CN109656229B - Construction method of robot end performance prediction model based on GA-RBF network - Google Patents
Construction method of robot end performance prediction model based on GA-RBF network Download PDFInfo
- Publication number
- CN109656229B CN109656229B CN201811501005.7A CN201811501005A CN109656229B CN 109656229 B CN109656229 B CN 109656229B CN 201811501005 A CN201811501005 A CN 201811501005A CN 109656229 B CN109656229 B CN 109656229B
- Authority
- CN
- China
- Prior art keywords
- data
- robot
- rbf network
- prediction model
- rbf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract description 27
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 23
- 230000002068 genetic effect Effects 0.000 claims description 17
- 238000010606 normalization Methods 0.000 claims description 15
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 8
- 210000000349 chromosome Anatomy 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 230000035772 mutation Effects 0.000 claims 1
- 238000013102 re-test Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 2
- 238000013528 artificial neural network Methods 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0221—Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Genetics & Genomics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Physiology (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了基于GA‑RBF网络的机器人末端性能预测模型的构建方法,搭建机器人末端数据采集的轴关节采集硬件平台,将EtherCAT总线和激光跟踪仪作为末端测试的辅助工具,分别作为训练GA‑RBF网络的输入和输出数据获取的方式;通过总线实时采集各个关节的位置、速度、转矩反馈得到数据作为GA‑RBF网络的输入,激光跟踪坐标测量系统采集的末端数据作为GA‑RBF网络的输出,训练出基于GA‑RBF网络的机器人末端性能预测模型。本发明大大提高了轴关节伺服脉冲的采集精度,对于后续RBF网络在末端数据上预测的应用以及由轴关节数据DH模型计算末端参数精度上都有了较大的提高,高精度的数据研究更贴近实际意义。
The invention discloses a construction method of a robot terminal performance prediction model based on a GA-RBF network. A hardware platform for axis joint acquisition of robot terminal data acquisition is constructed, and an EtherCAT bus and a laser tracker are used as auxiliary tools for terminal testing, which are respectively used as training GA- The way of acquiring the input and output data of the RBF network; the real-time acquisition of the position, speed, and torque feedback of each joint through the bus is used as the input of the GA-RBF network, and the end data collected by the laser tracking coordinate measuring system is used as the GA-RBF network. Output, train a robot end performance prediction model based on GA-RBF network. The invention greatly improves the collection accuracy of the shaft joint servo pulse, and greatly improves the application of the subsequent RBF network in the end data prediction and the calculation accuracy of the end parameters by the shaft joint data DH model, and the research on high-precision data is more efficient. close to the actual meaning.
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811501005.7A CN109656229B (en) | 2018-12-10 | 2018-12-10 | Construction method of robot end performance prediction model based on GA-RBF network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811501005.7A CN109656229B (en) | 2018-12-10 | 2018-12-10 | Construction method of robot end performance prediction model based on GA-RBF network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109656229A CN109656229A (en) | 2019-04-19 |
CN109656229B true CN109656229B (en) | 2022-03-15 |
Family
ID=66113409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811501005.7A Active CN109656229B (en) | 2018-12-10 | 2018-12-10 | Construction method of robot end performance prediction model based on GA-RBF network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109656229B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110501903B (en) * | 2019-09-12 | 2022-09-23 | 南京邮电大学 | Self-adjustment and optimization method of robot's inverse-free solution control system parameters |
CN114648148B (en) * | 2020-12-18 | 2024-11-05 | 广东博智林机器人有限公司 | Robot parameter prediction method, device, storage medium and processor |
CN113673153B (en) * | 2021-08-11 | 2024-08-13 | 北京小米移动软件有限公司 | Method and device for determining electromagnetic torque of robot, storage medium, and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1382997A (en) * | 2002-06-13 | 2002-12-04 | 上海交通大学 | Precise tracking method based on nerve network for moving target |
JP2010054429A (en) * | 2008-08-29 | 2010-03-11 | Mitsutoyo Corp | Laser tracker |
CN101791801A (en) * | 2010-01-15 | 2010-08-04 | 广东工业大学 | Industrial robot motion planning and performance testing system and implementation method thereof |
CN106705956A (en) * | 2017-02-28 | 2017-05-24 | 南京工程学院 | Rapid industrial robot tail end pose measuring device and measuring method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8290618B2 (en) * | 2007-03-05 | 2012-10-16 | CNOS Automations Software GmbH | Determining positions |
-
2018
- 2018-12-10 CN CN201811501005.7A patent/CN109656229B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1382997A (en) * | 2002-06-13 | 2002-12-04 | 上海交通大学 | Precise tracking method based on nerve network for moving target |
JP2010054429A (en) * | 2008-08-29 | 2010-03-11 | Mitsutoyo Corp | Laser tracker |
CN101791801A (en) * | 2010-01-15 | 2010-08-04 | 广东工业大学 | Industrial robot motion planning and performance testing system and implementation method thereof |
CN106705956A (en) * | 2017-02-28 | 2017-05-24 | 南京工程学院 | Rapid industrial robot tail end pose measuring device and measuring method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109656229A (en) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111230887A (en) | A method for monitoring the running state of an industrial gluing robot based on digital twin technology | |
CN109656229B (en) | Construction method of robot end performance prediction model based on GA-RBF network | |
CN111221312B (en) | Optimization method and system of robot in production line and application in digital twin | |
CN113192112B (en) | Partial corresponding point cloud registration method based on learning sampling | |
CN110000787B (en) | Control method of super-redundant mechanical arm | |
CN116300691A (en) | A state monitoring method and system for multi-axis linkage numerical control machining | |
CN110488150A (en) | A kind of intelligent fault diagnosis method based on more algorithm fusions | |
CN110815206A (en) | A Kinematic Calibration Method of Stewart Parallel Robot | |
CN110154024B (en) | An Assembly Control Method Based on Long Short-Term Memory Neural Network Incremental Model | |
CN114897102B (en) | Industrial robot fault diagnosis method, system, device and storage medium | |
CN115146798A (en) | Method and system for whole-process monitoring and assistance of assembly robot based on ontology data | |
CN115514679B (en) | Abnormal source monitoring method and system based on communication module | |
CN106610584A (en) | Remanufacturing process quality control method based on neural network and expert system | |
CN113799137A (en) | Mobile processing robot rapid visual positioning method based on neural network | |
Shen et al. | Online identification of time-varying dynamical systems for industrial robots based on sparse Bayesian learning | |
CN113910218A (en) | Robot calibration method and device based on kinematics and deep neural network fusion | |
Indri et al. | Integration of a production efficiency tool with a general robot task modeling approach | |
CN116337322A (en) | Array type force sensor calibration method and measuring method and device | |
Lu et al. | Digital twin-based operation simulation system and application framework for electromechanical products | |
CN112765879B (en) | Mechanical arm inverse kinematics solving method based on neural network and configuration coding | |
CN114626407A (en) | A Decoupling Recognition Method of Diesel Engine Continuous Operating Conditions Based on Graph Self-Attention Network | |
CN114239938A (en) | State-based energy digital twin body construction method | |
CN111546379A (en) | Sensor layout method for monitoring operating state of industrial robot | |
CN112380655A (en) | Robot inverse kinematics solving method based on RS-CMSA algorithm | |
CN117910356A (en) | Digital twinning-based robot hole making process knowledge planning method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240808 Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 226000 No. 9 Siyuan Road, Chongchuan District, Nantong City, Jiangsu Province Patentee before: NANTONG University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250217 Address after: Room 263, No. 110 Zhangcai East Road, Zhangjiawan Town, Tongzhou District, Beijing 101100 Patentee after: Beijing Touran Technology Co.,Ltd. Country or region after: China Address before: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee before: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |