CN109698639B - 集成粘滞阻尼材料的自适应机械开关同步回收装置 - Google Patents

集成粘滞阻尼材料的自适应机械开关同步回收装置 Download PDF

Info

Publication number
CN109698639B
CN109698639B CN201910016360.3A CN201910016360A CN109698639B CN 109698639 B CN109698639 B CN 109698639B CN 201910016360 A CN201910016360 A CN 201910016360A CN 109698639 B CN109698639 B CN 109698639B
Authority
CN
China
Prior art keywords
diaphragm
supporting seat
conductive contact
contact surface
slow rebound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910016360.3A
Other languages
English (en)
Other versions
CN109698639A (zh
Inventor
刘伟群
黄瑶
秦刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910016360.3A priority Critical patent/CN109698639B/zh
Publication of CN109698639A publication Critical patent/CN109698639A/zh
Application granted granted Critical
Publication of CN109698639B publication Critical patent/CN109698639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/12Movable parts; Contacts mounted thereon
    • H01H13/14Operating parts, e.g. push-button
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/26Snap-action arrangements depending upon deformation of elastic members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods

Landscapes

  • Push-Button Switches (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种集成粘滞阻尼材料的自适应机械开关同步回收装置,包括上支撑座、下支撑座、压电膜片集能器、自适应检波开关机构、储能电路板;压电膜片集能器包括膜片、压电元件和质量块;膜片中心位置设有两个质量块,每个质量块上设有一球形触点;膜片的一个侧面上紧贴有压电元件;自适应检波开关机构包括两个慢回弹弹簧,慢回弹弹簧的一端设有一个导电触面,导电触面分别与所述球形触点相邻。本发明的回收装置结构简单、性能可靠,加工安装方便,安装空间不受限制,集能器可封闭不受外界干扰。

Description

集成粘滞阻尼材料的自适应机械开关同步回收装置
技术领域
本发明属于压电能量回收领域,特别涉及一种集成粘滞阻尼材料的自适应机械开关同步回收装置。
背景技术
随着微电子机械系统、功耗无线电通信技术、嵌入式计算技术、微型传感器技术及集成电路技术的飞速发展,使得大量低成本、低功耗、小体积、短距离通信多功能的微型传感器成为现实。无线传感器网络已经广泛应用于军事、交通、环境监测和预报、卫生保健、空间探索等各个领域。传感器节点的基本组成和功能包括如下几个单元:传感单元、处理单元、无线通信单元和供电单元等。目前,供电单元通常采用微型电池,为传感器节点提供正常工作所必需的能源,其使用寿命很大程度上受制于电池所能提供的能量,严重影响了无线传感器网络的可靠性和经济性。
能量回收,能量回收就是将不能储存再利用的将浪费掉的能量形式,比如热能、机械能、光能、振动能量等转化为电能储存起来再利用。其中,振动能量回收是一种常见的能量回收方式,振动能量广泛存在于自认环境中,如汽车、火车、道路桥梁、工业设备等,回收的能量可供给无线传感器使用,为解决电池对无线传感器的应用所带来的限制提供了一个很好的方案。振动能量回收根据不同的换能机制可分为三种类型:压电回收装置、电磁回收装置、静电回收装置等,其中压电能量回收是一种重要的能量回收方式。
同步开关电感电路(SSHI技术),基本原理是将开关部件与压电元件并联组成,开关部件由开关和电感器组成,在压电元件位移的极值点处,开关闭合,电感器与压电元件的电容器组成振荡器,将压电片的电压反向,以增大压电片的开路输出电压,压电片的能量仍然通过整流电桥和滤波电容等进行回收。
目前,同步开关主要有电子开关和机械开关两种,用来检测集能器的位移极值点,由于电子开关的控制电路自身会消耗一部分能量,会减少采集到的能量。因此,机械开关有很大发展前景,而普通机械开关适应范围窄,不能适应振幅变化在幅值的正负极值处自动闭合,且切换时间有较大的延迟或提前,采集效率不高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种结构简单、性能可靠,加工安装方便,安装空间不受限制,集能器可封闭不受外界干扰的集成粘滞阻尼材料的自适应机械开关同步回收装置。
本发明的目的是通过以下技术方案来实现的:集成粘滞阻尼材料的自适应机械开关同步回收装置,包括上支撑座、下支撑座、压电膜片集能器、自适应检波开关机构、储能电路板;
所述上支撑座和下支撑座分别位于压电膜片集能器的上下两侧;
所述压电膜片集能器包括膜片、压电元件和质量块;所述膜片中心位置设有两个质量块,两个质量块对称设置在膜片的上下两侧,每个质量块上设有一球形触点;膜片的一个侧面上紧贴有压电元件;
所述自适应检波开关机构包括两个慢回弹弹簧,慢回弹弹簧的一端分别固定在上支撑座和下支撑座的中心处,慢回弹弹簧的另一端分别设有一个导电触面,导电触面分别与所述球形触点相邻;
所述球形触点和导电触面二者组成回收电路的机械开关,球形触点和导电触面分别作为该开关的两个电极;
所述储能电路板通过导线与压电元件、膜片、两个电极和外部负载连接。
进一步地,所述下支撑座固定在机台上,上支撑座装配在下支撑座上;上支撑座和下支撑座均为中空的柱形结构,下支撑座的底面与上支撑座的顶面相互平行,膜片的边缘固定在下支撑座与上支撑座之间。
进一步地,所述膜片使用金属材料制成,膜片的等效质量远大于慢回弹弹簧的等效质量。
进一步地,所述自适应检波开关机构分别采用质量块上的球形触点和对应的慢回弹弹簧上的导电触面作为电极,当球形触点与对应的导电触面接触时,该机械开关闭合。
进一步地,所述储能电路板安装在上支撑座的顶部;储能电路板通过系统接口电路提取和储存能量,并通过DC-DC转换电路连接外部负载。
所述系统接口电路包括多个二极管、电感L和电容C1;
二极管的D1的正极通过导线与膜片下方的导电触面相连,二极管D2的负极通过导线连接膜片上方的导电触面,二极管D1的负极和二极管D2的正极均与电感L的同一端相连,电感L的另一端通过导线连接膜片;
二极管D3和D5串联,二极管D4和D6串联,二极管D3和D4的负极均与电容Cr的一端相连,二极管D5和D6的正极均与电容Cr的另一端相连;二极管D3的正极通过导线连接压电元件,二极管D4的正极通过导线连接膜片;
电容Cr的两端与DC-DC转换电路相连。
进一步地,所述球形触点为半球结构,导电触面为平面结构;
所述质量块、球形触点和导电触面均采用导电材料制成;
当球形触点与对应的导电触面接触时,球形触点和导电触面的接触面相切,能够良好导通。
进一步地,所述慢回弹弹簧是一阶无质量振动系统,满足如下关系:
Figure BDA0001939201440000031
其中K是慢回弹弹簧的刚度,c是慢回弹弹簧的等效阻尼,f为慢回弹弹簧的固有频率,b为常数。
本发明的有益效果是:本发明的回收装置结构简单、性能可靠,加工安装方便,安装空间不受限制,集能器可封闭不受外界干扰。运用于振动能量回收时,机械开关的初始间隙可根据实际使用情况调整,机械开关切换电流方向不需要消耗额外电能,且自适应机械开关同步回收电路能在不同的激励不同的振幅条件下稳定工作,能够自适应不同激励情况的同步开关电荷翻转,因此能量回收效率和输出电能平均功率较高。本发明中克服了悬臂梁式机械开关结构在工作时容易被弹开、不能在大振幅条件下使用的缺点,使用粘滞阻尼材料作为开关机构不受安装方位的限制,也不会出现弹开的现象,同时简化了机械开关的结构,增加了限位机构,提高了机械开关的可靠性,可在实际生产中使用。储能电路板所采集到的电能可给微型传感器供电或给电池充电,例如汽车发动机、火车转向架的运行状态检测器等。
附图说明
图1为本发明的自适应机械开关同步回收装置的外观结构图;
图2为本发明的自适应机械开关同步回收装置的剖面图及等效的接口电路图;
图3为本发明的自适应机械开关同步回收装置的工作原理示意图;
图4为本发明的本发明的各触点在工作状态下的位移示意图;
图5为本发明的压电元件开路电压与位移的关系图;
附图标记说明:1-机台,2-下支撑座,3-上支撑座,4-压电元件,5-膜片,6-质量块,7-球形触点,8-导电触面,9-慢回弹弹簧,10-储能电路板。
具体实施方式
下面结合附图进一步说明本发明的技术方案。
如图1和图2所示,本发明的一种集成粘滞阻尼材料的自适应机械开关同步回收装置,其包括上支撑座3、下支撑座2、压电膜片集能器、自适应检波开关机构、储能电路板;
所述上支撑座和下支撑座分别位于压电膜片集能器的上下两侧;
所述压电膜片集能器包括膜片5、压电元件4和质量块6;所述膜片5中心位置设有两个质量块6,两个质量块对称设置在膜片的上下两侧,每个质量块上设有一球形触点7;膜片5的一个侧面上紧贴有压电元件4;
所述自适应检波开关机构包括两个慢回弹弹簧9,慢回弹弹簧9的一端分别固定在上支撑座3和下支撑座2的中心处,慢回弹弹簧的另一端分别设有一个导电触面8,导电触面分别与所述球形触点7相邻;
所述球形触点7和导电触面二者组成回收电路的机械开关,球形触点7和导电触面分别作为该开关的两个电极;
所述储能电路板通过导线与压电元件4、膜片5、两个电极和外部负载连接。
进一步地,所述下支撑座2固定在机台1上,上支撑座3装配在下支撑座2上;上支撑座3和下支撑座2均为中空的柱形结构,下支撑座2的底面与上支撑座3的顶面相互平行,膜片5的边缘固定在下支撑座2与上支撑座3之间。
进一步地,所述膜片5使用金属材料制成,膜片5的等效质量远大于慢回弹弹簧9的等效质量。
进一步地,所述自适应检波开关机构分别采用质量块6上的球形触点7和对应的慢回弹弹簧9上的导电触面8作为电极,当球形触点7与对应的导电触面8接触时,该机械开关闭合。
进一步地,所述储能电路板10安装在上支撑座3的顶部;储能电路板10通过系统接口电路提取和储存能量,并通过DC-DC转换电路连接外部负载。
所述系统接口电路包括多个二极管、电感L和电容C1;
二极管的D1的正极通过导线与膜片下方的导电触面相连,二极管D2的负极通过导线连接膜片上方的导电触面,二极管D1的负极和二极管D2的正极均与电感L的同一端相连,电感L的另一端通过导线连接膜片;
二极管D3和D5串联,二极管D4和D6串联,二极管D3和D4的负极均与电容Cr的一端相连,二极管D5和D6的正极均与电容Cr的另一端相连;二极管D3的正极通过导线连接压电元件4,二极管D4的正极通过导线连接膜片5;
电容Cr的两端与DC-DC转换电路相连。
进一步地,所述球形触点7为半球结构,导电触面8为平面结构;
所述质量块6、球形触点7和导电触面8均采用导电材料制成;
当球形触点7与对应的导电触面8接触时,球形触点7和导电触面8的接触面相切,能够良好导通。
进一步地,所述慢回弹弹簧是一阶无质量振动系统,满足如下关系:
Figure BDA0001939201440000051
其中K是慢回弹弹簧的刚度,c是慢回弹弹簧的等效阻尼,f为慢回弹弹簧的固有频率,b为常数。
在本实施例中,膜片5采用圆形结构,上支撑座和下支撑座也采用圆柱形结构。机台1位于下支撑座2的下方,压电膜片集能器的边缘固结在下支撑座2与上支撑座3之间,慢回弹弹簧9的一端分别固定在下支撑座2与上支撑座3的端面内侧上,下支撑座2与上支撑座3固定在机台1上。机台1的形状与设置方向并没有特殊的限制,可根据实际情况及设计需求进行相应的设计,只要满足支撑固定作用即可。显然,压电膜片集能器(4、5、6、7构成)与下支撑座2和上支撑座3之间、慢回弹弹簧9与下支撑座2和上支撑座3之间、下支撑座2与机台1之间、下支撑座2和上支撑座3之间采用任何固定连接的方式均可。压电膜片集能器的总等效质量远大于慢回弹弹簧9的等效质量,理论上等效质量越大,工作时的能量损失越少,所采集到的能量越多,并且压电膜片的形状并不限于、金属材料,可根据实际需求进行相应的设计。此外,质量块6位于膜片5中心,质量块6位于膜片5的具体方向、摆放位置并没有特殊的限制,也可以位于膜片5的其他位置,只要球形触点7能够与导电触面8接触即可。质量块6上的球形触点7并不限于球形,根据实际情况采用其他形状也可,只需要保证触点与质量块6的导电性能良好。
两个自适应检波开关机构可以形状相同且完全对称设置,也可以非对称设置和使用不同形状,自适应检波开关机构的形状是否对称、相同对本发明没有实质性的影响。下支撑座2和上支撑座3的作用之一是固定慢回弹弹簧9,它的存在形式对本发明没有实质影响,完全可以根据慢回弹弹簧9与外观样式和使用环境进行相应设计,下支撑座2和上支撑座3的端面也可设计成可拆卸或可调机构。导线连接时,根据实际情况布置与导电触面之间的线路,需要避免导线影响弹簧的刚度。本发明的发明点在于使用以慢回弹海绵为代表的具备较大松弛时间的粘滞阻尼材料作为慢回弹弹簧的材料,用来充当机械开关的移动电极;同时,压电膜片5的总等效质量远大于慢回弹弹簧的等效质量,可通过增加质量块的质量达到,实际运用根据慢回弹弹簧的尺寸确定其具体大小。本例中压电膜片集能器(4、5、6、7)采用圆形膜片弹簧结构,但本发明并不局限于此种结构,可根据实际需求进行相应的设计。至于具体上圆形膜片5、质量块6的形状与大小、压电片4的数量均没有特殊的限制,可根据实际情况进行相应的设计。圆形膜片5、自适应检波开关机构安装的相对位置不限于此种安装方式,根据实际需求或电路连接情况进行设计。
本发明的工作原理为:初始状态时,慢回弹弹簧9处于自然状态(图3-A),在外界激励作用下,膜片5发生振动,在力的作用下,通过球形触点7推动导电触面8使慢回弹弹簧9压缩,此时的慢回弹弹簧9可认为是一个无质量系统,在激励作用下它几乎没有变化。当膜片5向正方向运动时,球形触点7与机械开关S1的导电触面8接触,球形触点7与导电触面8共同运动,开关S1闭合(图3-B),达到膜片5位移幅值的正极值点后反向运动时,由于弹性恢复力大于阻尼力,此时球形触点7与导电触面8不会立即分离,继续回弹一小段距离后,球形触点7与导电触面8分离,开关S1断开,此时由于慢回弹弹簧9的阻尼较大,产生的阻尼力大于弹簧的弹性恢复力,因此导电触面回弹速度较慢(图3-C),然后继续向负方向运动压缩慢回弹弹簧9直到负极值点,开关S2闭合(图3-D),然后与正极值点同样的原理分离开继续下一个周期运动,开关S2断开。这样下一次膜片5再次向正、负极值点运动时,球形触点7与导电触面8再次接触时只需要很小的一段位移即可达到位移的极值点。重复上述过程,正负方向上的导电触面8分别停留在正负位移峰值附近,球形触点7与两个导电触面8交替接触、分离,最终整个系统在图3所示的B、D两种状态间来回切换。并且,由于集能器的等效质量远大于慢回弹弹簧9的等效质量,因此每次共同运动时所消耗的能量很少。这样,球形触点7与导电触面8每次接触都在膜片5的位移极值点附近使机械开关闭合,电流反转,分离点与上次分离位置也几乎相同,最终机械开关(S1、S2)实现在膜片5位移幅值的极值点附近打开与闭合(如图4所示);当机械开关闭合时,在电感线圈的作用下,短时间内完成电流反向的反转,一部分供给储能元件,另一部分一反向电压的形式储存在压电元件4的电容之中,压电元件4新产生的电压与之前储存在压电元件4中的电压叠加,继续输出到储能元件中,再通过能量管理单元给传感元件供电,压电元件的开路电压与位移的关系图如图5所示。下一个周期亦是如此,这样就大幅度提高了电能的利用率。当外界加速度或频率改变,膜片5位移幅值减小时,在慢回弹弹簧9的弹性恢复力作用下,导电触面8回弹,直到与球形触点7接触,膜片5位移幅值增大时,慢回弹弹簧9继续被压缩,这就保证了机械开关良好的自适应性,从而实现机械开关(S1、S2)自适应开启与闭合的目的。
本发明所提出的集成慢回弹机械开关的压电振动能量回收装置能够实现同步开关电荷翻转,根据慢回弹弹簧阻尼力大于弹性恢复力,慢回弹弹簧受压缩后,导电触面回弹很慢的原理,即在外界激励作用下,膜片产生振动,而此时慢回弹弹簧几乎不受激励影响,主要受球形触点的推力,在力的作用下慢回弹弹簧受到压缩,球形触点与导电触面共同运动,达到位移幅值的极值点并回弹一小段距离之后反向运动时,球形触点与导电触面分离,慢回弹弹簧的阻尼力较大,回弹速度很慢,这样在下一次球形触点运动到该幅值的极值附近时,导电触面基本保持在上一次与球形触点接触的位置,即膜片位移幅值的正负极值附近与球形触点接触,使机械开关闭合,电流反转,最大限度提高电荷的利用率。这样,慢回弹弹簧带动导电触面自动适应并保持在质量块位移幅值的正负极值点附近,实现机械开关的闭合与断开。该装置结构简单、可靠,运用于振动能量回收时,由于机械开关切换电流方向不需要消耗额外电能,且慢回弹机械开关能在不同的激励不同的振幅条件下稳定工作,因此能量回收效率和输出电能平均功率较高,所采集到的电能可给微型传感器等元件供电。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (4)

1.集成粘滞阻尼材料的自适应机械开关同步回收装置,其特征在于,包括上支撑座(3)、下支撑座(2)、压电膜片集能器、自适应检波开关机构、储能电路板;
所述上支撑座和下支撑座分别位于压电膜片集能器的上下两侧;所述下支撑座(2)固定在机台(1)上,上支撑座(3)装配在下支撑座(2)上;上支撑座(3)和下支撑座(2)均为中空的柱形结构,下支撑座(2)的底面与上支撑座(3)的顶面相互平行,膜片(5)的边缘固定在下支撑座(2)与上支撑座(3)之间;
所述压电膜片集能器包括膜片(5)、压电元件(4)和质量块(6);所述膜片(5)中心位置设有两个质量块(6),两个质量块对称设置在膜片的上下两侧,每个质量块上设有一球形触点(7);膜片(5)的一个侧面上紧贴有压电元件(4);
所述自适应检波开关机构包括两个慢回弹弹簧(9),慢回弹弹簧(9)的一端分别固定在上支撑座(3)和下支撑座(2)的中心处,慢回弹弹簧的另一端分别设有一个导电触面(8),导电触面分别与所述球形触点(7)相邻;
所述球形触点(7)和导电触面(8)二者组成回收电路的机械开关,球形触点(7)和导电触面(8)分别作为该开关的两个电极;
所述球形触点(7)为半球结构,导电触面(8)为平面结构;质量块(6)、球形触点(7)和导电触面(8)均采用导电材料制成;
当球形触点(7)与对应的导电触面(8)接触时,球形触点(7)和导电触面(8)的接触面相切,能够良好导通;
所述自适应检波开关机构分别采用质量块(6)上的球形触点(7)和对应的慢回弹弹簧(9)上的导电触面(8)作为电极,当球形触点(7)与对应的导电触面(8)接触时,该机械开关闭合;慢回弹弹簧是一阶无质量振动系统,满足如下关系:
Figure FDA0002480218330000011
其中K是慢回弹弹簧的刚度,c是慢回弹弹簧的等效阻尼,f为慢回弹弹簧的固有频率,b为常数;使用粘滞阻尼材料作为慢回弹弹簧的材料;
所述储能电路板通过导线与压电元件(4)、膜片(5)、两个电极和外部负载连接。
2.根据权利要求1所述的集成粘滞阻尼材料的自适应机械开关同步回收装置,其特征在于,所述膜片(5)使用金属材料制成,膜片(5)的等效质量大于慢回弹弹簧(9)的等效质量。
3.根据权利要求1所述的集成粘滞阻尼材料的自适应机械开关同步回收装置,其特征在于,所述储能电路板(10)安装在上支撑座(3)的顶部;储能电路板(10)通过系统接口电路提取和储存能量,并通过DC-DC转换电路连接外部负载。
4.根据权利要求3所述的集成粘滞阻尼材料的自适应机械开关同步回收装置,其特征在于,所述系统接口电路包括多个二极管、电感L和电容Cr;
二极管的D1的正极通过导线与膜片下方的导电触面相连,二极管D2的负极通过导线连接膜片上方的导电触面,二极管D1的负极和二极管D2的正极均与电感L的同一端相连,电感L的另一端通过导线连接膜片;
二极管D3和D5串联,二极管D4和D6串联,二极管D3和D4的负极均与电容Cr的一端相连,二极管D5和D6的正极均与电容Cr的另一端相连;二极管D3的正极通过导线连接压电元件(4),二极管D4的正极通过导线连接膜片(5);
电容Cr的两端与DC-DC转换电路相连。
CN201910016360.3A 2019-01-08 2019-01-08 集成粘滞阻尼材料的自适应机械开关同步回收装置 Active CN109698639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910016360.3A CN109698639B (zh) 2019-01-08 2019-01-08 集成粘滞阻尼材料的自适应机械开关同步回收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910016360.3A CN109698639B (zh) 2019-01-08 2019-01-08 集成粘滞阻尼材料的自适应机械开关同步回收装置

Publications (2)

Publication Number Publication Date
CN109698639A CN109698639A (zh) 2019-04-30
CN109698639B true CN109698639B (zh) 2020-07-10

Family

ID=66232568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910016360.3A Active CN109698639B (zh) 2019-01-08 2019-01-08 集成粘滞阻尼材料的自适应机械开关同步回收装置

Country Status (1)

Country Link
CN (1) CN109698639B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544976B (zh) * 2019-09-23 2021-02-02 重庆大学 压电自供电组合梁减振装置及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252255A (zh) * 2011-03-31 2011-11-23 上海大学 利用声波能量压电发电的道路灯具系统
CN202076957U (zh) * 2011-04-22 2011-12-14 中南大学 一种基于二自由度压电振子的环境振动能量采集装置
CN103401472A (zh) * 2013-08-05 2013-11-20 内蒙古金岗重工有限公司 一种太阳能热声压电发电系统及其发电方法
WO2017078719A1 (en) * 2015-11-05 2017-05-11 Tekcapital, Llc Low frequency dual mode energy harvesting methods, systems, and portable devices
CN205490238U (zh) * 2016-01-14 2016-08-17 长春工业大学 一种气动系统双激励源作用下膜片式压电发电装置
TWI589111B (zh) * 2016-05-06 2017-06-21 中原大學 壓電獵能裝置
CN108540013B (zh) * 2018-04-28 2019-10-01 西南交通大学 一种集成自适应机械开关的压电能量回收装置

Also Published As

Publication number Publication date
CN109698639A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
CN108540013B (zh) 一种集成自适应机械开关的压电能量回收装置
CN112039365B (zh) 一种振动能量收集器及其应用
CN206904131U (zh) 一种利用振动能量发电的减震器
CN103166503A (zh) 一种用于公交车的压电俘能装置
CN109698639B (zh) 集成粘滞阻尼材料的自适应机械开关同步回收装置
CN113270933A (zh) 一种基于折纸结构的摩擦电-电磁复合能量收集装置
CN111049425B (zh) 以液体作为俘能介质的低频多方向振动能量收集装置
CN106856381B (zh) 一种集束型双稳态弯曲双叉悬臂梁压电能量收集装置
CN113162469A (zh) 一种调谐质量的振动能量收集装置及收集方法
CN109150009A (zh) 一种压电自发电纽扣电池
CN105162303A (zh) 一种基于永磁材料的微型发电装置及发电方法
CN110429862B (zh) 一种可调节宽频带轮辐式压电能量收集装置
CN204947699U (zh) 一种振动能量转化、储能装置
CN1258255C (zh) 微型发电机
CN202634234U (zh) 磁电式振动换能装置
CN214476984U (zh) 一种超级电容器模组
CN205070748U (zh) 一种微型发电装置
CN209184513U (zh) 一种柔性插装结构预应力压电发电装置
CN112177871A (zh) 一种安装在减速带当中的发电装置
CN203747694U (zh) 一种压电发电片与压电陶瓷组合式发电装置
CN218570111U (zh) 振动能量采集装置、无线传感器
CN110401376A (zh) 一种单摆式人体运动能量采集器及其采集方法
CN205070749U (zh) 一种基于永磁材料的微型发电装置
CN110029534A (zh) 一种浮置板轨道隔振器和浮置板轨道隔振系统
CN211266562U (zh) 一种伸缩式介电弹性体能量采集装置和发电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant