CN109692004B - 一种检测人体站姿的方法和装置 - Google Patents

一种检测人体站姿的方法和装置 Download PDF

Info

Publication number
CN109692004B
CN109692004B CN201711003258.7A CN201711003258A CN109692004B CN 109692004 B CN109692004 B CN 109692004B CN 201711003258 A CN201711003258 A CN 201711003258A CN 109692004 B CN109692004 B CN 109692004B
Authority
CN
China
Prior art keywords
human body
standing posture
acceleration
reference value
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711003258.7A
Other languages
English (en)
Other versions
CN109692004A (zh
Inventor
陈同
李东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhirou Technology Co ltd
Original Assignee
Zhejiang Zhirou Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Zhirou Technology Co ltd filed Critical Zhejiang Zhirou Technology Co ltd
Priority to CN201711003258.7A priority Critical patent/CN109692004B/zh
Publication of CN109692004A publication Critical patent/CN109692004A/zh
Application granted granted Critical
Publication of CN109692004B publication Critical patent/CN109692004B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种检测人体站姿的方法,包括:通过传感模块获取各个采样时间点的采样数据,采样数据包括人体运动过程中的加速度信号;提取加速度信号的统计信息作为分类特征;利用该分类特征对分类器进行训练;获取人体的站姿参考值;当检测到人体在当前时间点之前处于连续运动状态时,更新站姿参考值;利用上述站姿参考值判定人体是否站立。本发明通过提供一种检测人体站姿的方法和装置,在进行人体姿态检测的过程中,可以自动更新站姿参考值,并准确分析判断人体在行走过程中的每一个时间点是否处于站立状态。

Description

一种检测人体站姿的方法和装置
技术领域
本发明涉及医学检测技术领域,且特别是涉及一种检测人体站姿的方法和装置。
背景技术
平衡是指人体在运动或受到外力作用时,控制其重心在支撑面上以保持直立姿势不至于跌倒的一种能力。日常生活中人体倚靠前庭、视觉和本体觉个成的“平衡三联”维持平衡,然而许多疾病常可导致平衡障碍。平衡能力低下是老年人跌倒并由此引发一系列严重问题的主要原因。而且随着老年人的跌倒率随其年龄的增加而升高,及时救助跌倒的老年人将大大降低伤残率和死亡率。另外,对老年人人体姿态进行检测,是评价老年人平衡能力和机体功能水平的有效手段。
目前人体姿态检测的主要手段有图像分析和加速度分析两种,图像分析的算法较复杂,系统庞大,实时性差;加速度分析的算法相对简便,系统小,实时性好。但是现有的可穿戴产品在用于不同的用户时,若采用加速度分析的算法,均需要进行人工标定来获取站姿参考值,即无法自动更新站姿参考值,不仅操作复杂,而且精确度不足。
发明内容
本发明的目的在于提供一种检测人体站姿的方法和装置,以解决现有技术中加速度分析的算法操作复杂且精确度不足的问题。
一种检测人体站姿的方法,包括步骤:
通过传感模块获取各个采样时间点的采样数据,采样数据包括人体运动过程中的加速度信号;
提取加速度信号的统计信息作为分类特征;
获取人体的站姿参考值;
当检测到人体处于连续运动状态时,更新站姿参考值;
利用站姿参考值判定人体是否站立。
进一步地,加速度信号为单轴加速度信号、二轴加速度信号或三轴加速度信号。
进一步地,通过传感模块获取各个采样时间点的采样数据后,还包括,获取加速度信号形成的波形曲线中的极值并保存多个极值相应的时间间隔值。
进一步地,极值包括加速度形成的波形曲线中的波峰或波谷。
进一步地,提取加速度信号的统计信息作为分类特征后,还包括利用分类特征对分类器进行训练。
进一步地,统计信息为多个极值绝对值的均值和标准差以及多个时间间隔值的均值和标准差。
进一步地,对加速度信号进行低通滤波。
进一步地,获取人体的站姿参考值后,还包括,在进行站姿检测之前标定站立时的加速度,加速度为站姿参考值。
进一步地,当检测到人体处于连续运动状态时,更新站姿参考值还包括,以保存的连续出现的多个极值作为一个观测窗口,在采集到的最后一个极值中找到对应的时间点作为第一时间点,在采集到的离该最后一个极值最近的另一个极值对应的时间点作为第二时间点,选择第一时间点与该第二时间点的中间点所对应的原始加速度作为站姿参考值的更新值。
进一步地,利用站姿参考值判定人体是否站立还包括,计算人体运动状态的实时加速度与站姿参考值的空间夹角,当空间夹角小于或等于预设角时判断检测到人体站姿,当空间夹角大于预设角时判断未检测到人体站姿。
进一步地,预设角的取值为0~45度。
进一步地,实时加速度为滑动均值。
本发明还提供一种检测人体站姿的装置,其包括传感模块、分类模块、和电源模块,传感模块用于获取各个采样时间点的采样数据,采样数据包括人体运动过程中的加速度信号;分类模块用于对人体运动状态实时进行运动识别;电源模块为传感模块和控制模块供电。
进一步地,分类模块包括分类器,用于提取加速度信号的统计信息作为分类特征,传感模块包括加速度传感器。
进一步地,检测人体站姿的装置还包括通信模块,通信模块用于将人体的姿态信息传送至数据终端。
进一步地,检测人体站姿的装置贴合于人体躯干。
本发明通过提供一种检测人体站姿的方法和装置,在进行人体姿态检测的过程中,可以自动更新站姿参考值,并准确分析判断人体在行走过程中的每一个时间点是否处于站立状态。
附图说明
图1为本发明实施例中检测人体站姿的方法的工作流程图。
图2为本发明实施例中检测人体站姿的装置的结构示意框图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术方式及功效,以下结合附图及实施例,对本发明的具体实施方式、结构、特征及其功效,详细说明如后。
图1为本发明实施例中检测人体站姿的方法的工作流程图,图2为本发明实施例中检测人体站姿的装置的结构示意框图。本实施例中,在采样阶段和测试阶段,均以采集人体三个轴向的加速度信号为例进行说明。请参考图1和图2,本实施例提供一种检测人体站姿的方法,包括步骤:
通过传感模块获取各个采样时间点的采样数据,采样数据包括人体运动过程中的三个轴向的加速度信号;
提取加速度信号的统计信息作为分类特征;
利用分类特征对分类模块进行训练;
获取人体的站姿参考值;
当检测到人体在当前时间点之前处于连续运动状态时,更新所述站姿参考值,当检测到人体在当前时间点之前不处于连续运动状态时,不更新所述站姿参考值;
利用站姿参考值判定人体是否站立。
上述实施例提供的检测人体站姿的方法具体包括:
一、获取训练数据:通过传感模块获取各个采样时间点的采样数据,该采样数据为人体运动过程中至少一个轴向的合加速度信号。具体地,该采样数据包括正样本和负样本,该正样本包括人体跑步和行走时至少一个轴向的合加速度信号;该负样本包括人体进行日常活动(例如刷牙、洗脸等)时至少一个轴向的合加速度信号。本实施例中,该传感器模块例如利用三轴加速度传感器获取人体运动过程中的三个轴向的加速度信号。该三个轴向的加速度分别为冠状轴的加速度ax、矢状轴的加速度ay和垂直轴的加速度az,该三轴合加速度
Figure BDA0001443921960000041
在人体运动过程中,每一个步态行为都是一个周期性的运动,采集每个时间点的三轴合加速度g,以该三轴合加速度g为纵轴、该时间为横轴形成的波形曲线中会存在波峰与波谷。在其他实施例中,该采样数据也可以为人体运动过程中的单轴加速度信号或者二轴加速度信号。
二、极值检测:提取三轴合加速度g和时间形成的波形曲线中的极值作为行走的状态认定。本实施例中,以提取该波形曲线中的波峰为例进行说明。具体地,还需要对三轴合加速度g的信号进行低通滤波以去掉高频噪音并得到真实的波峰。保存连续出现的多个波峰中每个波峰的绝对值Peak及多个波峰中每个波峰出现的时间点与前一个波峰出现的时间点之间的时间间隔值Interval。本实施例中,例如可以保存连续出现的10个波峰中每个波峰的绝对值以及该10个波峰中每个波峰出现的时间点与前一个波峰出现的时间点之间的时间间隔值:
该10个波峰的绝对值分别为:Peak1,Peak2,Peak3,...,Peak10
该10个时间间隔值分别为:Interval1,Interval2,Interval3,...,Interval10。
在其他实施例中,可以根据需要选取保存的绝对值Peak的个数和时间间隔值Interval的个数,该绝对值Peak和时间间隔值Interval的个数不限于10个。
在其他实施例中,本步骤中的波峰检测也可以替换为波谷检测。
三、特征值提取:提取上述多个绝对值Peak和多个时间间隔值Interval的统计信息,该统计信息包括多个绝对值Peak的均值μpeak和标准差σpeak以及多个时间间隔值Interval的均值μInterval和标准差σInterval。以10个绝对值Peak和10个时间间隔值Interval为例:
波峰的均值
Figure BDA0001443921960000051
波峰的标准差
Figure BDA0001443921960000052
时间间隔值的均值
Figure BDA0001443921960000053
时间间隔值的标准差
Figure BDA0001443921960000054
以上统计信息的均值还可以用中值来替换。
四、分类器的训练:以步骤三中获得的四个参数(绝对值Peak的均值μpeak和标准差σpeak和时间间隔值Interval的均值μInterval和标准差σInterval)作为分类器的输入特征,由进行训练的人员分别进行日常活动行为,对分类器进行训练,建立训练特征集。
分类器可以为决策树、神经网络或支持向量机。
五、分类器的识别和站姿参考值的更新:使用上述训练好的分类器,进行实时运动检测:本实施例中,利用训练好的分类器进行实时运动检测例如为进行实时行走检测。在人体进行常规运动之前,需要标定人体处于站立状态时的轴向加速度,本实施例中,以标定人体处于站立状态时的三个轴向加速度为例进行说明。因为人体静止站立和稳定行走时,躯干与地面的相对角度相同,因此可以通过探测人体静止过程中的加速度ac来获取人体处于站立状态时的近似加速度。该加速度ac为具有方向和大小的向量,ac=(axc,ayc,azc),以该加速度ac作为获取到的第一个站姿参考值。
在未连续检测到步骤二中的多个波峰(例如为10个)时,不更新第一个站姿参考值ac;在连续检测到步骤二中的多个波峰(例如为10个)时,更新第一个站姿参考值ac。更新后的站姿参考值为bc,bc=(bxc,byc,bzc)。
获取更新后的站姿参考bc的方法例如为,以采样频率为32Hz来实时探测人体行走过程中的加速度信号,因为人体的每一步行走均为一个周期性运动,人体连续行走若干步(例如为10步),即在连续探测到10个波峰时,选择第10个波峰出现的时间点作为第一时间点,选择离该第10个波峰最近的波谷出现的时间点作为第二时间点,选择该第一时间点与该第二时间点的中间点所对应的原始三轴加速度作为更新后的站姿参考bc。本实施例中,在更新站姿参考值时,不限制连续探测到的波峰的数量以及采样频率。
六、站姿检测:在第一个站姿参考值ac未更新时,计算人体实时加速度
Figure BDA0001443921960000061
与第一个站姿参考值ac的空间夹角θ,其中,ac=(axc,ayc,azc),
Figure BDA0001443921960000062
当θ小于或等于预设角θth时,则认为检测到人体的站姿,即人体仍处于站立状态;当θ大于预设角θth时,则认为未检测到人体的站姿,即人不处于站立状态。
在第一个站姿参考值ac更新时,则计算人体实时加速度
Figure BDA0001443921960000071
与更新后的站姿参考bc的空间夹角θc,其中,bc=(bxc,byc,bzc),
Figure BDA0001443921960000072
当θc小于或等于预设角θth时,则认为检测到人体的站姿,即人体仍处于站立状态;当θc大于预设角θth时,则认为未检测到人体的站姿,即人不处于站立状态。
本实施例中,预设角θth的取值为0~45度。
进一步地,人体的实时加速度
Figure BDA0001443921960000073
为一个滑动均值,以采样频率为32Hz为例,即一秒之内有32个加速度的数值,其中,
Figure BDA0001443921960000074
Figure BDA0001443921960000075
本发明的其他实施例中,采样频率不低于32Hz。
本发明还提供一种检测人体站姿的装置,包括传感模块、分类模块、和电源模块,传感模块用于获取各个采样时间点的采样数据,采样数据包括人体运动过程中的三个轴向的加速度信号;分类模块用于对人体运动状态实时进行站姿识别;电源模块为传感器模块和控制模块供电。
进一步地,分类模块例如包括分类器,传感模块例如包括三轴加速度传感器。
本实施例中,检测人体站姿的装置还包括通信模块,通信模块用于把人体的姿态信息传送至数据终端。在具体使用该检测人体站姿的装置时,为获取人体的实时加速度,可将该装置贴合于人体躯干,例如贴合在人体的胸部、腰部及腹部。
本发明通过提供一种检测人体站姿的方法和装置,在进行人体姿态检测的过程中,可以自动更新站姿参考值,并准确分析判断人体在行走过程中的每一个时间点是否处于站立状态。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种检测人体站姿的方法,其特征在于,包括步骤:
通过传感模块获取各个采样时间点的采样数据,所述采样数据包括人体运动过程中的加速度信号,所述加速度信号为人体运动过程中三个轴向的加速度信号,并计算获取三个轴向加速度的三轴合加速度信号;
提取所述加速度信号的统计信息作为分类特征,提取三轴合加速度和时间形成的波形曲线中的极值作为行走的状态认定;提取多个极值绝对值和多个相邻两个所述极值的时间间隔值的统计信息,获取所述多个极值绝对值的均值和标准差以及多个时间间隔值的均值和标准差;将所述多个极值绝对值的均值和标准差以及所述多个时间间隔值的均值和标准差作为分类器的输入特征,由进行训练的人员分别进行活动行为,对分类器进行训练,建立训练特征集;
使用上述训练好的分类器,进行实时运动检测,在人体进行运动之前,标定人体处于站立状态时的轴向加速度,通过探测人体静止过程中的加速度来获取人体处于站立状态时的加速度,以该加速度作为获取到的第一个站姿参考值;
当检测到人体在当前时间点之前处于连续运动状态时,更新所述第一个站姿参考值,当检测到人体在当前时间点之前不处于连续运动状态时,不更新所述第一站姿参考值;
利用所述站姿参考值判定人体是否站立;利用所述站姿参考值判定人体是否站立还包括:在第一个站姿参考值未更新时,计算人体运动状态的实时加速度与第一站姿参考值的空间夹角,当所述空间夹角小于或等于预设角时,则判断检测到人体站姿;当所述空间夹角大于预设角时,则判断未检测到人体站姿;在第一个站姿参考值更新时,则计算人体实时加速度与更新后的站姿参考的空间夹角,当所述空间夹角小于或等于预设角时,则认为检测到人体的站姿;当所述空间夹角大于预设角时,则认为未检测到人体的站姿。
2.如权利要求1所述的检测人体站姿的方法,其特征在于,所述极值包括所述加速度信号形成的波形曲线中的波峰或波谷。
3.如权利要求1所述的检测人体站姿的方法,其特征在于,对所述加速度信号进行低通滤波。
4.如权利要求1所述的检测人体站姿的方法,其特征在于,当检测到人体处于连续运动状态时,更新所述站姿参考值还包括,以保存的连续出现的多个极值作为一个观测窗口,在采集到的最后一个极值中找到对应的时间点作为第一时间点,在采集到的离该最后一个极值最近的另一个极值对应的时间点作为第二时间点,选择第一时间点与该第二时间点的中间点所对应的原始加速度作为所述站姿参考值的更新值。
5.如权利要求1所述的检测人体站姿的方法,其特征在于,所述预设角的取值为0~45度。
6.如权利要求5所述的检测人体站姿的方法,其特征在于,所述实时加速度为滑动均值。
7.一种检测人体站姿的装置,其特征在于,包括传感模块、分类模块、和电源模块,所述传感模块用于获取各个采样时间点的采样数据,所述采样数据包括人体运动过程中的加速度信号;所述分类模块用于对人体运动状态实时进行运动识别;所述电源模块为所述传感模块供电;所述分类模块包括分类器,用于提取所述加速度信号的统计信息作为分类特征,提取三轴合加速度和时间形成的波形曲线中的极值作为行走的状态认定;提取多个极值绝对值和多个相邻两个所述极值的时间间隔值的统计信息,获取所述多个极值绝对值的均值和标准差以及多个时间间隔值的均值和标准差;将所述多个极值绝对值的均值和标准差以及所述多个时间间隔值的均值和标准差作为分类器的输入特征,由进行训练的人员分别进行活动行为,对分类器进行训练,建立训练特征集;使用上述训练好的分类器,进行实时运动检测,在人体进行运动之前,标定人体处于站立状态时的轴向加速度,通过探测人体静止过程中的加速度来获取人体处于站立状态时的加速度,以该加速度作为获取到的第一个站姿参考值;当检测到人体在当前时间点之前处于连续运动状态时,更新所述第一个站姿参考值,当检测到人体在当前时间点之前不处于连续运动状态时,不更新所述第一站姿参考值;利用所述站姿参考值判定人体是否站立;利用所述站姿参考值判定人体是否站立还包括:在第一个站姿参考值未更新时,计算人体运动状态的实时加速度与第一站姿参考值的空间夹角,当所述空间夹角小于或等于预设角时,则判断检测到人体站姿;当所述空间夹角大于预设角时,则判断未检测到人体站姿;在第一个站姿参考值更新时,则计算人体实时加速度与更新后的站姿参考的空间夹角,当所述空间夹角小于或等于预设角时,则认为检测到人体的站姿;当所述空间夹角大于预设角时,则认为未检测到人体的站姿。
8.如权利要求7所述的检测人体站姿的装置,其特征在于,所述传感模块包括加速度传感器。
9.如权利要求7所述的检测人体站姿的装置,其特征在于,所述检测人体站姿的装置还包括通信模块,所述通信模块用于将人体的姿态信息传送至数据终端。
10.如权利要求7所述的检测人体站姿的装置,其特征在于,所述检测人体站姿的装置贴合于人体躯干。
CN201711003258.7A 2017-10-24 2017-10-24 一种检测人体站姿的方法和装置 Active CN109692004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711003258.7A CN109692004B (zh) 2017-10-24 2017-10-24 一种检测人体站姿的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711003258.7A CN109692004B (zh) 2017-10-24 2017-10-24 一种检测人体站姿的方法和装置

Publications (2)

Publication Number Publication Date
CN109692004A CN109692004A (zh) 2019-04-30
CN109692004B true CN109692004B (zh) 2023-02-28

Family

ID=66227919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711003258.7A Active CN109692004B (zh) 2017-10-24 2017-10-24 一种检测人体站姿的方法和装置

Country Status (1)

Country Link
CN (1) CN109692004B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113051990B (zh) * 2020-11-04 2022-11-18 泰州程顺制冷设备有限公司 站位姿态标准程度分析平台及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626312A (zh) * 2012-04-01 2012-08-08 浙江大学城市学院 一种跌倒检测方法、跌倒检测装置和穿戴式设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626312A (zh) * 2012-04-01 2012-08-08 浙江大学城市学院 一种跌倒检测方法、跌倒检测装置和穿戴式设备

Also Published As

Publication number Publication date
CN109692004A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
JP5674766B2 (ja) 着用位置を検出するためのセンシングデバイス
Gao et al. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems
Khan et al. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets
Ghasemzadeh et al. A body sensor network with electromyogram and inertial sensors: Multimodal interpretation of muscular activities
KR102107379B1 (ko) 3축 동작측정기를 이용한 노쇠 예측 방법, 3축 동작측정기를 이용한 노쇠 예측 시스템 및 웨어러블 노쇠 예측 장치
CN109069066A (zh) 可穿戴和连接的步态分析系统
Wagenaar et al. Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology
Jensen et al. Classification of kinematic swimming data with emphasis on resource consumption
WO2014118767A1 (en) Classifying types of locomotion
CN107506706A (zh) 一种基于三维摄像头的人体跌倒检测方法
CN108958482B (zh) 一种基于卷积神经网络的相似性动作识别装置及方法
US20220287651A1 (en) Method and system for analyzing biomechanical activity and exposure to a biomechanical risk factor on a human subject in a context of physical activity
Iervolino et al. A wearable device for sport performance analysis and monitoring
Nukala et al. A real-time robust fall detection system using a wireless gait analysis sensor and an artificial neural network
Kelly et al. An investigation into non-invasive physical activity recognition using smartphones
Liu et al. A review of wearable sensors based fall-related recognition systems
Ghobadi et al. A robust automatic gait monitoring approach using a single IMU for home-based applications
CN109692004B (zh) 一种检测人体站姿的方法和装置
CN103632133A (zh) 人体姿态识别方法
Noor et al. Dynamic sliding window method for physical activity recognition using a single tri-axial accelerometer
Goh et al. Multilayer perceptron neural network classification for human vertical ground reaction forces
Mesanza et al. Machine learning based fall detector with a sensorized tip
Sharma et al. On the use of multi-modal sensing in sign language classification
Al Safadi et al. Generalized activity recognition using accelerometer in wearable devices for IoT applications
Alcaraz et al. Mobile quantification and therapy course tracking for gait rehabilitation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant