CN109661085A - 基于感应电场的动静态人体感应灯及控制方法 - Google Patents

基于感应电场的动静态人体感应灯及控制方法 Download PDF

Info

Publication number
CN109661085A
CN109661085A CN201811641337.5A CN201811641337A CN109661085A CN 109661085 A CN109661085 A CN 109661085A CN 201811641337 A CN201811641337 A CN 201811641337A CN 109661085 A CN109661085 A CN 109661085A
Authority
CN
China
Prior art keywords
signal
electrode
human body
dynamic
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811641337.5A
Other languages
English (en)
Inventor
潘角
卢炳回
傅天珠
卢森锴
覃以威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A Guilin Mdt Infotech Ltd
Original Assignee
A Guilin Mdt Infotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Guilin Mdt Infotech Ltd filed Critical A Guilin Mdt Infotech Ltd
Priority to CN201811641337.5A priority Critical patent/CN109661085A/zh
Publication of CN109661085A publication Critical patent/CN109661085A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种基于感应电场的动静态人体感应灯及控制方法,涉及智能节能控制照明领域,感应灯包括控制系统、照明系统、电源系统、人体感应系统,人体感应系统包括电极传感器、信号源模块、信号处理器;信号源模块产生稳定信号加载在电极传感器上,电极传感器通过信号处理器与控制系统连接,控制系统与照明系统的输入端连接。方法是人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,电极信号经信号处理器处理后传送至控制系统,控制系统将电极信号相关系数与预设阈值比较,判断人体是否在感知区域内,从而控制照明系统的开或闭。本发明能实现动静态人体感应,具有稳定性好、识别率高、结构简单、功耗低等特点,易于推广使用。

Description

基于感应电场的动静态人体感应灯及控制方法
技术领域
本发明涉及智能节能控制照明领域,特别是一种基于感应电场的动静态人体感应灯及控制方法。
背景技术
常见的人体探测方式有超声波探测、微波探测等有源主动型和被动红外(PIR)热释电探测等无源被动型两大类。超声波和微波人体探测是基于多普勒效应而制成的,只能检测出运动的人体,是一种动态的人体检测技术,无法检测处于静止状态的人体。同时这两种探测方式会产生一定的能量辐射,长时间处于这种环境下会对人体造成一定的伤害,不适合于节能控制的使用要求。
目前静态人体探测方式主要有:红外图像处理、生命探测雷达和改进型的热释电被动红外探测等方式。红外图像处理和生命探测雷达价格昂贵,很难普及应用到LED照明节能控制当中,改进型的热释电被动红外探测、红外图像处理都是依据人体温度为基础做检测,容易受到环境温度的影响,当温度接近人体温度时候,其运行不稳定,误差非常大,无法实现在LED节能照明中推广应用。
授权公告号为CN 103197354B的发明专利《数字式被动红外静止人体探测器及其探测方法》,公开了一种用被动红外检测静止人体的探测器及其探测方法,该发明主要是通过旋转被动红外传感器实现运动,同时利用互相关运算。它存在以下缺点:(1)被动红外传感器检测人体的原理也是基于人体温度检测,容易受到环境温度的影响,当温度接近人体温度时候,误差非常大;(2)通过旋转被动红外传感器实现运动,使被动红外传感器经常运转,使其功耗非常大,结构复杂,无法达到方便、节能的功效;(3)利用互相关运算只是削弱同频信号的干扰,还是存在异频信号的干扰;而且通过互相关运算得到的归一化互相关函数序列与阈值做比较来实现判断是否有人,但没有具体的阈值,同时控制方法复杂。
发明内容
本发明要解决的技术问题是:提供一种基于感应电场的动静态人体感应灯及控制方法,以解决现有技术存在的只能检测出运动的人体而无法检测处于静止状态的人体、结构复杂,功耗大,运行不稳定,误判率高的不足之处。
解决上述技术问题的技术方案是:一种基于感应电场的动静态人体感应灯,包括控制系统、照明系统、电源系统,电源系统的输出端分别与控制系统、照明系统连接;还包括人体感应系统,该人体感应系统包括电极传感器、信号源模块、信号处理器;所述的信号源模块用于产生稳定信号并加载在电极传感器上,电极传感器用于实时感知人体信息,该电极传感器的输出端与信号处理器输入端连接,信号处理器输端与控制系统的输入端连接,控制系统的输出端与照明系统的输入端连接。
本发明的进一步技术方案是:所述的电极传感器由至少一个电极构成,当电极数量为多个时,多个电极在同一平面内均匀分布形成阵列式。
本发明的进一步技术方案是:所述的信号源模块产生稳定的多路标准信号,信号电压和频率均匀可变,可变电压范围1.8V~5 V,可变频率范围60kHz~160kHz。
本发明的进一步技术方案是:所述的信号处理器包括依次连接在一起的检波模块、放大模块、滤波模块,检波模块的输入端与电极传感器连接,滤波模块的输出端与控制系统连接。
本发明的进一步技术方案是:所述的电源系统包括电源系统Ⅰ、电源系统Ⅱ,电源系统Ⅰ的输出端分别与人体感应系统、控制系统连接,电源系统Ⅱ的输出端与照明系统连接。
本发明的再进一步技术方案是:所述的照明系统包括感应灯,所述的控制系统、电源系统、人体感应系统、照明系统集成于一体。
本发明的另一技术方案是:一种基于感应电场的动静态人体感应灯的控制方法,人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,各个电极的电极信号经信号处理器处理后传送至控制系统,控制系统将该电极信号相关系数与预设阈值比较,判断人体是否在感知区域内,从而控制照明系统的开或闭。
本发明的进一步技术方案是:当人体是在感知区域内,则电场发生微弱的变化;采集的电极信号包含强背景噪声和有用的微弱电场信号,为了能从强背景噪声中提取有用的微弱电场信号,首先对采集的序列电极信号进行放大,再进行自相关去噪,削弱噪声干扰同时恢复被覆盖的信号,然后进行互相关去噪,削弱强背景噪声干扰。
本发明的再进一步技术方案是:该方法包括以下步骤:
S1.背景噪声的采集:
在感知区域内无人的情况下将背景噪声信号序列采集存储,采集的背景噪声序列为x(1)、x(2)、x(3) … x(2k-1)、x(2k),其中x(2k)表示第2K个采样点的背景噪声信号,2K为采样的点数;
S2. 判断电极信号脉宽是否大于或等于脉宽阈值:
人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,实时采集各电极的电极信号,并将该电极信号脉宽与脉宽阈值做比较,即动静态人体检测,当电极信号脉宽大于或者等于脉宽阈值,则执行步骤S3,反之输出没有人信号,照明系统处于关闭状态,则重复执行步骤S2;
S3.判断电极信号脉宽是否大于25ms:
判断采集的各电极信号脉宽是否大于25ms, 即判断是否为扰动信号,如果大于25ms,则执行步骤S4,反之输出没有人信号,照明系统处于关闭状态,重复执行步骤S2;
S4.电极信号序列自相关运算
对采集的k个电极信号序列作自相关运算;
S5.互相关运算
将2k个背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,最后进行归一化函数互相关运算,得出归一化互相关函数序列;
S6.判断感知区域内是否存在运动或者静止的人
从归一化互相关函数序列中找出峰值,判断峰值是否在预设阈值-0.27~0.27范围内,如果峰值在该预设阈值范围之外,输出无人信号,照明系统处于关闭状态,并重复执行步骤S2, 如果峰值在预设阈值范围内,则输出有人信号,并控制启动照明系统,直到峰值在预设阈值范围之外,延迟一定时间,照明系统自动关闭,执行重复步骤S2。
本发明的再进一步技术方案是:在步骤S4中,对采集的k个电极信号序列作自相关运算的函数为:
在上式中,y(t)表示t时刻采样的电极信号, y(t+ψ)表示t+ψ时刻采样的电极信号,ψ为延时时间;
在步骤S5中,包括以下详细步骤:
S51.计算2k个背景噪声序列信号的能量fxx(0):
其中,x(t)表示t时刻采样的背景噪声信号;
S52.计算k个电极信号序列信号的能量fyy(0):
S53.将背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,运算函数为:
其中,τ为延时时间;
S54.进行归一化函数互相关运算,得出归一化互相关函数序列:
由于采用上述技术方案,本发明之基于感应电场的动静态人体感应灯及控制方法与现有技术相比,具有以下有益效果:
1.实现动静态人体感应
由于本发明之基于感应电场的动静态人体感应灯包括控制系统、照明系统、电源系统、人体感应系统,其中人体感应系统包括电极传感器、信号源模块、信号处理器;信号源模块用于产生稳定信号并加载在电极传感器上,电极传感器用于实时感知人体信息,
该电极传感器的输出端与信号处理器输入端连接,信号处理器输端与控制系统的输入端连接,控制系统的输出端与照明系统的输入端连接。
而本发明之基于感应电场的动静态人体感应灯的控制方法是人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,各个电极的电极信号经信号处理器处理后传送至控制系统,控制系统将该电极信号相关系数与预设阈值比较,判断人体是否在感知区域内,从而控制照明系统的开或闭。
因此,本发明是基于环境电场变化检测动静态人体是否存在感知区域,当有人在时候,感知区域电场会发生改变,加载信号的感应电极发生变化,引起电容容值的变化,从而引起电压的变化,进而检测感知区域是否有人,不管静止的人或者运动的人都会改变感知区域电场,所以本发明能实现动静态人体感应。
2.稳定性好、识别率高
本发明的电极传感器采集的电极信号包含强背景噪声和有用的微弱电场信号,为了能从强背景噪声中提取有用的微弱电场信号,控制系统先对采集的序列电极信号进行放大,再进行自相关去噪,削弱噪声干扰同时恢复被覆盖的信号,然后进行互相关去噪;由于本发明是采用自相关处理后再进行互相关,同时采样背景噪声序列是2k个信号,采样电极序列是k个信号,因此,本发明可大大削弱强背景噪声干扰,不受到环境温度的影响,受到环境噪声干扰小,其稳定性好、识别率高。
3.识别广角大
本发明的电极传感器由至少一个电极构成,当电极数量为多个时,多个电极均匀分布形成阵列式,由于采用阵列式电极检测感知区域电场变化,所以识别广角比较大。
4.智能化程度高,方便实用
本发明的人体感应系统是由电极传感器、信号源模块、信号处理器构成,该人体感应系统会自动学习与判断感知区域是否有人存在,从而实现全自动控制照明设备的开或闭,其智能化程度高,方便实用。
5. 结构简单,功耗低
本发明的结构比较简单,生产成本较低,而且没有被动红外传感器经常运转,其功耗低,易于推广使用。
下面,结合附图和实施例对本发明之基于感应电场的动静态人体感应灯及控制方法的技术特征作进一步的说明。
附图说明
图1:实施例一所述本发明之基于感应电场的动静态人体感应灯的系统框图,
图2:实施例一所述人体感应系统的系统框图,
图3:实施例一所述单电极传感器的工作过程示意图之一,
图4:实施例一所述单电极传感器的工作过程示意图之二,
图5:实施例一所述单电极传感器的工作过程示意图之三,
图6:实施例一、二所述在无人状态下的电压信号图,
图7:实施例一、二所述在有人状态下的电压信号图,
图8:实施例二所述人体感应系统的系统框图,
图9:实施例二所述多电极传感器的工作过程示意图之一,
图10:实施例二所述多电极传感器的工作过程示意图之二,
图11:实施例二所述多电极传感器的工作过程示意图之三,
图12:实施例三所述本发明之基于感应电场的动静态人体感应灯的控制方法的流程图。
具体实施方式
实施例一
一种基于感应电场的动静态人体感应灯,包括电源系统、人体感应系统、控制系统、照明系统,系统框图如图1所示。
所述的电源系统包括电源系统Ⅰ、电源系统Ⅱ,电源系统Ⅰ的输出端分别与人体感应系统、控制系统连接,电源系统Ⅱ的输出端与照明系统连接。
所述的人体感应系统包括信号源模块、电极传感器、信号处理器,该系统框图如图2所示;其中:
信号源模块用于产生稳定的多路标准信号,信号电压和频率均匀可变,可变电压范围1.8V~5 V,可变频率范围60kHz~160kHz,该多路标准信号分别加载至电极传感器上。
电极传感器用于实时感知人体信息,该电极传感器的输出端通过信号处理器与控制系统的输入端连接。所述的电极传感器由单个电极构成,为单电极传感器,该单电极传感器的工作过程示意图如图3~图5所示,当人进入感知区域后电场发生变化。
所述的信号处理器包括依次连接在一起的检波模块、放大模块、滤波模块,检波模块的输入端与电极传感器连接,滤波模块的输出端与控制系统连接。
所述的控制系统将信号处理器传送来的电压信号和设置阈值做比较,当人进入感知区域后电场发生变化,图6是无人状态下的电压信号图,图7是根据设置阈值得出的有人状态下的电压信号图,通过对比两个信号图信号的变化,再对信号进行处理,进而判断感应到是否有人存在,进而控制照明系统的开关。
所述的照明系统包括感应灯,所述的控制系统、电源系统、人体感应系统、照明系统集成于一体。
实施例二
一种基于感应电场的动静态人体感应灯,其基本结构均同实施例一,无包括电源系统、人体感应系统、控制系统、照明系统,所不同之处在于:所述的电极传感器由多个(即n个,n≥2)电极构成,该多个电极在同一平面内均匀分布形成阵列式。
本实施例二所述的一种基于感应电场的动静态人体感应灯的具体结构如下:
一种基于感应电场的动静态人体感应灯,包括电源系统、人体感应系统、控制系统、照明系统,
所述的电源系统包括电源系统Ⅰ、电源系统Ⅱ,电源系统Ⅰ的输出端分别与人体感应系统、控制系统连接,电源系统Ⅱ的输出端与照明系统连接。
所述的人体感应系统包括信号源模块、电极传感器、信号处理器;人体感应系统的系统框图参见图8,其中:
信号源模块用于产生稳定的多路标准信号,信号电压和频率均匀可变,可变电压范围1.8V~5 V,可变频率范围60kHz~160kHz,该信号源模块产生的稳定多路标准信号加载至电极传感器上。
电极传感器用于实时感知人体信息,该电极传感器的输出端通过信号处理器与控制系统的输入端连接。所述的电极传感器由多个(即n个,n≥2)电极构成,为多电极传感器,该多个电极在同一平面内均匀分布形成阵列式,多单电极传感器的工作过程示意图如图9~图11所示,当人进入感知区域后电场发生变化。
所述的信号处理器包括依次连接在一起的检波模块、放大模块、滤波模块,检波模块的输入端与电极传感器连接,滤波模块的输出端与控制系统连接。
所述的控制系统将信号处理器传送来的电压信号和设置阈值做比较,当人进入感知区域后电场发生变化,图6是无人状态下的电压信号图,图7是根据设置阈值得出的有人状态下的电压信号图,通过对比两个信号图信号的变化,再对信号进行处理,进而判断感应到是否有人存在,进而控制照明系统的开关。
所述的照明系统包括感应灯,所述的控制系统、电源系统、人体感应系统、照明系统集成于一体。
实施例三
一种基于感应电场的动静态人体感应灯的控制方法,人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,各个电极的电极信号经信号处理器处理后传送至控制系统,控制系统将该电极信号相关系数与预设阈值比较,判断人体是否在感知区域内,从而控制照明系统的开或闭。
当人体是在感知区域内,则电场发生微弱的变化;采集的电极信号包含强背景噪声和有用的微弱电场信号,为了能从强背景噪声中提取有用的微弱电场信号,首先对采集的序列电极信号进行放大,再进行自相关去噪,削弱噪声干扰同时恢复被覆盖的信号,然后进行互相关去噪,削弱强背景噪声干扰。
该方法包括以下步骤(流程框图参见图12):
S1.背景噪声的采集:
在感知区域内无人的情况下将背景噪声信号序列采集存储,采集的背景噪声序列为x(1)、x(2)、x(3) … x(2k-1)、x(2k),其中x(2k)表示第2K个采样点的背景噪声信号,2K为采样的点数;背景噪声序列采样数是2k,为采集的电极信号两倍,是为了使相关后的信号频率与有用信号频率一致,提高检测信号的精度;
S2. 动静态人体检测,判断电极信号脉宽是否大于或等于脉宽阈值:
人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,实时采集各电极的电极信号,并将该电极信号脉宽与脉宽阈值做比较,当电极信号脉宽大于或者等于脉宽阈值,则判断为有人,执行步骤S3;反之输出没有人信号,照明系统处于关闭状态,则重复执行步骤S2;
S3.判断是否为扰动信号:
判断采集的各电极信号脉宽是否大于25ms,如果大于25ms,则判断为有人的有用信号,执行步骤S4;反之输出没有人信号,照明系统处于关闭状态,重复执行步骤S2;
S4.电极信号序列自相关运算
对采集的k个电极信号序列作自相关运算,运算的函数为:
在上式中,y(t)表示t时刻采样的电极信号, y(t+ψ)表示t+ψ时刻采样的电极信号,ψ为延时时间;
S5.互相关运算
将2k个背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,最后进行归一化函数互相关运算,得出归一化互相关函数序列;
S6.判断感知区域内是否存在运动或者静止的人
从归一化互相关函数序列中找出峰值,判断峰值是否在预设阈值-0.27~0.27范围内,如果峰值在该预设阈值范围之外,输出无人信号,照明系统处于关闭状态,并重复执行步骤S2, 如果峰值在预设阈值范围内,则输出有人信号,并控制启动照明系统,直到峰值在预设阈值范围之外,延迟一定时间,照明系统自动关闭,执行重复步骤S2。
在步骤S5中,包括以下详细步骤:
S51.计算2k个背景噪声序列信号的能量fxx(0):
其中,x(t)表示t时刻采样的背景噪声信号;
S52.计算k个电极信号序列信号的能量fyy(0):
其中,y2(t)表示t时刻采样的电极信号的平方, y2(t+ψ)表示t+ψ时刻采样的电极信号的平方;
S53.将背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,运算函数为:
其中,τ为延时时间;
S54.进行归一化函数互相关运算,得出归一化互相关函数序列:

Claims (10)

1.一种基于感应电场的动静态人体感应灯,包括控制系统、照明系统、电源系统,电源系统的输出端分别与控制系统、照明系统连接;其特征在于:还包括人体感应系统,该人体感应系统包括电极传感器、信号源模块、信号处理器;所述的信号源模块用于产生稳定信号并加载在电极传感器上,电极传感器用于实时感知人体信息,该电极传感器的输出端与信号处理器输入端连接,信号处理器输端与控制系统的输入端连接,控制系统的输出端与照明系统的输入端连接。
2.根据权利要求1所述的基于感应电场的动静态人体感应灯,其特征在于:所述的电极传感器由至少一个电极构成,当电极数量为多个时,多个电极在同一平面内均匀分布形成阵列式。
3.根据权利要求1所述的基于感应电场的动静态人体感应灯,其特征在于:所述的信号源模块产生稳定的多路标准信号,信号电压和频率均匀可变,可变电压范围1.8V~5 V,可变频率范围60kHz~160kHz。
4.根据权利要求1所述的基于感应电场的动静态人体感应灯,其特征在于:所述的信号处理器包括依次连接在一起的检波模块、放大模块、滤波模块,检波模块的输入端与电极传感器连接,滤波模块的输出端与控制系统连接。
5.根据权利要求1所述的基于感应电场的动静态人体感应灯,其特征在于:所述的电源系统包括电源系统Ⅰ、电源系统Ⅱ,电源系统Ⅰ的输出端分别与人体感应系统、控制系统连接,电源系统Ⅱ的输出端与照明系统连接。
6.根据权利要求1至5任一权利要求所述的基于感应电场的动静态人体感应灯,其特征在于:所述的照明系统包括感应灯,所述的控制系统、电源系统、人体感应系统、照明系统集成于一体。
7.一种基于感应电场的动静态人体感应灯的控制方法,其特征在于:人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,各个电极的电极信号经信号处理器处理后传送至控制系统,控制系统将该电极信号相关系数与预设阈值比较,判断人体是否在感知区域内,从而控制照明系统的开或闭。
8.根据权利要求7所述的基于感应电场的动静态人体感应灯的控制方法,其特征在于:当人体是在感知区域内,则电场发生微弱的变化;采集的电极信号包含强背景噪声和有用的微弱电场信号,为了能从强背景噪声中提取有用的微弱电场信号,首先对采集的序列电极信号进行放大,再进行自相关去噪,削弱噪声干扰同时恢复被覆盖的信号,然后进行互相关去噪,削弱强背景噪声干扰。
9.根据权利要求8所述的基于感应电场的动静态人体感应灯的控制方法,其特征在于:该方法包括以下步骤:
S1.背景噪声的采集:
在感知区域内无人的情况下将背景噪声信号序列采集存储,采集的背景噪声序列为x(1)、x(2)、x(3) … x(2k-1)、x(2k),其中x(2k)表示第2K个采样点的背景噪声信号,2K为采样的点数;
S2. 判断电极信号脉宽是否大于或等于脉宽阈值:
人体感应系统的信号源模块产生稳定信号,该信号加载在电极传感器的各个电极传上,实时采集各电极的电极信号,并将该电极信号脉宽与脉宽阈值做比较,即动静态人体检测,当电极信号脉宽大于或者等于脉宽阈值,则执行步骤S3,反之输出没有人信号,照明系统处于关闭状态,则重复执行步骤S2;
S3.判断电极信号脉宽是否大于25ms:
判断采集的各电极信号脉宽是否大于25ms, 即判断是否为扰动信号,如果大于25ms,则执行步骤S4,反之输出没有人信号,照明系统处于关闭状态,重复执行步骤S2;
S4.电极信号序列自相关运算
对采集的k个电极信号序列作自相关运算;
S5.互相关运算
将2k个背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,最后进行归一化函数互相关运算,得出归一化互相关函数序列;
S6.判断感知区域内是否存在运动或者静止的人
从归一化互相关函数序列中找出峰值,判断峰值是否在预设阈值-0.27~0.27范围内,如果峰值在该预设阈值范围之外,输出无人信号,照明系统处于关闭状态,并重复执行步骤S2, 如果峰值在预设阈值范围内,则输出有人信号,并控制启动照明系统,直到峰值在预设阈值范围之外,延迟一定时间,照明系统自动关闭,执行重复步骤S2。
10.根据权利要求9所述的基于感应电场的动静态人体感应灯的控制方法,其特征在于:
在步骤S4中,对采集的k个电极信号序列作自相关运算的函数为:
在上式中,y(t)表示t时刻采样的电极信号, y(t+ψ)表示t+ψ时刻采样的电极信号,ψ为延时时间;
在步骤S5中,包括以下详细步骤:
S51.计算2k个背景噪声序列信号的能量fxx(0):
其中,x(t)表示t时刻采样的背景噪声信号;
S52.计算k个电极信号序列信号的能量fyy(0):
S53.将背景噪声序列信号与经自相关运算后的k个电极信号序列作互相关运算,运算函数为:
其中,τ为延时时间;
S54.进行归一化函数互相关运算,得出归一化互相关函数序列:
CN201811641337.5A 2018-12-29 2018-12-29 基于感应电场的动静态人体感应灯及控制方法 Pending CN109661085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811641337.5A CN109661085A (zh) 2018-12-29 2018-12-29 基于感应电场的动静态人体感应灯及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811641337.5A CN109661085A (zh) 2018-12-29 2018-12-29 基于感应电场的动静态人体感应灯及控制方法

Publications (1)

Publication Number Publication Date
CN109661085A true CN109661085A (zh) 2019-04-19

Family

ID=66117000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811641337.5A Pending CN109661085A (zh) 2018-12-29 2018-12-29 基于感应电场的动静态人体感应灯及控制方法

Country Status (1)

Country Link
CN (1) CN109661085A (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86208635U (zh) * 1986-11-01 1988-03-16 闵浩 人体感应接近开关
JP2008224528A (ja) * 2007-03-14 2008-09-25 Yamagata Chinoo:Kk 人体検知装置
CN102413613A (zh) * 2011-11-21 2012-04-11 山东建筑大学 一种基于电容效应检测人体的节电控制装置及方法
CN102854332A (zh) * 2012-09-17 2013-01-02 华北电力大学 基于静电传感器阵列和数据融合的转速测量装置及方法
CN102854336A (zh) * 2012-09-17 2013-01-02 华北电力大学 采用静电传感器测量旋转体转速的装置及方法
CN103197354A (zh) * 2013-03-22 2013-07-10 黄程云 数字式被动红外静止人体探测器及其探测方法
CN103852649A (zh) * 2014-03-12 2014-06-11 中国科学院电子学研究所 基于共面传感单元的三维电场测量方法
JP2014118731A (ja) * 2012-12-17 2014-06-30 Tokyo Parts Ind Co Ltd 近接センサー装置とドア
CN104113965A (zh) * 2014-05-30 2014-10-22 安徽民生安全电子科技有限公司 一种具有监控功能的人体感应照明系统及其方法
CN204285285U (zh) * 2014-11-28 2015-04-22 新益先创科技股份有限公司 近接控制灯具
CN104700544A (zh) * 2015-03-24 2015-06-10 北京科技大学 一种安防物联网入侵信息采集方法及系统
CN106023500A (zh) * 2016-06-29 2016-10-12 孙建华 一种生物感应周界及其使用方法
CN106292383A (zh) * 2015-05-11 2017-01-04 阿里巴巴集团控股有限公司 控制系统及方法
WO2017202345A1 (zh) * 2016-05-27 2017-11-30 孙建华 一种生物感应窗台及其使用方法
JP2018033746A (ja) * 2016-08-31 2018-03-08 沖電気工業株式会社 人検知方法及び人検知装置
CN210129994U (zh) * 2018-12-29 2020-03-06 桂林凯歌信息科技有限公司 基于感应电场的动静态人体感应灯

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86208635U (zh) * 1986-11-01 1988-03-16 闵浩 人体感应接近开关
JP2008224528A (ja) * 2007-03-14 2008-09-25 Yamagata Chinoo:Kk 人体検知装置
CN102413613A (zh) * 2011-11-21 2012-04-11 山东建筑大学 一种基于电容效应检测人体的节电控制装置及方法
CN102854332A (zh) * 2012-09-17 2013-01-02 华北电力大学 基于静电传感器阵列和数据融合的转速测量装置及方法
CN102854336A (zh) * 2012-09-17 2013-01-02 华北电力大学 采用静电传感器测量旋转体转速的装置及方法
JP2014118731A (ja) * 2012-12-17 2014-06-30 Tokyo Parts Ind Co Ltd 近接センサー装置とドア
CN103197354B (zh) * 2013-03-22 2015-08-12 黄程云 数字式被动红外静止人体探测器及其探测方法
CN103197354A (zh) * 2013-03-22 2013-07-10 黄程云 数字式被动红外静止人体探测器及其探测方法
CN103852649A (zh) * 2014-03-12 2014-06-11 中国科学院电子学研究所 基于共面传感单元的三维电场测量方法
CN104113965A (zh) * 2014-05-30 2014-10-22 安徽民生安全电子科技有限公司 一种具有监控功能的人体感应照明系统及其方法
CN204285285U (zh) * 2014-11-28 2015-04-22 新益先创科技股份有限公司 近接控制灯具
CN104700544A (zh) * 2015-03-24 2015-06-10 北京科技大学 一种安防物联网入侵信息采集方法及系统
CN106292383A (zh) * 2015-05-11 2017-01-04 阿里巴巴集团控股有限公司 控制系统及方法
WO2017202345A1 (zh) * 2016-05-27 2017-11-30 孙建华 一种生物感应窗台及其使用方法
CN107437316A (zh) * 2016-05-27 2017-12-05 孙建华 一种生物感应窗台及其使用方法
CN106023500A (zh) * 2016-06-29 2016-10-12 孙建华 一种生物感应周界及其使用方法
JP2018033746A (ja) * 2016-08-31 2018-03-08 沖電気工業株式会社 人検知方法及び人検知装置
CN210129994U (zh) * 2018-12-29 2020-03-06 桂林凯歌信息科技有限公司 基于感应电场的动静态人体感应灯

Similar Documents

Publication Publication Date Title
CN110088643B (zh) 人体存在探测器及其人体存在探测方法
EP2776802B1 (en) Infrared presence detector for detecting a presence of an object in a surveillance area
CN203688801U (zh) 一种带增益控制电路的激光测距装置
CN204790027U (zh) 一种人体感应装置及系统
CN107631802B (zh) 被动式红外探测器的控制方法和装置
CN107220593B (zh) 多模式人体识别方法及装置
CN104540305A (zh) 一种感应照明装置
CN105334543B (zh) 基于红外触发图像比对的人体存在检测方法和装置
WO2015085486A1 (zh) 用于安防的微波感应探测方法及装置
CN106707244B (zh) 一种分区域微波感应的检测方法及微波感应器
CN108196257A (zh) 超声波式物体检测装置及检测方法
WO2019104551A1 (zh) 指纹识别方法及终端设备
CN109661085A (zh) 基于感应电场的动静态人体感应灯及控制方法
CN106714423A (zh) 一种实现可区分状态的微波感应装置的方法
CN210129994U (zh) 基于感应电场的动静态人体感应灯
CN109673084A (zh) 基于三维电场的动静态人体感应灯及其控制方法
CN206002207U (zh) 一种红外传感信号处理电路
JP3098677B2 (ja) 人体検知装置
CN214334038U (zh) 人体探测模块
CN107404560B (zh) 一种降低手机检测误报率的无线信号采集系统
CN216852462U (zh) 一种基于毫米波雷达存在检测的户外照明装置
CN208949518U (zh) 一种缝纫机电机感应节电开关
CN114047552A (zh) 一种人体存在传感器
WO2018201458A1 (zh) 多模式人体识别方法及装置
CN209148884U (zh) 红外线感测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination