CN109683343B - Design method of super-resolution imaging system - Google Patents
Design method of super-resolution imaging system Download PDFInfo
- Publication number
- CN109683343B CN109683343B CN201910140208.6A CN201910140208A CN109683343B CN 109683343 B CN109683343 B CN 109683343B CN 201910140208 A CN201910140208 A CN 201910140208A CN 109683343 B CN109683343 B CN 109683343B
- Authority
- CN
- China
- Prior art keywords
- super
- resolution
- imaging system
- resolution imaging
- optical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 87
- 238000013461 design Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 238000006073 displacement reaction Methods 0.000 claims description 11
- 230000006872 improvement Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 210000001747 pupil Anatomy 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/58—Optics for apodization or superresolution; Optical synthetic aperture systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Studio Devices (AREA)
Abstract
本发明公开了一种超分辨成像系统的设计方法,首先对超分辨成像系统中的探测器进行选型,确定像元尺寸p,并得到光学镜头的焦距f;根据需求确定超分辨成像系统的分辨率提高倍数
性能因子η,并得到超分辨成像系统中光学镜头的F#数;计算获得超分辨成像系统的成像信噪比SNR,并校验F#数是否满足成像信噪比指标的要求;若满足指标要求,则得到超分辨成像系统中光学镜头的口径D,进而得到光学镜头的设计参数;然后利用该超分辨成像系统对待测目标进行多次观测,并构成待测目标的图像序列yk;再将图像序列yk代入到超分辨重建方程中,根据相对熵最小求解所述超分辨重建方程,得到超分辨成像结果。该方法能使系统充分发挥超分辨成像的优势,实现系统级的优化设计。The invention discloses a design method of a super-resolution imaging system. First, the detectors in the super-resolution imaging system are selected, the pixel size p is determined, and the focal length f of the optical lens is obtained; the super-resolution imaging system is determined according to requirements. Resolution increase by multiples
The performance factor η is obtained, and the F # number of the optical lens in the super-resolution imaging system is obtained; the imaging signal-to-noise ratio SNR of the super-resolution imaging system is calculated, and the F # number is verified to meet the requirements of the imaging signal-to-noise ratio index; if it meets the index requirements, then obtain the aperture D of the optical lens in the super-resolution imaging system, and then obtain the design parameters of the optical lens; then use the super-resolution imaging system to observe the target to be measured for many times, and form the image sequence y k of the target to be measured; The image sequence y k is substituted into the super-resolution reconstruction equation, and the super-resolution reconstruction equation is solved according to the minimum relative entropy, and the super-resolution imaging result is obtained. This method enables the system to give full play to the advantages of super-resolution imaging and achieve system-level optimization design.Description
技术领域technical field
本发明涉及光电成像系统技术领域,尤其涉及一种超分辨成像系统的设计方法。The invention relates to the technical field of photoelectric imaging systems, in particular to a design method of a super-resolution imaging system.
背景技术Background technique
几何分辨率是光电成像系统的重要性能指标,传统成像系统中,成像几何分辨率与系统光学镜头焦距和成像探测器像元尺寸直接相关,焦距越长分辨率越高,像元尺寸越小分辨率越高。然而,随着人们对成像质量的持续追求,高几何分辨率成像系统的发展却受到了光学镜头和探测器的制约,主要体现在:首先,增长焦距在提高分辨率的同时也增大系统体积和重量,不仅限制了系统应用还提高了系统的制造周期和研制成本;其次,由于电子技术和半导体工艺的限制,减小探测器像元尺寸会大幅降低探测器每个像元的光通量,严重影响成像质量。Geometric resolution is an important performance index of photoelectric imaging systems. In traditional imaging systems, imaging geometric resolution is directly related to the focal length of the optical lens of the system and the pixel size of the imaging detector. The longer the focal length, the higher the resolution and the smaller the pixel size. higher rate. However, with the continuous pursuit of imaging quality, the development of high geometric resolution imaging systems is restricted by optical lenses and detectors, which are mainly reflected in: first, increasing the focal length increases the resolution and also increases the system volume and weight, which not only limits the application of the system, but also increases the manufacturing cycle and development cost of the system; secondly, due to the limitations of electronic technology and semiconductor technology, reducing the size of the detector pixel will greatly reduce the luminous flux of each pixel of the detector, seriously affect image quality.
随着信号处理技术的快速发展,超分辨率成像技术为解决以上矛盾提供了较为直接的解决方案,其利用多帧图像之间的亚像元非冗余信息来拓展探测器的频谱重构高分辨率图像,突破了成像器件对系统分辨率的限制。超分辨率成像系统的设计由两部分构成,一是算法设计,超分辨重建算法属于数学上的反问题,具有很强的病态性,为获得高精度的重建结果,就要抑制配准误差和计算噪声的传播;二是相机参数优化设计,超分辨算法与光学系统参数、探测器参数密切相关,若脱离开相机的设计仅对算法进行优化,那么从超分辨率成像系统的层面来讲也仅能获得超分辨率增强效果的局部最优,只有围绕超分辨率算法的本质和需求对光学系统和探测器的设计参数进行约束,才能获得系统级的最优解。在传统超分辨成像系统设计中,重建算法设计对于反问题优化不足导致计算噪声的传播和放大,另外传统的设计方法也不考虑探测器参数、光学镜头参数、重建算法参数之间的耦合关系,使重建算法难以发挥理想的效能。With the rapid development of signal processing technology, super-resolution imaging technology provides a more direct solution to the above contradictions. It uses the sub-pixel non-redundant information between multiple frames of images to expand the spectral reconstruction of the detector. High-resolution images, breaking through the limitations of imaging devices on system resolution. The design of the super-resolution imaging system consists of two parts. One is the algorithm design. The super-resolution reconstruction algorithm is a mathematical inverse problem and has a strong ill-conditioned nature. In order to obtain high-precision reconstruction results, it is necessary to suppress the registration error and The propagation of calculation noise; the second is the optimal design of camera parameters. The super-resolution algorithm is closely related to the parameters of the optical system and detector. If only the algorithm is optimized without the design of the camera, then from the perspective of the super-resolution imaging system, the Only the local optimum of the super-resolution enhancement effect can be obtained, and the system-level optimal solution can be obtained only by constraining the design parameters of the optical system and detector around the essence and requirements of the super-resolution algorithm. In the design of traditional super-resolution imaging systems, the insufficient optimization of the reconstruction algorithm design for the inverse problem leads to the propagation and amplification of computational noise. In addition, the traditional design method does not consider the coupling relationship between the detector parameters, optical lens parameters, and reconstruction algorithm parameters. It makes it difficult for the reconstruction algorithm to achieve the desired performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种超分辨成像系统的设计方法,该方法充分考虑对反问题求解病态性的约束,兼顾图像边缘纹理信息的重建和噪声抑制,同时将探测器主要参数、光学镜头主要参数、算法效能统一到同一设计模型中,使系统充分发挥超分辨成像的优势,实现系统级的优化设计。The purpose of the present invention is to provide a design method of a super-resolution imaging system, which fully considers the constraints of the ill-conditioned solution of the inverse problem, takes into account the reconstruction of image edge texture information and noise suppression, and simultaneously integrates the main parameters of the detector and the main optical lens. The parameters and algorithm performance are unified into the same design model, so that the system can give full play to the advantages of super-resolution imaging and achieve system-level optimization design.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种超分辨成像系统的设计方法,所述方法包括:A design method of a super-resolution imaging system, the method comprising:
步骤1、对超分辨成像系统中的探测器进行选型,确定像元尺寸p,并根据如下公式得到光学镜头的焦距f:其中,L表示成像距离,GSD表示像元分辨率;
步骤2、根据需求确定超分辨成像系统的分辨率提高倍数再结合具体应用场景、安装尺寸、制造成本确定超分辨成像系统的性能因子η,并得到超分辨成像系统中光学镜头的F#数;
步骤3、计算获得超分辨成像系统的成像信噪比SNR,并校验步骤2所得到的F#数是否满足成像信噪比指标的要求;
步骤4、若得到的信噪比满足指标要求,则根据公式F#=f/D,得到超分辨成像系统中光学镜头的口径D,进而得到光学镜头的设计参数;
步骤5、若得到的信噪比不满足指标要求,则重复步骤2和3的操作,直到信噪比满足指标要求,并确定F#数,进而根据公式F#=f/D确定超分辨成像系统中光学镜头的口径D;
步骤6、然后利用该超分辨成像系统对待测目标进行多次观测,使每两次观测图像之间都具有不同的亚像元位移,多次观测的结果构成了待测目标的图像序列yk;
步骤7、再将图像序列yk代入到超分辨重建方程中,建立根据图像梯度信息自适应变化的正则化模型,对待测目标的观测图像的边缘区域和平坦区域进行约束,根据相对熵最小求解所述超分辨重建方程,得到超分辨成像结果。
由上述本发明提供的技术方案可以看出,上述方法充分考虑了对反问题求解病态性的约束,兼顾图像边缘纹理信息的重建和噪声抑制;同时将探测器主要参数、光学镜头主要参数、算法效能统一到同一设计模型中,实现相机硬件参数与算法参数之间的解耦,使系统充分发挥超分辨成像的优势,进而实现系统级的优化设计。It can be seen from the technical solutions provided by the present invention that the above method fully considers the constraints of the ill-conditioned solution of the inverse problem, and takes into account the reconstruction of image edge texture information and noise suppression; The performance is unified into the same design model to realize the decoupling between the camera hardware parameters and the algorithm parameters, so that the system can give full play to the advantages of super-resolution imaging, and then realize the optimal design of the system level.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例提供的超分辨成像系统的设计方法流程示意图。FIG. 1 is a schematic flowchart of a design method of a super-resolution imaging system according to an embodiment of the present invention.
图2为本发明实施例提供的亚像元位移示意图。FIG. 2 is a schematic diagram of sub-pixel displacement provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的超分辨成像系统的设计方法流程示意图,所述方法包括:The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. FIG. 1 is a schematic flowchart of a design method of a super-resolution imaging system provided by an embodiment of the present invention, and the method includes:
步骤1、对超分辨成像系统中的探测器进行选型,确定像元尺寸p,并根据如下公式得到光学镜头的焦距f:
其中,L表示成像距离,GSD表示像元分辨率。Among them, L represents the imaging distance, and GSD represents the pixel resolution.
步骤2、根据需求确定超分辨成像系统的分辨率提高倍数再结合具体应用场景、安装尺寸、制造成本确定超分辨成像系统的性能因子η,并得到超分辨成像系统中光学镜头的F#数;
在该步骤中,分辨率提高倍数的范围为其中,表示超分辨重建算法能实现的分辨率提高倍数最大值;In this step, the resolution is increased by a factor of The range is in, Represents the maximum value of the resolution increase that can be achieved by the super-resolution reconstruction algorithm;
超分辨成像系统的性能因子η表示为其中,ωS表示探测器截止频率,ωO表示光学截止频率;The performance factor η of the super-resolution imaging system is expressed as where ω S is the detector cut-off frequency, and ω O is the optical cut-off frequency;
且满足关系 and satisfy the relationship
其中,λ表示入射光波长;p为确定的像元尺寸;F#为超分辨成像系统中光学镜头的参数。Among them, λ represents the wavelength of the incident light; p is the determined pixel size; F # is the parameter of the optical lens in the super-resolution imaging system.
举例来说,光学镜头通常都可以优化为一个衍射受限系统,此时光学镜头的调制传递函数近似为:For example, an optical lens can usually be optimized as a diffraction-limited system, where the modulation transfer function of the optical lens is approximated as:
其中,ωO为光学截止频率,代表了光学镜头的极限能力,ωO与光学系统口径D的关系可以表示为:Among them, ω O is the optical cut-off frequency, which represents the limit capability of the optical lens, and the relationship between ω O and the diameter D of the optical system can be expressed as:
上式中,D表示光学系统口径的直径,λ表示入射光波长。In the above formula, D represents the diameter of the aperture of the optical system, and λ represents the wavelength of the incident light.
探测器的调制传递函数为:The modulation transfer function of the detector is:
其中,为探测器像元的相对宽度,与填充因子有关;σ表示探测器的角距,与探测器的截止频率ωS之间是互为倒数的关系,ωS也代表了探测器的极限能力。in, is the relative width of the detector pixel, which is related to the filling factor; σ represents the angular distance of the detector, which is inversely related to the cut-off frequency ω S of the detector, and ω S also represents the limit capability of the detector.
在超分辨率成像系统中,若重建算法能够实现的分辨率提高倍数最大为则超分辨率成像系统的截止频率ωS可用如下不等式表示:In a super-resolution imaging system, if the reconstruction algorithm can achieve a maximum resolution increase of Then the cut-off frequency ω S of the super-resolution imaging system can be expressed by the following inequality:
将成像系统的性能表示为探测器截止频率ωS与光学截止频率ωO之比:Express the performance of the imaging system as the ratio of the detector cutoff frequency ωS to the optical cutoff frequency ωO :
上式中,η为超分辨成像系统性能因子,进一步有:In the above formula, η is the performance factor of the super-resolution imaging system, further:
上述公式将成像系统光学镜头的主要参数、探测器的主要参数、重建算法参数联系到一起,实现了超分辨率成像系统参数的整体优化设计。The above formula links the main parameters of the optical lens of the imaging system, the main parameters of the detector, and the parameters of the reconstruction algorithm, and realizes the overall optimization design of the parameters of the super-resolution imaging system.
步骤3、计算获得超分辨成像系统的成像信噪比SNR,并校验步骤2所得到的F#数是否满足成像信噪比指标的要求;
在该步骤中,首先根据如下公式计算成像信噪比SNR:In this step, first calculate the imaging signal-to-noise ratio SNR according to the following formula:
其中,Eimg(λ)为镜头汇聚到探测器靶面上任意位置的辐射能量,hυ为单光子能量,QE为探测器量子效率,VNSH为散粒噪声,Vfloor表示探测器本底噪声包括电荷转移噪声、暗电流噪声、读出噪声和量化噪声,VPRNU表示探测器的响应不均匀性噪声,SNRtarget表示超分辨成像系统需要达到的信噪比指标;Among them, E img (λ) is the radiation energy collected by the lens at any position on the detector target surface, hυ is the single-photon energy, QE is the detector quantum efficiency, V NSH is the shot noise, and V floor is the detector noise floor Including charge transfer noise, dark current noise, readout noise and quantization noise, V PRNU represents the response non-uniformity noise of the detector, and SNR target represents the signal-to-noise ratio index that the super-resolution imaging system needs to achieve;
上述Eimg(λ)与F#数的关系表示为:The relationship between the above E img (λ) and the F # number is expressed as:
其中,Topt为光学系统透过率,Lλ(λ)表示光学镜头入瞳辐亮度,θtilt为光轴倾角;Among them, T opt is the transmittance of the optical system, L λ (λ) is the entrance pupil radiance of the optical lens, and θ tilt is the tilt angle of the optical axis;
再根据上述关系式来校验步骤2所得到的F#数是否满足成像信噪比指标的要求。Then, according to the above relationship, it is checked whether the F # number obtained in
步骤4、若得到的信噪比满足指标要求,则根据公式F#=f/D,得到超分辨成像系统中光学镜头的口径D,进而得到光学镜头的设计参数;
步骤5、若得到的信噪比不满足指标要求,则重复步骤2和3的操作,直到信噪比满足指标要求,并确定F#数,进而根据公式F#=f/D确定超分辨成像系统中光学镜头的口径D;
步骤6、然后利用该超分辨成像系统对待测目标进行多次观测,使每两次观测图像之间都具有不同的亚像元位移,多次观测的结果构成了待测目标的图像序列yk;
该步骤中,如图2所示为本发明实施例提供的亚像元位移示意图,所述亚像元位移是指:在图像坐标系OXY中,地物目标上一点在实线表示的图B中对应像元O1,在虚线表示的图A中对应像元O2,O1和O2分别在OX和OY方向上相差的像元数不为整数。如果图A和图B的仿射变换除平移外还存在旋转,需把两幅图通过旋转变换转换至同一平面。In this step, FIG. 2 is a schematic diagram of sub-pixel displacement provided by an embodiment of the present invention, and the sub-pixel displacement refers to: in the image coordinate system OXY, a point on the ground object is represented by a solid line in Figure B The corresponding pixel O 1 in the dashed line corresponds to the pixel O 2 in Figure A represented by the dotted line, and the number of pixels that differ from each other in the OX and OY directions is not an integer. If the affine transformation of Figure A and Figure B also has rotation in addition to translation, the two images need to be transformed to the same plane through the rotation transformation.
步骤7、再将图像序列yk代入到超分辨重建方程中,建立根据图像梯度信息自适应变化的正则化模型,对待测目标的观测图像的边缘区域和平坦区域进行约束,根据相对熵最小求解所述超分辨重建方程,得到超分辨成像结果。
该步骤的具体实现过程为:The specific implementation process of this step is as follows:
在该步骤中,yk表示对同一目标场景的K次观测图像数据,则超分辨重建方程可以表示为:In this step, y k represents the K times of observed image data of the same target scene, then the super-resolution reconstruction equation can be expressed as:
yk=AHC(sk)x+nk,k=1,2,...,Ky k =AHC(s k )x+n k ,k=1,2,...,K
其中,x表示目标场景,yk表示对目标观测K次得到图像序列,H表示光学点扩散函数,若将第1次观测的成像结果作为基准图像,则第k次观测图像相对于基准图像的旋转位移θk、水平位移ck、垂直位移dk,记为sk=(θk,ck,dk)T;Among them, x represents the target scene, y k represents the image sequence obtained by observing the target K times, and H represents the optical point spread function. If the imaging result of the first observation is used as the reference image, the kth observation image relative to the reference image Rotational displacement θ k , horizontal displacement ck , vertical displacement d k , denoted as s k =(θ k ,c k ,d k ) T ;
C(sk)为与运动向量sk有关的位移矩阵;A为探测器下采样函数,与超分辨率重建的像素数放大率有关;nk表示加性噪声。C( sk ) is the displacement matrix related to the motion vector sk ; A is the detector down-sampling function, which is related to the magnification of the pixel number of the super-resolution reconstruction; n k represents the additive noise.
进一步的,对于每帧观测图像数据yk,矩阵C(sk)和噪声nk各不相同,矩阵A、H、C(sk)和x之间是卷积关系,对于全局优化的超分辨率重建来说,要从这四者的卷积关系中同时解耦出sk和x,yk的概率形式解为:Further, for each frame of observed image data y k , the matrix C(s k ) and the noise n k are different, and the matrices A, H, C(s k ) and x are convolutional relationships. In terms of resolution reconstruction, the probability form of sk and x, y k should be simultaneously decoupled from the convolution relationship of these four:
上式中,符号{·}表示集合,要求概率p(x,{sk}|{yk}),就要先分别对后验概率分布p({yk}|x,{sk})和先验概率分布p(x)分别进行建模设计,后验概率也叫最小二乘项,先验概率也叫正则化项。In the above formula, the symbol {·} represents the set, and if the probability p(x,{s k }|{y k }) is required, the posterior probability distribution p({y k }|x,{s k } ) and the prior probability distribution p(x) are modeled separately, the posterior probability is also called the least squares term, and the prior probability is also called the regularization term.
令噪声服从零均值的高斯分布,则Let the noise obey a Gaussian distribution with zero mean, then
方差σk的倒数服从Gamma分布:The inverse of the variance σ k follows a Gamma distribution:
为提高超分辨率重建的精度,令配准参数sk服从先验均值先验协方差的高斯分布:In order to improve the accuracy of super-resolution reconstruction, let the registration parameter sk obey the prior mean prior covariance The Gaussian distribution of :
结合式上述公式得到后验概率或最小二乘项p({yk}|x,{sk})的表达式:Combine the above formula to get the expression of posterior probability or least squares term p({y k }|x,{s k }):
影响超分辨率重建精度的第二个因素是图像复原中引入的正则化项,即先验概率分布p(x),其作用是约束方程的求解空间,反应在重建图像结果上就是边缘信息重建和噪声滤除,然而边缘重建和滤噪相互矛盾,需要进行权衡以增强算法的鲁棒性,因此正则化项的建模对超分辨重建算法的设计尤为重要,本实例中可以将正则化项的建模设计为如下A或B两种形式:The second factor that affects the accuracy of super-resolution reconstruction is the regularization term introduced in image restoration, that is, the prior probability distribution p(x), whose function is to constrain the solution space of the equation, which is reflected in the reconstructed image result as the reconstruction of edge information. However, edge reconstruction and noise filtering are contradictory, and a trade-off is needed to enhance the robustness of the algorithm. Therefore, the modeling of the regularization term is particularly important for the design of the super-resolution reconstruction algorithm. In this example, the regularization term can be The modeling design is as follows: A or B:
1)正则化项设计形式A:1) Regularization term design form A:
下面分别阐述上式中p(x|αwB)和p(αwB)的意义与表达式。The meanings and expressions of p(x|α wB ) and p(α wB ) in the above formula are described below.
pwB(x|αwB)=(αwB)P2exp[-αwBUwB(x)]p wB (x|α wB )=(α wB ) P2 exp[-α wB U wB (x)]
上式中,UwB(x)的表达式为:In the above formula, the expression of U wB (x) is:
其中,Δhi和Δvi分别表示水平和垂直方向的差分算子,“箭头”符号表示沿着该方向向距离像素点xi最近的像素点取一阶差分,体现了图像的梯度分布,λwB(x)的表达式为:Among them, Δhi and Δvi represent the difference operators in the horizontal and vertical directions, respectively, and the "arrow" symbol indicates that the first-order difference is taken along the direction to the pixel point closest to the pixel point xi , which reflects the gradient distribution of the image, λ The expression for wB (x) is:
λS表示约束强度因子,符号norm表示归一化算子。λ S represents the constraint strength factor, and the symbol norm represents the normalization operator.
上式中αwB服从Gamma分布:In the above formula, α wB obeys Gamma distribution:
2)正则化项的设计形式B:2) Design form B of the regularization term:
下面分别阐述式中等号右面各项的意义和表达式:The meanings and expressions of the items on the right side of the equal sign are explained below:
令表示参数的集合,则可以记为其表达式为:make Indicates parameters collection, then can be recorded as Its expression is:
其中,的表达式:in, expression:
λwh(x)和λwv(x)为:λ wh (x) and λ wv (x) are:
其中,λh和λv为常数参数,它们之间的关系为:Among them, λ h and λ v are constant parameters, and the relationship between them is:
的表达式为: The expression is:
至此,完成对方程中先验概率分布p(x),即正则化项的设计。So far, complete the equation The prior probability distribution p(x), the design of the regularization term.
进一步的,以上正则化项形式A和形式B设计的优点体现在:通过UwB(x)或使正则化项能够按照图像梯度信息自适应的对图像中的边缘区域和平坦区域进行约束,在边缘区域进行边缘纹理信息的重建,在平坦区域进行噪声抑制,从而能够保证获得较好的超分辨率重建结果。Further, the advantages of the above regularization term Form A and Form B design are: by U wB (x) or The regularization term can adaptively constrain the edge area and flat area in the image according to the image gradient information, reconstruct the edge texture information in the edge area, and perform noise suppression in the flat area, so as to ensure better super-resolution. rate reconstruction results.
最后利用分布q(Θ)与分布p(Θ|{yk})相对熵最小来求解方程即:Finally, the equation is solved by using the minimum relative entropy between the distribution q(Θ) and the distribution p(Θ|{y k }) which is:
Θ表示所有未知量的集合,Θ={x,{sk},α,{βk}},该公式的具体求解流程可结合现有技术予以理解。Θ represents the set of all unknowns, Θ={x,{s k },α,{β k }}, and the specific solution process of this formula can be understood in combination with the prior art.
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。It should be noted that the content not described in detail in the embodiments of the present invention belongs to the prior art known to those skilled in the art.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910140208.6A CN109683343B (en) | 2019-02-25 | 2019-02-25 | Design method of super-resolution imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910140208.6A CN109683343B (en) | 2019-02-25 | 2019-02-25 | Design method of super-resolution imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109683343A CN109683343A (en) | 2019-04-26 |
CN109683343B true CN109683343B (en) | 2021-03-30 |
Family
ID=66196979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910140208.6A Active CN109683343B (en) | 2019-02-25 | 2019-02-25 | Design method of super-resolution imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109683343B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018057517A1 (en) * | 2016-09-20 | 2018-03-29 | Massachusetts Institute Of Technology | Circular scanning technique for large area imaging |
CN106525238B (en) * | 2016-10-27 | 2018-08-03 | 中国科学院光电研究院 | A kind of satellite-borne multispectral imaging system design method based on super-resolution rebuilding |
CN106558036B (en) * | 2016-10-27 | 2019-08-02 | 中国科学院光电研究院 | A kind of spaceborne super-resolution imaging design method |
CN106791405B (en) * | 2016-12-26 | 2019-05-21 | 首都师范大学 | A kind of method and system obtaining Displacement sequence image |
CN107220936A (en) * | 2017-05-26 | 2017-09-29 | 首都师范大学 | A kind of image super-resolution reconstructing method and system |
CN108648147B (en) * | 2018-05-08 | 2021-04-30 | 北京理工大学 | Super-resolution image acquisition method and system of human eye retina mechanism |
-
2019
- 2019-02-25 CN CN201910140208.6A patent/CN109683343B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109683343A (en) | 2019-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111052176B (en) | Seamless image stitching | |
CN109146794B (en) | A kind of light field image rotation error bearing calibration | |
CN108520537B (en) | A binocular depth acquisition method based on photometric parallax | |
WO2021098083A1 (en) | Multispectral camera dynamic stereo calibration algorithm based on salient feature | |
CN110874854B (en) | Camera binocular photogrammetry method based on small baseline condition | |
CN108564620B (en) | A Scene Depth Estimation Method for Light Field Array Cameras | |
CN114549746A (en) | High-precision true color three-dimensional reconstruction method | |
Chakrabarti et al. | Rethinking color cameras | |
WO2018209703A1 (en) | Method and system for snapshot multi-spectral light field imaging | |
Kurita et al. | Simultaneous acquisition of high quality rgb image and polarization information using a sparse polarization sensor | |
CN116740340A (en) | Calculation spectrum imaging error correction method based on deep learning | |
Hosseininaveh et al. | Automatic image selection in photogrammetric multi-view stereo methods | |
CN111932452A (en) | Infrared image convolution neural network super-resolution method based on visible image enhancement | |
CN109683343B (en) | Design method of super-resolution imaging system | |
CN103873773B (en) | Primary-auxiliary synergy double light path design-based omnidirectional imaging method | |
CN115035273A (en) | Vehicle-mounted panoramic double-spectrum visual enhancement system and vehicle visual enhancement method | |
CN106066207A (en) | A kind of parallel light path combination type multi-source information acquiring processing means and method | |
RU2692970C2 (en) | Method of calibration of video sensors of the multispectral system of technical vision | |
CN109615650B (en) | Light field flow estimation method based on variational method and shielding complementation | |
CN117788531A (en) | Photon detector acquisition projection image module seam filling method based on image registration | |
CN115100382B (en) | Nerve surface reconstruction system and method based on hybrid characterization | |
CN116576827A (en) | Remote sensing terrain three-dimensional mapping method based on polarization three-dimensional imaging | |
Castanheiro et al. | Adaptive weighting of image observations for self-calibration with fisheye images | |
CN114494039A (en) | A method for geometric correction of underwater hyperspectral push-broom images | |
CN114119995A (en) | Air-ground image matching method based on object space surface element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |