CN109652767B - 一种锌-银-铜涂层及其制备方法 - Google Patents

一种锌-银-铜涂层及其制备方法 Download PDF

Info

Publication number
CN109652767B
CN109652767B CN201710933931.0A CN201710933931A CN109652767B CN 109652767 B CN109652767 B CN 109652767B CN 201710933931 A CN201710933931 A CN 201710933931A CN 109652767 B CN109652767 B CN 109652767B
Authority
CN
China
Prior art keywords
silver
zinc
coating
copper
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710933931.0A
Other languages
English (en)
Other versions
CN109652767A (zh
Inventor
于晓明
谭丽丽
杨柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201710933931.0A priority Critical patent/CN109652767B/zh
Publication of CN109652767A publication Critical patent/CN109652767A/zh
Application granted granted Critical
Publication of CN109652767B publication Critical patent/CN109652767B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

为了解决植入材料的骨结合及感染问题,本发明提供了一种锌‑银‑铜涂层及其制备方法,采用化学气相沉积技术及蒸镀技术,在钛及钛合金、不锈钢、高分子材料制成的实体或多孔结构基体上制备金属锌‑银‑铜涂层,该涂层的厚度为0.1‑200μm,涂层中银元素的质量百分比为:0%<Ag≤8%,铜元素的质量比例为:0%<Cu≤2%。本发明能够解决现有植入材料骨相容性及感染问题,该方法所得永久植入材料适合多种植入部位力学性能要求,且具极佳的生物相容性,同时具备杀菌功能。

Description

一种锌-银-铜涂层及其制备方法
技术领域
本发明属于医用材料领域,特别涉及齿科植入物、关节置换和人体组织缺损的填充材料及植入材料抗菌技术领域;具体为在植入物表面的锌-银-铜涂层材料及其制备方法。
背景技术
由于植入假体松动和磨蚀引发的不良细胞反应使人工关节等植入体只有10-15年的寿命,不能满足长期使用要求。同时,感染仍然是骨科植入物灾难性的术后并发症之一。植入体内的金属异物是导致此类感染发生的危险因素,所引发的一系列体内反应包括巨噬细胞功能的减弱,局部免疫系统的钝化等都为病原体的增殖创造了便利的条件。此外,植入物表面吸附的蛋白还能促进细菌黏附到植入物表面引发感染。过去人们大多关注对环境和个人污染的清除及手术期全身抗生素的应用,而新的方法是,针对该类感染发病的特殊机制通过植入物表面修饰改性来降低感染的风险。
金属材料一直以来被认为具有生物稳定性,虽然人们对其表面进行了各种表面改性的工作,骨细胞的粘附生长仍不理想。而金属锌(Zn)是人体必需的微量元素之一。锌在骨形成和代谢中起着重要的作用,骨矿物质内也发现有锌的存在,可能就存在于羟基磷灰石中。此外,锌还具有提高免疫力,促进伤口和创伤的愈合,及有助抗癌等作用。锌的标准电极电位为0.763V/SCE,介于镁(2.3V/SCE)和铁(0.44/SCE)之间,因此可推断锌的降解速率低于镁而高于铁,锌对于解决当前可降解金属腐蚀速率不匹配问题带来了新的突破口。人们使用银(Ag)器的历史十分悠久据,银离子的杀菌作用也被人们广泛应用。1978年美国科学文摘报道,银能杀灭650种不同的病原体。和抗生素不同,它可不加区分地有效杀灭各种细菌、真菌/酵母菌、病毒、支原体和寄生虫等。并且极低的浓度,如每升水中只要含亿万分之二毫克的银离子,即可杀死水中大部分细菌。银的杀菌能力强,对人畜无害,因此半数以上的航空公司采用银来净化饮用水,许多国家的泳池采用银离子消毒杀菌,银离子杀菌也已经进入洗衣机等电器领域。银离子杀菌也将在医疗领域发挥其巨大作用。利用铜(Cu)离子来杀菌的历史十分悠久,自1761年Schulthees采用硫酸铜防治小麦腥黑病起至今已有二百多年的历史。有研究报道通过在纯钛中加入1%或5%的Cu元素,形成的Ti-Cu合金有明显的杀菌功能,并在动物体内植入实验中表现出了较强的抗炎症作用及一定的促进成骨的生物医学功能。
发明内容
为了解决植入材料的组织结合及感染问题,本发明提供了一种锌-银-铜涂层及其制备方法,采用多弧离子镀蒸镀技术,在钛及钛合金、不锈钢、高分子材料制备的实体及多孔结构基体表面制备锌-银-铜涂层,以解决现有植入材料组织相容性欠佳及感染问题,该方法所得涂层具极佳的生物相容性,同时具备杀菌功能。
本发明的技术方案如下:
一种锌-银-铜涂层,其特征在于:锌-银-铜涂层的厚度为0.1-200μm,涂层中银元素的质量百分比为:0%<Ag≤8%,铜元素的质量百分比为:0%<Cu≤2%。
作为优选的技术方案,涂层中银铜元素的质量比为Ag:Cu=5-10:1。银离子的抗菌效果优于铜,但银相对于铜与人体体液环境反应而形成的可溶性盐更少,同时银容易被还原成单质银而降低其抗菌效果,因此涂层中银的比例高于铜5-10倍,使银离子达到一定的浓度而发挥抗菌效果。该比例双重抗菌效果更好,抗菌时效更长。
其中,所用基体为实体或多孔结构,采用钛、钛合金、不锈钢或高分子材料制成。根据该涂层的特点,所述涂层特别适用于医用材料等实体基体,或孔隙率≧80%,孔径为200μm-5mm的多孔结构基体。
作为优选的技术方案,本发明所述涂层中还可引入金属锶及镁,其质量百分比为0%<Sr≤10%,0%<Mg≤10%,以进一步促进成骨细胞的生长,促进骨的重建。
本发明还提供了所述锌-银-铜涂层的制备方法,其特征在于:采用多弧离子镀技术将锌银铜合金激发为离子,并沉积在基体表面形成涂层。
本发明所述锌-银-铜涂层的制备方法,其特征在于:所述锌银铜合金原料为熔化浇铸获得,锌原料为纯度≧99.99%纯锌块材,银原料为纯度≧99.99%纯银颗粒,铜原料为纯度≧99.99%纯铜片。
作为优选的工艺,偏压为50-150V,弧流为30-100A,占空比为20%-60%,工作气压为1×10-2-10Pa,轴向磁场为0-100mT。
本发明制备锌-银-铜涂层的具体步骤如下:
(1)、合金靶的制备:采用纯度为99.99%的锌、银、铜纯金属进行熔炼,得到合金锭,然后按照多弧离子镀设备所要求的靶材尺寸加工成阴极靶;
(2)、将基体依次用去离子水、无水乙醇超声清洗后,干燥氮气吹干送入沉积室;
(3)、抽极限真空至10-5Pa,后充入氩气,镀膜室真空度达到1.8×10-1-2.5×10- 1Pa,开启弧源,离子轰击清洗5-10分钟,然后在设定条件下进行涂层制备。
本发明的有益效果是:
1、本发明提出一种锌-银-铜涂层,特别适合应用于医用植入材料上,金属锌具有良好的生物相容性。锌与体液发生化学反应而降解,降解产物可随人体代谢排出体外。锌还具有提高免疫力、促进伤口和创伤的愈合,及有助抗癌等作用。银和铜具有很强的广谱杀菌作用。银还可促进成纤维细胞分化,从而促进伤口愈合。在植入器件表面制备锌-银-铜涂层将发挥抗菌,促愈合及促组织生长的多重生物功能。
2、本发明提出的制备涂层的方法,可在多种骨科植入材料表面涂覆一定厚度的锌-银-铜涂层,适用于多种表面,不需要对材料表面进行特殊处理,适用范围广。
附图说明
图1为实施例1中沉积设备示意图。图中,1、沉积室;2、供气系统;3、真空系统;4、靶材;5、基体;6、冷却系统。
具体实施方式
如图1所示,本发明所用的多弧离子镀设备的主体部分为沉积室,附属系统包括:真空系统、供电系统和供气系统。将沉积基体放在图中基体5的位置,将锌银铜合金靶材放在靶材4的位置。在特定的真空条件及工作条件下,将锌银铜合金靶材离子化,在电场及磁场的作用下,金属离子到达基体并沉积形成涂层
实施例1
将钛合金(Ti-6Al-4V)原片置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为0.5%,Cu含量为0.1%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为50V,弧流30A,占空比20%,工作气压为1×10-2Pa,沉积时间30min,沉积金属锌-银-铜层的厚度为1μm。为确定涂层的促成骨作用,进行了碱性磷酸酶(ALP)实验,培养1天,4天及7天后,涂层组颜色比基体组的更深,说明涂层组碱性磷酸酶的活性高于基体组,表明涂层具有促成骨作用。
实施例2
将多孔钛合金(Ti-6Al-4V)原片置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为1.5%,Cu含量为0.2%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为55V,弧流40A,占空比30%,工作气压为1×10-2Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为2μm。由于基体直接放置在基体托表面,因此与基体托接触的基体底部不能沉积涂层,可将基体翻转,将底部向上,再次沉积,将涂层完全覆盖于基体表面。也可使用金属丝将多孔基体悬挂起来,尽量减少多孔基体与工装的接触面积,这样单次即可将涂层完全覆盖于基体表面。
实施例3
将平面纯钛基体置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为3%,Cu含量为0.8%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为60V,弧流55A,占空比40%,工作气压为1×10-1Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为4μm。经过X射线衍射分析,以及扫描电镜能谱分析,确定涂层为锌银铜,由于银铜含量较少,X射线图谱仅可显示出金属锌的衍射信息。
实施例4
将平面316L不锈钢薄片置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为4%,Cu含量为1%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为70V,弧流65A,占空比40%,工作气压为1×10-1Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为5μm。经过X射线衍射分析,以及扫描电镜能谱分析,确定涂层为锌银铜,由于银铜含量较少,X射线图谱仅可显示出金属锌的衍射信息。
实施例5
将平面高分子薄片置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为5%,Cu含量为0.3%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为100V,弧流75A,占空比40%,工作气压为1Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为10μm。
实施例6
将多孔钛合金(Ti-6Al-4V)样品置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为7%,Cu含量为1.0%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为120V,弧流85A,占空比50%,工作气压为10Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为15μm。
实施例7
将平面钛合金(Ti-6Al-4V)样品置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为8%,Cu含量为1.5%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为150V,弧流95A,占空比60%,工作气压为10Pa,沉积时间1h,沉积金属锌-银-铜层的厚度为20μm。
实施例8
将平面钛合金(Ti-6Al-4V)样品置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为8%,Cu含量为2%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为130V,弧流85A,占空比60%,工作气压为10Pa,沉积时间0.5h,轴向磁场95mT,沉积金属锌-银-铜层的厚度为200μm。
实施例9
将平面钛合金(Ti-6Al-4V)样品置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为8%,Cu含量为2%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为150V,弧流95A,占空比60%,工作气压为10Pa,沉积时间2h,轴向磁场30mT,沉积金属锌-银-铜层的厚度为190μm。
实施例10
将平面钛合金(Ti-6Al-4V)样品置入沉积室炉体1中的基体5位置,将锌银铜合金靶放在靶材4位置。Ag含量为8%,Cu含量为2%,引入Sr含量为5%,Mg含量为8%,抽极限真空(10-5Pa)后,氩气反复清洗整个系统3次,以确保氧气含量降到最低。设定偏压为130V,弧流85A,占空比60%,工作气压为10Pa,沉积时间1h,轴向磁场50mT,沉积金属锌-银-铜层的厚度为150μm。CCK-8和碱性磷酸酶(ALP)染色结果显示,Sr和Mg的加入促进了成骨细胞的增殖和分化。
将样品按照“JIS Z 2801-2000《抗菌加工制品-抗菌性试验方法和抗菌效果》、GB/T 2591-2003《抗菌塑料抗菌性能实验方法和抗菌效果》”等相关标准规定进行定量的抗菌性能检测。结果得到样品对常见感染菌(大肠杆菌、金黄色葡萄球菌)作用后的杀菌率为99%以上。
实施例结果表明,本发明采用多弧离子镀技术制备具有促成骨作用及抗菌作用的金属锌-银-铜涂层。将涂层制备于具有复杂几何外形的多孔材料、平面材料表面。采用该技术可提供锌-银-铜涂层的有效覆盖,可在提高医用材料骨长入能力的同时赋予材料抗菌性能。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种锌-银-铜涂层,其特征在于:锌-银-铜涂层的厚度为0.1-200μm,涂层中银元素的质量百分比为:0%<Ag≤8%,铜元素的质量百分比为:0%<Cu≤2%;涂层中银元素和铜元素的质量比为Ag:Cu=5-10:1。
2.按照权利要求1所述锌-银-铜涂层,其特征在于:所用基体为实体或多孔结构,采用钛、钛合金、不锈钢或高分子材料制成。
3.按照权利要求2所述锌-银-铜涂层,其特征在于:所用实体基体为医用材料;所用多孔结构基体的孔隙率≧80%,孔径为200μm-5mm。
4.按照权利要求1所述锌-银-铜涂层,其特征在于:所述涂层中引入金属锶及镁,其质量百分比为0%<Sr≤10%,0%<Mg≤10%。
5.一种权利要求1所述锌-银-铜涂层的制备方法,其特征在于:采用多弧离子镀技术制备涂层。
6.按照权利要求5所述锌-银-铜涂层的制备方法,其特征在于:偏压为50-150V,弧流为30-100A,占空比为20%-60%。
7.按照权利要求5所述锌-银-铜涂层的制备方法,其特征在于:工作气压为1×10-2-10Pa,轴向磁场为0-100mT。
8.按照权利要求5所述锌-银-铜涂层的制备方法,其特征在于,具体制备步骤如下:
(1)、合金靶的制备:采用纯度为99.99%的锌、银、铜纯金属进行熔炼,得到合金锭,然后按照多弧离子镀设备所要求的靶材尺寸加工成阴极靶;
(2)、将基体依次用去离子水、无水乙醇超声清洗后,干燥氮气吹干送入沉积室;
(3)、抽极限真空至10-5Pa,后充入氩气,镀膜室真空度达到1.8×10-1-2.5×10-1Pa,开启弧源,离子轰击清洗5-10分钟,然后在设定条件下进行涂层制备。
9.一种权利要求1所述涂层在医用植入材料上的应用。
CN201710933931.0A 2017-10-10 2017-10-10 一种锌-银-铜涂层及其制备方法 Active CN109652767B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710933931.0A CN109652767B (zh) 2017-10-10 2017-10-10 一种锌-银-铜涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710933931.0A CN109652767B (zh) 2017-10-10 2017-10-10 一种锌-银-铜涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN109652767A CN109652767A (zh) 2019-04-19
CN109652767B true CN109652767B (zh) 2021-01-05

Family

ID=66108271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710933931.0A Active CN109652767B (zh) 2017-10-10 2017-10-10 一种锌-银-铜涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109652767B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249617B (zh) * 2021-05-12 2022-05-24 东北大学 一种抗菌可降解的Zn-Cu-Ag合金及其制备方法
CN114369808B (zh) * 2021-12-20 2024-02-06 中国兵器科学研究院宁波分院 一种镁及镁合金表面制备抗菌涂层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9452242B2 (en) * 2014-06-11 2016-09-27 Silver Bullet Therapeutics, Inc. Enhancement of antimicrobial silver, silver coatings, or silver platings
CN106474545B (zh) * 2015-08-28 2020-04-10 元心科技(深圳)有限公司 可吸收铁基合金植入医疗器械
CN106702212A (zh) * 2015-11-16 2017-05-24 上海交通大学 医用可降解Zn-Cu-X合金材料及其制备方法
US12109337B2 (en) * 2016-03-10 2024-10-08 Shandong Rientech Medical Tech Co., Ltd. Degradable zinc base alloy implant material and preparation method and use thereof
CN106310390A (zh) * 2016-08-20 2017-01-11 成都迈德克科技有限公司 一种可调控细胞响应的无机纳米涂层及制备方法

Also Published As

Publication number Publication date
CN109652767A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Lin et al. A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection
Nikoomanzari et al. Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements
Zhang et al. The dual function of Cu-doped TiO 2 coatings on titanium for application in percutaneous implants
Gao et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts
Shimabukuro et al. Investigation of realizing both antibacterial property and osteogenic cell compatibility on titanium surface by simple electrochemical treatment
He et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings
Zhang et al. Evaluation of osteogenic and antibacterial properties of strontium/silver‐containing porous TiO2 coatings prepared by micro‐arc oxidation
Zhang et al. Characterization and property of bifunctional Zn-incorporated TiO2 micro-arc oxidation coatings: The influence of different Zn sources
Zhang et al. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium
Karthika et al. Retracted Article: Fabrication of divalent ion substituted hydroxyapatite/gelatin nanocomposite coating on electron beam treated titanium: mechanical, anticorrosive, antibacterial and bioactive evaluations
Zhao et al. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating
Chen et al. Improvement in antibacterial properties and cytocompatibility of titanium by fluorine and oxygen dual plasma-based surface modification
US20230293765A1 (en) Medical material for promoting cell growth and inhibiting bacterial adhesion and machining method thereof
CN107829123B (zh) 一种表面双层涂层的铝合金及其制备方法和应用
Si et al. A heterogeneous TiO2/SrTiO3 coating on titanium alloy with excellent photocatalytic antibacterial, osteogenesis and tribocorrosion properties
CN101073675A (zh) 一种抗菌型生物活性钛涂层及制备方法
CN101869725B (zh) 一种含有纳米Ag粒子的抗菌型生物活性复合涂层及制备方法
Feng et al. Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties
Shimabukuro et al. Investigation of antibacterial effect of copper introduced titanium surface by electrochemical treatment against facultative anaerobic bacteria
CN107937880A (zh) 一种金属材料表面改性的方法及其产品和用途
Zhou et al. The osteogenic, anti-oncogenic and antibacterial activities of selenium-doped titanium dioxide coatings on titanium
Uhm et al. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications
Cao et al. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation
CN109652767B (zh) 一种锌-银-铜涂层及其制备方法
Gao et al. Recent advances in anti-infection surfaces fabricated on biomedical implants by plasma-based technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant