN114566989B (zh) * 2022-02-28 2022-08-23 广东工业大学 电动汽车v2g能量交换方法、系统、介质及设备
DE102022130660A1 (de) 2022-11-21 2024-05-23 Bayerische Motoren Werke Aktiengesellschaft Bidirektionales Laden eines Elektrofahrzeugs
CN116385209A (zh) * 2023-06-06 2023-07-04 国网安徽省电力有限公司经济技术研究院 中低压直流配电网储能系统接入效益评估方法
CN116385209B (zh) * 2023-06-06 2023-08-18 国网安徽省电力有限公司经济技术研究院 中低压直流配电网储能系统接入效益评估方法
CN117040091A (zh) * 2023-10-10 2023-11-10 国网天津市电力公司营销服务中心 光伏发电与电动汽车充电站联动系统、方法及装置
CN117040091B (zh) * 2023-10-10 2023-12-29 国网天津市电力公司营销服务中心 光伏发电与电动汽车充电站联动系统、方法及装置

Also Published As

Publication number Publication date
CN109713696B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN109713696A (zh) 考虑用户行为的电动汽车光伏充电站优化调度方法
Zheng et al. A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid
Yang et al. Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review
Li et al. An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties
Ke et al. Battery charging and discharging scheduling with demand response for an electric bus public transportation system
Bayram et al. Plug-in electric vehicle grid integration
Yu et al. A real time energy management for EV charging station integrated with local generations and energy storage system
CN109217290A (zh) 计及电动汽车充放电的微网能量优化管理方法
CN111717072B (zh) 电动汽车电池智能充电优化方法
CN116151486B (zh) 含储能系统的光伏充电站多时间尺度随机优化方法及装置
CN106786692A (zh) 一种基于分布式的电动汽车有序充电控制方法
Li et al. Multi-objective optimal operation of centralized battery swap charging system with photovoltaic
CN113799640A (zh) 适用于含电动汽车充电桩微电网的能量管理方法
Hajidavalloo et al. Energy cost minimization in an electric vehicle solar charging station via dynamic programming
CN105098810A (zh) 自适应式微网储能系统能量优化管理方法
Yi et al. An exploration of a probabilistic model for electric vehicles residential demand profile modeling
Terkes et al. An evaluation of optimal sized second-life electric vehicle batteries improving technical, economic, and environmental effects of hybrid power systems
Bhatti et al. Charging of electric vehicle with constant price using photovoltaic based grid-connected system
Ali et al. Multiobjective optimized smart charge controller for electric vehicle applications
CN113054671A (zh) 一种基于计及储能无功调节模型的配电网日前-实时优化控制方法
Nkounga et al. Sizing optimization of a charging station based on the multi-scale current profile and particle swarm optimization: application to power-assisted bikes
CN110362874B (zh) 一种光伏太阳能充电桩收益最优计算方法
Dang et al. Energy optimization in an eco-district with electric vehicles smart charging
Chatupromwong et al. Optimization of charging sequence of plug-in electric vehicles in smart grid considering user's satisfaction
Tutkun et al. Design of a PV Powered Charging Station for PHEVs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220607

Address after: 311121 Building 1, No. 6, Longquan Road, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province

Patentee after: HANGZHOU E&C ELECTRIC POWER EQUIPMENT Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right