CN109709507B - 基于失效率等级的智能电能表可靠性预计方法 - Google Patents

基于失效率等级的智能电能表可靠性预计方法 Download PDF

Info

Publication number
CN109709507B
CN109709507B CN201811580478.0A CN201811580478A CN109709507B CN 109709507 B CN109709507 B CN 109709507B CN 201811580478 A CN201811580478 A CN 201811580478A CN 109709507 B CN109709507 B CN 109709507B
Authority
CN
China
Prior art keywords
components
failure rate
electric energy
energy meter
intelligent electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811580478.0A
Other languages
English (en)
Other versions
CN109709507A (zh
Inventor
李翰斌
孟健
张德伟
吴大卫
杨宝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bozhon Precision Industry Technology Co Ltd
Original Assignee
Bozhon Precision Industry Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bozhon Precision Industry Technology Co Ltd filed Critical Bozhon Precision Industry Technology Co Ltd
Priority to CN201811580478.0A priority Critical patent/CN109709507B/zh
Publication of CN109709507A publication Critical patent/CN109709507A/zh
Application granted granted Critical
Publication of CN109709507B publication Critical patent/CN109709507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于失效率等级的智能电能表可靠性预计方法,包括:根据逻辑结构和物理结构建立智能电能表可靠性预计模型,对组成智能电能表的元器件进行分类,将自制元器件和现场使用失效率高的元器件划分为关键元器件,将高可靠性数量大的元器件划分为特殊元器件,将其它元器件划分为常规元器件;对常规元器件采用预计手册得到常规元器件工作失效率;采用现场数据根据建立的智能电能表可靠性预计模型计算关键元器件的工作失效率;对特殊元器件采用元器件计数法得到特殊元器件工作失效率;根据元器件与功能单元、电能表的逻辑关系得到功能单元的失效率和电能表的失效率。该方法可靠性预计结果的准确率高,简化了预计过程,提高了工程实用性。

Description

基于失效率等级的智能电能表可靠性预计方法
技术领域
本发明涉及一种智能电能表可靠性预计方法,具体地涉及一种基于失效率等级的智能电能表可靠性预计方法。
背景技术
电能表进行可靠性预计通常是套用一个标准或手册,这种“囫囵吞枣”式预计,没有考虑电能表现场使用与手册预计的差异,对电能表元器件相关信息了解不到位,忽略外界环境对电能表元器件可靠性的影响。在智能电能表内,使用到由电能表企业专门委托定制的部件,而这些部件往往失效率高。对于自制元器件和新型器件的可靠性预计,此类元器件在预计手册上没有参考数据。有些元器件实际工作应力与额定水平相当,存在过应力使用危险。高应力负荷下必将增加元器件的实际工作失效率。现场使用中这些元器件尤其重要,决定整机可靠性水平。
选用合适的可靠性预计手册是影响预计准确性的另一重要的因素,应用不同手册得到的电能表预计结果也是不同的。此外,智能电能表中电阻、电容可靠性较高的元器件存在数量较大。现有的预计方法预计过程繁琐且易操作失误。
发明内容
针对上述存在的技术问题,本发明目的是:提供了一种基于失效率等级的智能电能表可靠性预计方法,该方法可靠性预计结果的准确率高,切合现场且操作性强,不同失效率等级的元器件应用了不同的预计方法,根据现场失效数据推导关键元器件的工作失效率,对电阻、电容高可靠性数量大的元器件采用元器件计数法代替元器件应力法进行预计,简化了预计过程,提高了工程实用性。
本发明的技术方案是:
一种基于失效率等级的智能电能表可靠性预计方法,包括以下步骤:
S01:根据逻辑结构和物理结构建立智能电能表可靠性预计模型,根据逻辑结构将智能电能表划分为多个功能单元,功能单元之间采用串联模型连接,根据物理结构将智能电能表划分为元器件、单元和系统,元器件之间采用串联模型和并联模型连接;
S02:对组成智能电能表的元器件进行分类,将自制元器件和现场使用失效率高的元器件划分为关键元器件,将高可靠性数量大的元器件划分为特殊元器件,将其它元器件划分为常规元器件;
S03:对常规元器件采用预计手册得到常规元器件工作失效率;采用现场数据根据建立的智能电能表可靠性预计模型计算关键元器件的工作失效率;对特殊元器件采用元器件计数法得到特殊元器件工作失效率;
S04:根据元器件与功能单元的逻辑关系得到功能单元的失效率,根据功能单元与智能电能表的逻辑关系得到智能电能表的失效率。
优选的技术方案中,获取常规元器件的工作失效率的方法包括:
(1)预测分析智能电能表和潜在功能;
(2)定义失效;
(3)得到每个元器件的运行条件,包括:元器件两端的电压、供电电压、电流电路上的负载电流、周围温度和其他相关条件;分析元器件结构和冗余情况;
(4)确定每个元器件的应力剖面;
(5)从资料中选取每个元器件的参比失效率;
(6)运用相关应力因子计算每个元器件的失效率。
优选的技术方案中,还包括以下步骤:
分析并绘制整表、各单元、以及元器件失效率随温度变化的曲线图,得到电能表的温度敏感单元和元器件,对该单元和元器件釆用热设计;
识别出设计电路中元器件是否存在高应力、甚至过应力的情况,对设计方案进行修改,降低其电应力。
与现有技术相比,本发明的优点是:
该方法可靠性预计结果的准确率高。该方法切合现场且操作性强,不同失效率等级的元器件应用了不同的预计方法,根据现场失效数据推导关键元器件的工作失效率,对电阻、电容高可靠性数量大的元器件采用元器件计数法代替元器件应力法进行预计,简化了预计过程,提高了工程实用性。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明基于失效率等级的智能电能表可靠性预计方法的原理框图;
图2a、2b为本发明智能电能表连接模型;
图3为元器件分类预计示意图;
图4为本实施例中三种方法的可靠度曲线。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
实施例:
如图1所示,本发明的基于失效率等级的智能电能表可靠性预计方法,通过对智能电能表进行可靠性预计,可以计算出各单元和整表的可靠性指标。其中包含失效率λ、可靠度R、平均寿命MTTF以及可靠度寿命。本文选用IEC系列手册,结合现场数据的可靠性预计方法的思路,找到适合于工程化电能表可靠性预计的方法。可靠性预计之前,需要了解的信息有:智能电能表的电路原理、工作环境以及组成元器件相关信息。具体的预计方法包括如下步骤:
1.建立智能电能表的可靠性预计模型;
智能电能表可靠性预计模型可根据逻辑结构和物理结构划分。逻辑结构决定了电能表功能和电路原理的划分,为计量单元、电源单元、费控单元、通信单元、显示单环以及控制单元等等,当然还可以划分为其他的功能单元。智能电能表的物理结构较为简单,描述了电能表的三个基本层次:元器件、单元和系统。
如图2a、2b,对智能电能表开展可靠性预计时,可以假设为系统的组成部分同样重要,任何部分的失效都假定系统失效。将系统模型归类于串联模型如图2a所示,则各单元失效率之和为整机的失效率,表内各功能模块中的元器件通常采用串联模型。也存在冗余设计的情况,冗余设计采用并联模型,如图2b所示。图2b中元器件B和C构成冗余设计,当其中一个元器件发生失效时则不会影响功能模块和整机的可靠性,可以被看作一个独立的元器件。
2.计算各元器件失效率:
根据电路原理、工作环境以及组成元器件失效率等相关信息,对组成电能表元器件进行分类。自制元器件、现场使用失效率高的元器件划分为关键元器件;高可靠性数量大的元器件划分为特殊元器件;其它元器件归为常规元器件。
在对常规元器件预计过程中,应用福禄克Fluke Ti400红外热像仪对元器件结温进行采集;元器件实际工作的电压、电流的获取通过电路仿真和实际测试实现,并与额定电压、电流计算得到相应的电应力比。具体的步骤为:
(1)通过预测分析设备和潜在功能;
(2)定义失效;
(3)详细说明设备的运行条件,此运行条件决定了每个元器件的运行条件。运行条件可能包括:元器件两端的电压、供电电压(若二者存在区别),电流电路上的负载电流,周围温度和其他相关条件;分析设备结构和冗余情况;
(4)确定每个元器件的应力剖面;
(5)从数据手册或其他相关资料中选取每个元器件的参比失效率;
(6)运用相关应力因子计算每个元器件的失效率;
智能电能表使用的一些元器件现场工作失效率与手册提供的相差很大;还一些元器件的失效率是在手册中查不到的。对于这类元器件工作失效率可从现场数据、试验数据或厂家直接提供,从而计算得到。对于高可靠性长寿命数量大的元器件,进行元器件计数法预计,简化预计过程,提高效率。元器件分类及预计方法,见图3所示。
3.计算各功能模块和整表的可靠性指标;
串联模型,计算失效率的公式为:
λM=∑λP+∑λQ+∑λR(4-1)
式(4-1)中:λP是常规元器件失效率;λQ是关键元器件失效率;λR是高可靠性数量大的元器件失效率。
并联模型,计算失效率的公式为:
Figure BDA0001917765380000051
应用式(4-2)可计算两个元器件组成的整体失效率。功能模块其它元器件仍然采用串联模型,失效率按式(4-1)进行计算。
计算出各功能模块的失效率之后,根据功能模块之间的串联模型关系,从而计算整表的失效率λS、平均寿命MTTF和可靠度R,公式表示为:
λS=∑λM (4-3)
Figure BDA0001917765380000052
Figure BDA0001917765380000053
4.分析预计结果,开展以下工作:
(1)分析应力对电能表及其元器件失效率的影响;
根据可靠性预计结果,分析并绘制整表、各单元、以及元器件失效率随温度变化的曲线图。从中鉴别电能表的温度敏感单元和元器件,从而发现其随温度变化的薄弱环节,对此单元和元器件釆用热设计。识别出设计电路中元器件是否存在高应力、甚至过应力的情况,从而对设计方案有针对性的进行修改,降低其电应力;或重新选择额定值较高的元器件,以降低元器件的失效率
(2)总体评价智能电能表的可靠性,指导设计;
依据整表的失效率、和可靠度总体评价电能表是否满足规定可靠性要求,进一步指导电能表设计、招标、采购等工作。
(3)发现设计方案的潜在问题;
可以利用可靠性预计揭示最可能出现故障的问题,使得能够针对具体问题迅速产生备选的解决方案。对于每个设备选方案进行可靠性预计可以提供一种相对度量,与其他考虑相结合,帮助选择出最佳的可行方案,以实现可靠性增长。
在智能电能表内,一些元器件是由企业专门委托定制的,还存在现场使用工作失效率与手册中查询失效率值相差很大的元器件。如果仍遵循预计手册对这类元器件进行可靠性预计,最终将影响整机预计结果的准确性。对于这类元器件无法从预计手册上得到参考数据,给预计工作带来难度。然而元器件现场回馈的数据和供应商给的数据可以提供更精确地信息。因此对于这类元器件可靠性预计参数的问题,采用现场失效数据可靠性评估方法计算其现场工作失效率,构建相应的可靠性预计模型。
智能电能表的功能不断增加,需要的元器件数量也是成倍增加。其中包含数量最多的是电阻和电容,某公司D型电能表中电阻的数量达到177,电容的数量达到106。如仍采用元器件应力法预计,工作量繁重且易于操作失误,给预计工作带来不便。对于此类可靠性较高的元器件,元器件应力法和元器件计数法预计结果相差不大,可以采用元器件计数法进行简化预计,减少工作量,提高效率。
本方法与现场数据评估的真实寿命和GJB/Z299C手册可靠性预计结果进行对比。可靠性预计结果误差,见表5-1。DTZY666型表三种方法的可靠度曲线,如图4所示。可以看出,对于同一型号的智能电能表,用不同手预计手册对相同电子设备进行可靠性预计的结果也是不同的。GJB/Z299C手册的预计结果相对误差较大,可认为这种预计方法不适合智能电能表应用。参照现场失效数据可靠性评估方法计算DTZY666型表工作失效率,构建相应的可靠性预计模型,失效率为1428.79FIT,当可靠度R=90%时的寿命为8.42年。
本发明可靠性预计方法与现场工作失效率相近,预计结果比较现场使用寿命的相对误差为0.22。结果表明,结合关键元器件现场数据的可靠性预计方法的可行性。为后续新研发相似产品可靠性预计提供了示范性意义。
表5-1可靠性预计结果误差
Figure BDA0001917765380000061
Figure BDA0001917765380000071
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种基于失效率等级的智能电能表可靠性预计方法,其特征在于,包括以下步骤:
S01:根据逻辑结构和物理结构建立智能电能表可靠性预计模型,根据逻辑结构将智能电能表划分为多个功能单元,功能单元之间采用串联模型连接,根据物理结构将智能电能表划分为元器件、单元和系统,元器件之间采用串联模型和并联模型连接;
S02:对组成智能电能表的元器件进行分类,将自制元器件和现场使用失效率高的元器件划分为关键元器件,将高可靠性数量大的元器件划分为特殊元器件,将其它元器件划分为常规元器件;
S03:对常规元器件采用预计手册得到常规元器件工作失效率;采用现场数据根据建立的智能电能表可靠性预计模型计算关键元器件的工作失效率;对特殊元器件采用元器件计数法得到特殊元器件工作失效率;
S04:根据元器件与功能单元的逻辑关系得到功能单元的失效率,根据功能单元与智能电能表的逻辑关系得到智能电能表的失效率。
2.根据权利要求1所述的基于失效率等级的智能电能表可靠性预计方法,其特征在于,获取常规元器件的工作失效率的方法包括:
(1)预测分析智能电能表和潜在功能;
(2)定义失效;
(3)得到每个元器件的运行条件,包括:元器件两端的电压、供电电压、电流电路上的负载电流、周围温度和其他相关条件;分析元器件结构和冗余情况;
(4)确定每个元器件的应力剖面;
(5)从资料中选取每个元器件的参比失效率;
(6)运用相关应力因子计算每个元器件的失效率。
3.根据权利要求1所述的基于失效率等级的智能电能表可靠性预计方法,其特征在于,还包括以下步骤:
分析并绘制整表、各单元、以及元器件失效率随温度变化的曲线图,得到电能表的温度敏感单元和元器件,对该单元和元器件釆用热设计;
识别出设计电路中元器件是否存在高应力、甚至过应力的情况,对设计方案进行修改,降低其电应力。
CN201811580478.0A 2018-12-24 2018-12-24 基于失效率等级的智能电能表可靠性预计方法 Active CN109709507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811580478.0A CN109709507B (zh) 2018-12-24 2018-12-24 基于失效率等级的智能电能表可靠性预计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811580478.0A CN109709507B (zh) 2018-12-24 2018-12-24 基于失效率等级的智能电能表可靠性预计方法

Publications (2)

Publication Number Publication Date
CN109709507A CN109709507A (zh) 2019-05-03
CN109709507B true CN109709507B (zh) 2021-06-15

Family

ID=66256113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811580478.0A Active CN109709507B (zh) 2018-12-24 2018-12-24 基于失效率等级的智能电能表可靠性预计方法

Country Status (1)

Country Link
CN (1) CN109709507B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544031B (zh) * 2019-08-28 2021-11-02 广东电网有限责任公司广州供电局 电能表可靠度预计方法、装置、计算机设备和存储介质
CN111199134A (zh) * 2019-12-27 2020-05-26 重庆秦嵩科技有限公司 一种计算刀片硬件可靠性设计方法
CN111259338B (zh) * 2020-01-16 2023-09-05 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 元器件失效率修正方法、装置、计算机设备及存储介质
CN112667957A (zh) * 2020-12-03 2021-04-16 国网天津市电力公司营销服务中心 一种基于深度神经网络的智能电能表失效率预测方法
CN113064112A (zh) * 2021-03-23 2021-07-02 广东电网有限责任公司计量中心 一种智能电能表使用寿命评估方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173096A (ja) * 2011-02-21 2012-09-10 Tokyo Electric Power Co Inc:The 電力機器の保全システム、電力機器の保全プログラム、および電力機器の保全方法
CN103258245A (zh) * 2013-05-10 2013-08-21 北京航空航天大学 一种新的电子产品失效率预计修正方法
CN103606114A (zh) * 2013-12-05 2014-02-26 国家电网公司 一种继电保护设备可靠性的评估方法
CN103902770A (zh) * 2014-03-27 2014-07-02 浙江大学 一种通用的印刷电路板可靠性指标快速分析方法
CN105005696A (zh) * 2015-07-15 2015-10-28 浪潮电子信息产业股份有限公司 一种确定失效率的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799946A (zh) * 2012-06-19 2012-11-28 华北电网有限公司计量中心 电子产品可靠性的动态预测方法及装置
TWI501333B (zh) * 2012-12-25 2015-09-21 Taiwan Power Testing Technology Co Ltd 耐靜電自動篩選方法及系統
CN103198212A (zh) * 2013-03-15 2013-07-10 哈尔滨工程大学 基于故障树分析的掺铒光纤光源驱动电路可靠性预测方法
CN103745081A (zh) * 2013-12-09 2014-04-23 深圳供电局有限公司 一种电子式电能表可靠性分析方法
CN106054105B (zh) * 2016-05-20 2019-01-15 国网新疆电力公司电力科学研究院 一种智能电表的可靠性预计修正模型建立方法
CN108549951B (zh) * 2018-03-09 2021-10-22 璇飞(武汉)科技有限公司 一种基于关键器件的船用电气设备寿命预测方法及装置
CN108680890A (zh) * 2018-08-23 2018-10-19 重庆市计量质量检测研究院 智能电能表寿命特征检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173096A (ja) * 2011-02-21 2012-09-10 Tokyo Electric Power Co Inc:The 電力機器の保全システム、電力機器の保全プログラム、および電力機器の保全方法
CN103258245A (zh) * 2013-05-10 2013-08-21 北京航空航天大学 一种新的电子产品失效率预计修正方法
CN103606114A (zh) * 2013-12-05 2014-02-26 国家电网公司 一种继电保护设备可靠性的评估方法
CN103902770A (zh) * 2014-03-27 2014-07-02 浙江大学 一种通用的印刷电路板可靠性指标快速分析方法
CN105005696A (zh) * 2015-07-15 2015-10-28 浪潮电子信息产业股份有限公司 一种确定失效率的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reliability prediction system based on the failure rate model for electronic components;Seung Woo Lee 等;《Journal of Mechanical Science and Technology》;20080607;第957-964页 *
电子式电能表可靠性预计及验证分析;李亦非 等;《现代电子技术》;20111115;第34卷(第22期);第141-143、153页 *

Also Published As

Publication number Publication date
CN109709507A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109709507B (zh) 基于失效率等级的智能电能表可靠性预计方法
Tseng et al. Determination of burn‐in parameters and residual life for highly reliable products
CN105579859B (zh) 使用vlf td测量数据诊断电缆的状态并测量其剩余寿命的装置和方法
CN101090250B (zh) 用于同步发电机的励磁系统的快速建模和验证的方法和系统
WO2018195049A1 (en) Method to estimate battery health for mobile devices based on relaxing voltages
CN112350395A (zh) 用于控制电力系统的接口的设备和方法
CN101351717B (zh) 电池分析系统和方法
CN103069290A (zh) 用于测试蓄电池的电子电池测试器
CN108680890A (zh) 智能电能表寿命特征检测方法
CN108254697A (zh) 电池类型检测方法、检测终端及存储介质
KR102648764B1 (ko) 전지 성능 평가 방법 및 전지 성능 평가 장치
CN106126875B (zh) 一种基于态势感知理论的变压器状态评估方法
CN108684051A (zh) 一种基于因果诊断的无线网络性能优化方法、电子设备及存储介质
CN109785181A (zh) 用于预测电力资产的健康状况的趋势分析函数
CN108845285B (zh) 电能计量装置检测方法和系统
CN117434372B (zh) 电子产品的电磁兼容抗扰度测试方法及系统
Feng et al. Fast computation of post-contingency system margins for voltage stability assessments of large-scale power systems
KR20200100311A (ko) 전기차 충전소 전력량 모니터링 시스템 및 방법
CN115165332A (zh) 一种装备机内测试与综合测试一体化设计方法及系统
EP1705490B1 (en) Method for estimating the adequacy of protective devices
KR102672993B1 (ko) 배터리 건전성 예측장치 및 예측방법
Abdellatif New methodology for qualification, prediction, and lifetime assessment of electronic systems
JP2013200594A (ja) 故障率算出装置及び故障率算出用プログラム
CN110095747A (zh) 一种配网用电压电流传感器在线监测方法及系统
PARK et al. Comparisons of optimal accelerated test plans for estimating quantiles of lifetime distribution at the use condition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant