CN109651209B - A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds - Google Patents

A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds Download PDF

Info

Publication number
CN109651209B
CN109651209B CN201811473383.9A CN201811473383A CN109651209B CN 109651209 B CN109651209 B CN 109651209B CN 201811473383 A CN201811473383 A CN 201811473383A CN 109651209 B CN109651209 B CN 109651209B
Authority
CN
China
Prior art keywords
aryl
sodium
alkyl
formula
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811473383.9A
Other languages
Chinese (zh)
Other versions
CN109651209A (en
Inventor
刘宇
王巧林
唐课文
熊碧权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN201811473383.9A priority Critical patent/CN109651209B/en
Publication of CN109651209A publication Critical patent/CN109651209A/en
Application granted granted Critical
Publication of CN109651209B publication Critical patent/CN109651209B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention disclosesA composition ofE) The synthesis process of (E) -1-phenyl-4-sulfonyl butane-1-ene compound with methylene cyclopropane compound and organic sulfonate compound as material and in oxidant K2S2O8And a certain amount of water to prepare a compound having various substituentsE) -1-phenyl-4-sulfonylbut-1-enes. The method does not need to use transition metal and/or alkali, is economic and environment-friendly, and has the advantages of easily available raw material sources, simple process route, mild reaction conditions, low process cost, wide substrate application range and high yield of target products.

Description

一种碳-碳σ-键活化制备(E)-1-苯基-4-磺酰基丁-1-烯类化 合物的方法Preparation of (E)-1-phenyl-4-sulfonylbut-1-ene by activation of a carbon-carbon σ-bond method of compounding

技术领域technical field

本申请属于有机合成技术领域,具体涉及一种碳-碳σ-键活化制备(E)-1-苯基-4-磺酰基丁-1-烯类化合物的方法。The application belongs to the technical field of organic synthesis, and in particular relates to a method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds.

背景技术Background technique

碳-碳σ-键是一类具有高稳定性的常见化学键。最近,碳-碳σ键的活化已成为简单构建复杂分子骨架的有用策略,并且已经开发了许多优异的碳-碳σ-键活化转化以构建新的碳-碳键或碳-杂键。最近,已开发出各种有效的碳-碳σ-键活化策略,包括卤化、氧化断裂,以及带有酯,羧基,羰基,羟基,氰基或肟基团的功能性底物的断裂。其中大多数反应都需要使用过渡金属,如Ir,Pd,Ru, Rh, 和Cu等(例如参见SYNLETT 2003, No. 13, pp2080–2082)。 然而,如果可以在没有过渡金属条件下实现这些变换将是非常理想的,这将提供更简单和更环保的选择。Carbon-carbon σ-bonds are a common class of chemical bonds with high stability. Recently, the activation of carbon-carbon σ-bonds has become a useful strategy for the simple construction of complex molecular frameworks, and many excellent carbon-carbon σ-bond activation transformations have been developed to construct new carbon-carbon bonds or carbon-heterobonds. Recently, various effective carbon-carbon sigma-bond activation strategies have been developed, including halogenation, oxidative cleavage, and cleavage of functional substrates bearing ester, carboxyl, carbonyl, hydroxyl, cyano, or oxime groups. Most of these reactions require the use of transition metals such as Ir, Pd, Ru, Rh, and Cu (see, for example, SYNLETT 2003, No. 13, pp2080–2082). However, it would be highly desirable if these transformations could be achieved without transition metals, which would provide simpler and more environmentally friendly options.

有机基磺酸钠盐作为一种易于获得的高活性盐,广泛用于有机合成和药物合成中。因此,通过使用有机磺酸钠盐作为磺酰基源或烃基源开发了一系列令人感兴趣的转化。最近,许多化学家通过使用有机基磺酸钠盐作为磺酰基来源,提出了许多用于交叉偶联反应和双官能化反应的磺酰化方法。2011年,Maloney及其同事报告了氯吡啶和磺酸钠之间的交叉偶联反应,用于构建磺酰化的二嘧啶(例如参见K.-M. Maloney, J. Kuethe, K.Linn, Org. Lett. 2011, 13, 102)。对于与C-H偶联,各种不同的C-H键,包括C(sp)-H键(例如参见J. Yang, Y.-Y. Liu, R.-J. Song, Z.-H. Peng, J.-H. Li, Adv. Synth.Catal. 2016, 358, 2286),C(sp2)-H键(例如参见F. Wang, X.-Z. Yu, Z.-S. Qi, X.-W.Li, Chem. Eur. J. 2016, 22, 511.)和C(sp3)-H键(例如参见W.-H. Rao, B.-B. Zhan,K. Chen, P.-X. Ling, Z.-Z. Zhang, B.-F. Shi, Org. Lett. 2015, 17, 3552)可以顺利地经历交叉偶联磺酰化反应。 Kuhakarn的研究小组提出了芳基乙炔(C(sp)-H键)与磺酸钠的交叉偶联磺酰化反应。 Li和同事开发了Rh催化的芳烃和磺酸钠的C(sp2)-H键之间的交叉偶联反应。 Shi的研究小组描述了钯催化的C(sp3)-H键与磺酸钠的交叉偶联磺酰化反应。有趣的是,有机基磺酸钠盐也可用于不饱和键的磺酰化和双官能化,包括碳-碳双键和碳-碳三键。 2016年,他的研究小组介绍了在无过渡金属和无添加剂的条件下,炔烃与磺酸钠和水的1,2-双官能化。 Li的研究小组报道了烯烃与亚硝酸叔丁酯和磺酸钠的1,2-双官能化合成α-磺酰基乙烷肟。然而,饱和碳-碳σ-键与有机基磺酸钠盐的反应则未被现有技术所披露过。Sodium salt of organic sulfonic acid is widely used in organic synthesis and pharmaceutical synthesis as a kind of readily available and highly active salt. Therefore, a series of interesting transformations have been developed by using sodium salts of organic sulfonic acids as sulfonyl or hydrocarbyl sources. Recently, many chemists have proposed a number of sulfonylation methods for cross-coupling reactions and bifunctionalization reactions by using sodium salts of organosulfonates as a source of sulfonyl groups. In 2011, Maloney and colleagues reported a cross-coupling reaction between chloropyridine and sodium sulfonate for the construction of sulfonylated dipyrimidines (see, for example, K.-M. Maloney, J. Kuethe, K. Linn, Org. Lett. 2011, 13, 102). For coupling with C-H, various C-H bonds, including C(sp)-H bonds (see, e.g., J. Yang, Y.-Y. Liu, R.-J. Song, Z.-H. Peng, J. .-H. Li, Adv. Synth.Catal. 2016, 358, 2286), C(sp2)-H bonds (see e.g. F. Wang, X.-Z. Yu, Z.-S. Qi, X.- W.Li, Chem. Eur. J. 2016, 22, 511.) and C(sp3)-H bonds (see e.g. W.-H. Rao, B.-B. Zhan, K. Chen, P.-X . Ling, Z.-Z. Zhang, B.-F. Shi, Org. Lett. 2015, 17, 3552) can smoothly undergo cross-coupling sulfonylation. Kuhakarn's group proposed a cross-coupling sulfonylation of arylacetylenes (C(sp)-H bonds) with sodium sulfonates. Li and co-workers developed an Rh-catalyzed cross-coupling reaction between the C(sp2)-H bonds of arenes and sodium sulfonates. Shi's group described a palladium-catalyzed cross-coupling sulfonylation of C(sp3)-H bonds with sodium sulfonate. Interestingly, the sodium salt of organosulfonic acid can also be used for the sulfonylation and difunctionalization of unsaturated bonds, including carbon-carbon double bonds and carbon-carbon triple bonds. In 2016, his research group presented the 1,2-difunctionalization of alkynes with sodium sulfonate and water under transition metal-free and additive-free conditions. Li's research group reported the 1,2-difunctionalization of alkenes with tert-butyl nitrite and sodium sulfonate to synthesize α-sulfonylethane oximes. However, the reaction of saturated carbon-carbon σ-bonds with sodium salt of organic sulfonic acid has not been disclosed in the prior art.

三元碳环化合物,尤其是亚甲基环丙烷类化合物(MCPs),具有高反应性且属于易于获得的结构,通常被用作有机合成中的重要原料。在本文中,我们开发了一种新的通过亚甲基环丙烷中的碳- 碳σ-键双官能化,与有机基磺酸钠盐化合物和水在不需要使用过渡金属和碱的条件下反应,选择性地合成(E)-1-苯基-4-磺酰基丁-1-烯类化合物的合成策略。Three-membered carbocyclic compounds, especially methylenecyclopropanes (MCPs), are highly reactive and belong to easily accessible structures, and are often used as important raw materials in organic synthesis. In this paper, we developed a novel bifunctionalization via carbon-carbon σ-bonds in methylenecyclopropane with organosulfonic acid sodium salt compounds and water under conditions that do not require the use of transition metals and bases A synthetic strategy for the selective synthesis of (E)-1-phenyl-4-sulfonylbut-1-ene compounds.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一种以亚甲基环丙烷类化合物为起始原料,在不需要过渡金属及碱的条件下,经碳-碳σ-键活化双官能化,选择性地合成(E)-1-苯基-4-磺酰基丁-1-烯类化合物的新方法。The object of the present invention is to overcome the deficiencies of the prior art, and provide a kind of starting material with methylene cyclopropane compounds, under the condition of not needing transition metals and alkalis, through carbon-carbon σ-bond activation bifunctionalization , a new method for the selective synthesis of ( E )-1-phenyl-4-sulfonylbut-1-enes.

本发明提供的一种(E)-1-苯基-4-磺酰基丁-1-烯类化合物的合成方法,其特征在于,所述方法包括如下步骤:The invention provides a method for synthesizing ( E )-1-phenyl-4-sulfonylbut-1-ene compounds, characterized in that the method comprises the following steps:

在Schlenk封管反应器中,以式I所示的亚甲基环丙烷类化合物, 式II所示的有机基磺酸盐类化合物为反应原料,加入一定量的水、氧化剂和有机溶剂,加热搅拌反应,通过TLC或GC-MS监测反应完成后,经后处理得式III所示的(E)-1-苯基-4-磺酰基丁-1-烯类化合物。In the Schlenk sealed tube reactor, the methylene cyclopropane compounds shown in formula I and the organic sulfonate compounds shown in formula II are used as reaction raw materials, a certain amount of water, an oxidizing agent and an organic solvent are added, and heating The reaction is stirred, and after the completion of the reaction is monitored by TLC or GC-MS, the ( E )-1-phenyl-4-sulfonylbut-1-ene compound represented by formula III is obtained by post-treatment.

Figure 537075DEST_PATH_IMAGE001
Figure 537075DEST_PATH_IMAGE001

其中,式I, 式II和/或式III中,R1表示所连接的苯环上的一个或多个取代基,选自氢、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基、C6-C20的芳基、C3-C20的杂芳基、C3-C20的环烷基、C6~C20芳基-C1~C20烷基,C6~C20芳基-C1~C20烷氧基,硝基、卤素、-OH、-SH、-CN、-COOR4、-COR5、-OCOR6、-NR7R8;其中,R4、R5、R6、R7、R8各自独立地选自氢、C1-C20的烷基、C6-C20的芳基、C3-C20的环烷基中的任意一种或多种。Wherein, in formula I, formula II and/or formula III, R 1 represents one or more substituents on the connected benzene ring, selected from hydrogen, C 1 -C 20 alkyl, C 1 -C 20 Alkoxy, C 1 -C 20 alkylthio, C 6 -C 20 aryl, C 3 -C 20 heteroaryl, C 3 -C 20 cycloalkyl, C 6~ C 20 aryl -C 1~ C 20 alkyl, C 6~ C 20 aryl-C 1~ C 20 alkoxy, nitro, halogen, -OH, -SH, -CN, -COOR 4 , -COR 5 , -OCOR 6 , -NR 7 R 8 ; wherein, R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from hydrogen, C 1 -C 20 alkyl, C 6 -C 20 aryl, C Any one or more of 3 -C 20 cycloalkyl groups.

R2选自氢、取代或未取代的C1-C20的烷基、取代或未取代的C6-C20的芳基、C6~C20芳基-C1~C20烷基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 6 -C 20 aryl, C 6~ C 20 aryl-C 1~ C 20 alkyl; Wherein, the substituent in the substituted or unsubstituted is selected from C 1 -C 6 alkyl group, C 1 -C 6 alkoxy group, C 1 -C 6 acyl group, halogen, -NO 2 , -CN , -OH, C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 .

R3选自取代或未取代的C1-C20的烷基、取代或未取代的C6-C20的芳基、取代或未取代的C3-C20的杂芳基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 3 is selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 3 -C 20 heteroaryl; wherein, the The substituents in the substituted or unsubstituted are selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 acyl, halogen, -NO 2 , -CN, -OH , C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 .

对于本领域技术人员而言,可以理解的是,本发明上述任一处所述的“取代或未取代的”这一表述中的取代基的个数可以是一个或多个,例如两个、三个、四个、五个;当具有两个或多个取基时,各个取代基则可以从上述的取代基定义中彼此独立地选择。所述的杂芳基具有本领域公知的定义,杂原子可以选自例如O,S,N等杂原子种类,从而所述的杂芳基可以选自例如呋喃基、吡啶基、噻吩基、喹啉基等。For those skilled in the art, it can be understood that the number of substituents in the expression "substituted or unsubstituted" described in any of the above-mentioned parts of the present invention may be one or more, such as two, Three, four, five; when there are two or more substituents, each substituent can be independently selected from the above-mentioned definitions of substituents. The heteroaryl group has definitions well known in the art, and the heteroatom can be selected from heteroatom species such as O, S, N, and thus the heteroaryl group can be selected from, for example, furyl, pyridyl, thienyl, quinoline, etc. Lino, etc.

优选地,式I, 式II和/或式III中,R1表示所连接的苯环上的一个或多个取代基,选自氢、C1-C6的烷基、C1-C6的烷氧基、C6-C14的芳基、C6~C14芳基-C1~C6烷基,C6~C14芳基-C1~C6烷氧基,硝基、卤素、-OH、-SH、-CN、-COOR4、-COR5、-OCOR6、-NR7R8;其中,R4、R5、R6、R7、R8各自独立地选自氢、C1-C6的烷基、C6-C14的芳基中的任意一种。Preferably, in formula I, formula II and/or formula III, R 1 represents one or more substituents on the connected benzene ring, selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 6 -C 14 aryl, C 6~ C 14 aryl-C 1~ C 6 alkyl, C 6~ C 14 aryl-C 1~ C 6 alkoxy, nitro, Halogen, -OH, -SH, -CN, -COOR 4 , -COR 5 , -OCOR 6 , -NR 7 R 8 ; wherein, R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from Any one of hydrogen, C 1 -C 6 alkyl, and C 6 -C 14 aryl.

R2选自氢、取代或未取代的C1-C6的烷基、取代或未取代的C6-C14的芳基、C6~C14芳基-C1~C6烷基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C14的芳基、C3-C6的环烷基,-NMe2R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 6 -C 14 aryl, C 6~ C 14 aryl-C 1~ C 6 alkyl; Wherein, the substituent in the substituted or unsubstituted is selected from C 1 -C 6 alkyl group, C 1 -C 6 alkoxy group, C 1 -C 6 acyl group, halogen, -NO 2 , -CN , -OH, C 6 -C 14 aryl, C 3 -C 6 cycloalkyl, -NMe 2 .

R3选自取代或未取代的C1-C6的烷基、取代或未取代的C6-C14的芳基、取代或未取代的C3-C14的杂芳基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 3 is selected from substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 6 -C 14 aryl, substituted or unsubstituted C 3 -C 14 heteroaryl; wherein, the The substituents in the substituted or unsubstituted are selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 acyl, halogen, -NO 2 , -CN, -OH , C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 .

最优选地,式I化合物选自如下式I-1~I-17结构所示的化合物:Most preferably, the compound of formula I is selected from the compounds shown in the structures of the following formulas I-1 to I-17:

Figure 136772DEST_PATH_IMAGE002
Figure 136772DEST_PATH_IMAGE002

式II化合物选自:三氟甲磺酸钠、苯磺酸钠、对甲氧基苯磺酸钠、对甲基苯磺酸钠、对氟苯磺酸钠、对氯苯磺酸钠、对溴苯磺酸钠、对三氟甲基苯磺酸钠、对氰基苯磺酸钠、对硝基苯磺酸钠、间甲基苯磺酸钠、2,4,6-三甲基苯磺酸钠、2-萘磺酸钠、苄基磺酸钠、2-噻吩磺酸钠、甲磺酸钠。The compound of formula II is selected from: sodium trifluoromethanesulfonate, sodium benzenesulfonate, sodium p-methoxybenzenesulfonate, sodium p-toluenesulfonate, sodium p-fluorobenzenesulfonate, sodium p-chlorobenzenesulfonate, Sodium bromobenzenesulfonate, sodium p-trifluoromethylbenzenesulfonate, sodium p-cyanobenzenesulfonate, sodium p-nitrobenzenesulfonate, sodium m-toluenesulfonate, 2,4,6-trimethylbenzene Sodium sulfonate, sodium 2-naphthalenesulfonate, sodium benzylsulfonate, sodium 2-thiophenesulfonate, sodium methanesulfonate.

根据本发明前述的方法,其中,所述的氧化剂为K2S2O8According to the aforementioned method of the present invention, the oxidant is K 2 S 2 O 8 .

根据本发明前述的方法,所述反应在惰性气氛或空气气氛下进行,优选在惰性气氛(氩气)下进行。对于所述的惰性气氛,可以理解的是,是指对反应呈惰性的气氛,而并非机械地认为是惰性气体。对于本领域技术人员而言,常用于有机反应的惰性气氛可以选自氩气气氛或氮气气氛。优选氩气气氛。According to the aforementioned method of the present invention, the reaction is carried out under an inert atmosphere or an air atmosphere, preferably under an inert atmosphere (argon). For the inert atmosphere, it can be understood that it refers to an atmosphere inert to the reaction, rather than mechanically considered an inert gas. For those skilled in the art, the inert atmosphere commonly used for organic reactions can be selected from an argon atmosphere or a nitrogen atmosphere. An argon atmosphere is preferred.

根据本发明前述的方法,其中,所述的有机溶剂选自甲苯、四氢呋喃、1,4-二氧六环、乙腈中的任意一种。优选地,所述的有机溶剂为甲苯。有机溶剂的用量可以由本领域技术人员根据反应实际情况而定。According to the aforementioned method of the present invention, wherein, the organic solvent is selected from any one of toluene, tetrahydrofuran, 1,4-dioxane, and acetonitrile. Preferably, the organic solvent is toluene. The amount of the organic solvent can be determined by those skilled in the art according to the actual situation of the reaction.

根据本发明前述的方法,所述的加热搅拌反应的反应温度为40-120℃,优选60-100℃,最优选80℃。所述反应的反应时间为12-72小时,优选24~48小时。According to the aforementioned method of the present invention, the reaction temperature of the heating and stirring reaction is 40-120°C, preferably 60-100°C, and most preferably 80°C. The reaction time of the reaction is 12-72 hours, preferably 24-48 hours.

根据本发明前述的方法,其中式I化合物、式II化合物、氧化剂(K2S2O8)、水的摩尔比为1:(1~3):(1-3):(2-8),优选地,式I化合物、式II化合物、氧化剂(K2S2O8)、水的摩尔比为1:2:2:4。According to the aforementioned method of the present invention, the molar ratio of the compound of formula I, the compound of formula II, the oxidant (K 2 S 2 O 8 ) and water is 1:(1~3):(1-3):(2-8) , preferably, the molar ratio of the compound of formula I, the compound of formula II, the oxidant (K 2 S 2 O 8 ) and water is 1:2:2:4.

根据本发明前述的反应,其中所述的后处理操作如下:将反应完成后的混合液减压浓缩,得到残余物,再将残余物经柱胶柱层析分离得到式III所示的目标产物,其中硅胶柱层析分离的洗脱液为正己烷和乙酸乙酯的混合液。According to the aforementioned reaction of the present invention, wherein the post-processing operation is as follows: the mixed solution after the reaction is concentrated under reduced pressure to obtain a residue, and then the residue is separated by column chromatography to obtain the target product shown in formula III , wherein the eluent separated by silica gel column chromatography is a mixture of n-hexane and ethyl acetate.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

(1)本发明首次提出了以式I所示的亚甲基环丙烷类化合物, 式II所示的有机基磺酸盐类化合物为反应原料,制备式III所示的(E)-1-苯基-4-磺酰基丁-1-烯类化合物的合成路线,该合成方法未见诸现有技术报道;(1) The present invention proposes for the first time that the methylene cyclopropane compound shown in formula I and the organic sulfonate compound shown in formula II are used as reaction raw materials to prepare ( E )-1- shown in formula III. The synthetic route of phenyl-4-sulfonyl but-1-ene compounds, which has not been reported in the prior art;

(2)本发明的方法不需要使用过渡金属和/或碱,经济环保,具有原料来源易得、工艺路线简单、反应条件温和、工艺成本低、底物适应范围广、目标产物收率高的优点。(2) The method of the present invention does not require the use of transition metals and/or alkalis, is economical and environmentally friendly, and has the advantages of easily available raw material sources, simple process routes, mild reaction conditions, low process costs, wide substrate adaptability and high target product yields. advantage.

具体实施方式Detailed ways

以下结合具体实施例,对本发明进行进一步详细的描述。The present invention will be further described in detail below with reference to specific embodiments.

实施例1-17反应条件优化试验Embodiment 1-17 Reaction condition optimization test

以式I-1所示的化合物、式II-1所示的三氟甲磺酸钠为反应原料,探讨了不同反应条件对于合成工艺优化结果的影响,选择出其中具有代表性的实施例1-17。结果如表一所示。Taking the compound shown in formula I-1 and the sodium trifluoromethanesulfonate shown in formula II-1 as reaction raw materials, the influence of different reaction conditions on the optimization results of the synthesis process was discussed, and a representative example 1 was selected. -17. The results are shown in Table 1.

Figure 916509DEST_PATH_IMAGE003
Figure 916509DEST_PATH_IMAGE003

其中实施例1的典型试验操作如下:Wherein the typical test operation of embodiment 1 is as follows:

向schlenk封管反应器中加入式I-1所示的化合物(0.2mmol), 式II-1所示的三氟甲磺酸钠(2当量,0.4mmol)、氧化剂(K2S2O8,2当量,0.4mmol),H2O (4当量,0.6mmol),和甲苯 (2 mL),然后在氩气保护、80℃条件下搅拌反应48小时,通过TLC或GC-MS监测反应完成后,减压蒸馏除去溶剂,再将残余物经柱层析分离(洗脱液为正己烷/乙酸乙酯)得到式III-1的目标产物,产率82%; 1H NMR (400 MHz, CDCl3) δ: 7.44-7.32 (m, 6H), 7.20 (t, J= 7.6 Hz, 1H), 6.96-6.87 (m, 3H), 6.20-6.12 (m, 1H), 5.10 (s, 2H), 4.48-4.42(m, 1H), 4.25-4.19 (m, 1H), 2.70-2.65 (m, 2H); 13C NMR (100 MHz, CDCl3) δ:155.6, 137.0, 128.6, 128.6, 128.6, 127.9, 127.3, 126.8, 126.2, 124.1, 122.9(d, J = 336.9 Hz), 121.0, 112.4, 70.3, 68.1, 33.8; 19F NMR (282 MHz, CDCl3) δ:-78.3 (s, 1F);The compound shown in formula I-1 (0.2 mmol), the sodium trifluoromethanesulfonate shown in formula II-1 (2 equivalents, 0.4 mmol), the oxidizing agent (K 2 S 2 O 8 ) were added to the schlenk sealed tube reactor , 2 equiv, 0.4 mmol), H 2 O (4 equiv, 0.6 mmol), and toluene (2 mL), then the reaction was stirred under argon protection at 80 °C for 48 hours, and the completion of the reaction was monitored by TLC or GC-MS Afterwards, the solvent was distilled off under reduced pressure, and the residue was separated by column chromatography (eluent was n-hexane/ethyl acetate) to obtain the target product of formula III-1 with a yield of 82%; 1 H NMR (400 MHz, CDCl 3 ) δ: 7.44-7.32 (m, 6H), 7.20 (t, J = 7.6 Hz, 1H), 6.96-6.87 (m, 3H), 6.20-6.12 (m, 1H), 5.10 (s, 2H) , 4.48-4.42(m, 1H), 4.25-4.19 (m, 1H), 2.70-2.65 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ: 155.6, 137.0, 128.6, 128.6, 128.6, 127.9, 127.3, 126.8, 126.2, 124.1, 122.9(d, J = 336.9 Hz), 121.0, 112.4, 70.3, 68.1, 33.8; 19 F NMR (282 MHz, CDCl 3 ) δ:-78.3 (s, 1F);

表一:Table I:

Figure DEST_PATH_IMAGE005
Figure DEST_PATH_IMAGE005

其中,实施例2-17的具体操作及参数除上述表一所列的变量与实施例1不相同之外,其余操作及参数均与实施例1相同。Among them, the specific operations and parameters of Examples 2-17 are the same as those of Example 1 except that the variables listed in Table 1 above are different from those of Example 1.

由上述实施例1-17可以看出,最佳反应条件为实施例1的反应条件。发明人在实施例1的反应条件下,对反应底物进行扩展,进一步制备各种式III的目标化合物(实施例18-34)。As can be seen from the above-mentioned Examples 1-17, the optimal reaction conditions are the reaction conditions of Example 1. Under the reaction conditions of Example 1, the inventors expanded the reaction substrate to further prepare various target compounds of formula III (Examples 18-34).

Figure 62451DEST_PATH_IMAGE006
Figure 62451DEST_PATH_IMAGE006

式IFormula I 式IIFormula II 式IIIFormula III 1818

Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE007
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率88%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):6.96 (s, 1H), 6.83-6.75 (m,3H), 6.17-6.10 (m, 1H), 4.49-4.45 (m, 1H), 4.26-4.23 (m,1H), 3.80 (s, 3H), 3.79 (s,3H), 2.72-2.66 (m, 2H).Yield 88%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 6.96 (s, 1H), 6.83-6.75 (m, 3H), 6.17-6.10 ( m, 1H), 4.49-4.45 (m, 1H), 4.26-4.23 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 2.72-2.66 (m, 2H). 1919
Figure 814506DEST_PATH_IMAGE008
Figure 814506DEST_PATH_IMAGE008
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率82%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.23 (t, <i>J</i> = 8.0 Hz, 1H), 6.95(d, <i>J</i> = 7.6 Hz, 1H), 6.89 (s,1H), 6.80 (t, <i>J</i> = 8.0 Hz, 1H),6.49 (t, <i>J</i> = 16.0 Hz, 1H),6.17-6.10 (m, 1H), 4.50-4.44(m, 1H), 4.27-4.21 (m, 1H),3.82 (s, 3H), 2.70-2.64 (m,2H).Yield 82%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.23 (t, <i>J</i> = 8.0 Hz, 1H), 6.95 (d, <i>J</i> = 7.6 Hz, 1H), 6.89 (s, 1H), 6.80 (t, <i>J</i> = 8.0 Hz, 1H), 6.49 (t, <i >J</i> = 16.0 Hz, 1H), 6.17-6.10 (m, 1H), 4.50-4.44(m, 1H), 4.27-4.21 (m, 1H), 3.82 (s, 3H), 2.70-2.64 (m,2H).
2020
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE009
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率78%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.41-7.39 (m, 1H), 7.17-7.15(m,3H),6.73 (d, <i>J</i> = 16.0 Hz,1H), 6.04-5.97 (m, 1H), 4.51-4.46 (m, 1H), 4.28-4.23 (m,1H), 2.72-2.67 (m, 2H), 2.33(s, 3H).Yield 78%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.41-7.39 (m, 1H), 7.17-7.15 (m, 3H), 6.73 ( d, <i>J</i> = 16.0 Hz, 1H), 6.04-5.97 (m, 1H), 4.51-4.46 (m, 1H), 4.28-4.23 (m, 1H), 2.72-2.67 (m, 2H), 2.33(s, 3H).
21twenty one
Figure 636968DEST_PATH_IMAGE010
Figure 636968DEST_PATH_IMAGE010
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率90%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.61-7.55(m,4H),7.46-7.41(m,4H),7.36-7.32 (m, 1H), 6.55 (d,<i>J</i> = 16.0 Hz, 1H),6.22-6.14(m,1H),4.52-4.46(m, 1H), 4.28-4.22(m, 1H), 2.72-2.67 (m, 2H).Yield 90%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.61-7.55(m,4H), 7.46-7.41(m,4H), 7.36- 7.32 (m, 1H), 6.55 (d,<i>J</i> = 16.0 Hz, 1H), 6.22-6.14(m, 1H), 4.52-4.46(m, 1H), 4.28-4.22(m, 1H), 2.72-2.67 (m, 2H).
22twenty two
Figure DEST_PATH_IMAGE011
Figure DEST_PATH_IMAGE011
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率85%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.28-7.26(m,4H),6.49-6.45(m,1H),6.16-6.08 (m, 1H), 4.51-4.45 (m, 1H), 4.27-4.22 (m,1H), 2.70-2.64 (m, 2H).Yield 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.28-7.26(m,4H), 6.49-6.45(m,1H), 6.16- 6.08 (m, 1H), 4.51-4.45 (m, 1H), 4.27-4.22 (m, 1H), 2.70-2.64 (m, 2H).
23twenty three
Figure 28636DEST_PATH_IMAGE012
Figure 28636DEST_PATH_IMAGE012
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率76%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.11 (d,<i>J</i>=8.4Hz,1H),7.03(d,<i>J</i>=8.4 Hz, 1H), 6.89(t,<i>J</i>=8.4Hz,1H),6.41(d,<i>J</i>= 15.6 Hz, 1H),6.04-5.96 (m, 1H), 4.48-4.44(m, 1H),4.24-4.22(m,1H),3.89(s,3H), 2.68-2.63 (m, 2H).Yield 76%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.11 (d, <i>J</i>=8.4Hz, 1H), 7.03 (d,<i>J</i>=8.4 Hz, 1H), 6.89(t,<i>J</i>=8.4Hz,1H), 6.41(d,<i>J</i>= 15.6 Hz, 1H), 6.04-5.96 (m, 1H), 4.48-4.44(m, 1H), 4.24-4.22(m, 1H), 3.89(s, 3H), 2.68-2.63 (m, 2H).
24twenty four
Figure DEST_PATH_IMAGE013
Figure DEST_PATH_IMAGE013
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率65%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.36-7.30(m,4H),7.25-7.22(m,1H),6.52 (d, <i>J</i> = 15.6 Hz, 1H),6.18-6.10 (m, 1H),4.50-4.44(m,1H),4.27-4.21(m, 1H), 2.70-2.65(m, 2H).Yield 65%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.36-7.30(m, 4H), 7.25-7.22(m, 1H), 6.52 ( d, <i>J</i> = 15.6 Hz, 1H), 6.18-6.10 (m, 1H), 4.50-4.44(m, 1H), 4.27-4.21(m, 1H), 2.70-2.65(m, 2H).
2525
Figure 915951DEST_PATH_IMAGE014
Figure 915951DEST_PATH_IMAGE014
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率90%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.41-7.33(m,3H),7.28-7.21(m,5H),7.16 (d, <i>J</i> = 6.4 Hz, 2H),6.05 (t, <i>J</i> = 7.6 Hz,1H),4.44-4.38(m,1H),4.20-4.15 (m, 1H),2.61-2.56 (m, 2H).Yield 90%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.41-7.33(m,3H), 7.28-7.21(m,5H), 7.16 ( d, <i>J</i> = 6.4 Hz, 2H), 6.05 (t, <i>J</i> = 7.6 Hz, 1H), 4.44-4.38(m, 1H), 4.20-4.15 (m , 1H),2.61-2.56 (m, 2H).
2626
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE015
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率84%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.12 (d,<i>J</i>=8.0Hz,2H),7.05-6.96(m,6H), 5.97 (t, <i>J</i> = 7.2 Hz,1H), 4.42-4.37 (m, 1H),4.19-4.14(m,1H),2.61-2.56(m, 2H),2.39 (s, 3H), 2.32 (s, 3H).Yield 84%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.12 (d,<i>J</i>=8.0Hz,2H), 7.05 -6.96(m,6H), 5.97(t, <i>J</i> = 7.2 Hz,1H), 4.42-4.37(m, 1H),4.19-4.14(m,1H),2.61-2.56(m , 2H), 2.39 (s, 3H), 2.32 (s, 3H).
2727
Figure 584830DEST_PATH_IMAGE016
Figure 584830DEST_PATH_IMAGE016
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率90%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.16-7.14(m,2H),7.09-7.07(m,2H),6.93-6.90 (m, 2H), 6.83-6.79 (m, 2H), 5.89 (t,<i>J</i>=7.6Hz,1H),4.42-4.37(m,1H), 4.19-4.14(m, 1H), 3.83 (s, 3H), 3.78 (s,3H),2.61-2.56(m,2H).Yield 90%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.16-7.14(m,2H), 7.09-7.07(m,2H), 6.93- 6.90 (m, 2H), 6.83-6.79 (m, 2H), 5.89 (t,<i>J</i>=7.6Hz,1H),4.42-4.37(m,1H), 4.19-4.14(m, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.61-2.56 (m, 2H).
2828
Figure DEST_PATH_IMAGE017
Figure DEST_PATH_IMAGE017
CF<sub>3</sub>SO<sub>2</sub>NaCF<sub>3</sub>SO<sub>2</sub>Na 产率81%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.39-7.36(m,2H),7.28(s,1H),7.26-7.24 (m, 1H), 7.14-7.08(m, 4H), 6.03 (d, <i>J</i>=7.6Hz,1H),4.46-4.40(m,1H),4.20-4.15 (m,1H), 2.59-2.54 (m, 2H).Yield 81%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.39-7.36(m, 2H), 7.28(s, 1H), 7.26-7.24 ( m, 1H), 7.14-7.08(m, 4H), 6.03 (d, <i>J</i>=7.6Hz,1H),4.46-4.40(m,1H),4.20-4.15 (m,1H) , 2.59-2.54 (m, 2H).
2929
Figure 515877DEST_PATH_IMAGE016
Figure 515877DEST_PATH_IMAGE016
苯亚磺酸钠Sodium benzene sulfinate 产率80%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.70-7.68(m,2H),7.54-7.48(m,3H),7.14-7.11 (m, 2H), 7.03-7.00 (m, 2H), 6.89-6.86(m,2H),6.81-6.78(m,2H),5.84 (t, <i>J</i> =7.6 Hz, 1H), 4.12-4.06 (m, 1H),3.89(s,3H),3.83(s,3H),3.71-3.65(m, 1H), 2.47-2.42 (m, 2H).Yield 80%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.70-7.68(m,2H), 7.54-7.48(m,3H), 7.14- 7.11 (m, 2H), 7.03-7.00 (m, 2H), 6.89-6.86(m, 2H), 6.81-6.78(m, 2H), 5.84 (t, <i>J</i> =7.6 Hz, 1H), 4.12-4.06 (m, 1H), 3.89(s, 3H), 3.83(s, 3H), 3.71-3.65(m, 1H), 2.47-2.42 (m, 2H).
3030
Figure 270206DEST_PATH_IMAGE016
Figure 270206DEST_PATH_IMAGE016
对甲氧基苯亚磺酸钠Sodium p-methoxybenzene sulfinate 产率87%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.81 (d,<i>J</i>=8.8Hz,2H),7.07(d,<i>J</i>=8.8 Hz, 2H), 7.00(d,<i>J</i>=8.4Hz,2H),6.95(d,<i>J</i>= 9.2 Hz, 2H), 6.87(d, <i>J</i> = 8.8 Hz, 2H), 6.78 (d,<i>J</i>=8.8Hz,2H),5.76(t,<i>J</i>=7.2 Hz, 1H),4.06(t,<i>J</i>=6.8Hz,2H),3.86(s,3H),3.83 (s, 3H), 3.79 (s, 3H),2.46-2.41 (m, 2H).Yield 87%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.81 (d, <i>J</i>=8.8Hz, 2H), 7.07 (d,<i>J</i>=8.8 Hz, 2H), 7.00(d,<i>J</i>=8.4Hz,2H),6.95(d,<i>J</i>= 9.2 Hz, 2H), 6.87(d, <i>J</i> = 8.8 Hz, 2H), 6.78 (d,<i>J</i>=8.8Hz,2H),5.76(t,<i >J</i>=7.2 Hz, 1H), 4.06(t,<i>J</i>=6.8Hz,2H),3.86(s,3H),3.83(s, 3H), 3.79(s, 3H), 2.46-2.41 (m, 2H).
3131
Figure 7218DEST_PATH_IMAGE016
Figure 7218DEST_PATH_IMAGE016
对氟苯亚磺酸钠Sodium p-fluorobenzene sulfinate 产率90%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.84-7.80 (m, 2H), 7.17 (t, <i>J</i> =8.8 Hz, 2H), 7.07 (d, <i>J</i> = 8.8Hz, 2H), 6.95 (d, <i>J</i> = 8.4 Hz,2H), 6.83 (d, <i>J</i> = 8.8 Hz, 2H),6.78 (d, <i>J</i> = 8.8 Hz, 2H), 5.81(t, <i>J</i> = 7.2 Hz, 1H), 3.84 (s,3H), 3.78 (s, 3H), 3.17-3.13(m, 2H), 2.52-2.47 (m, 2H).Yield 90%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.84-7.80 (m, 2H), 7.17 (t, <i>J</i > =8.8 Hz, 2H), 7.07 (d, <i>J</i> = 8.8Hz, 2H), 6.95 (d, <i>J</i> = 8.4 Hz, 2H), 6.83 (d, <i>J</i> = 8.8 Hz, 2H), 6.78(d, <i>J</i> = 8.8 Hz, 2H), 5.81(t, <i>J</i> = 7.2 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.17-3.13(m, 2H), 2.52-2.47 (m, 2H).
3232
Figure 717554DEST_PATH_IMAGE016
Figure 717554DEST_PATH_IMAGE016
对硝基苯亚磺酸钠Sodium p-nitrobenzene sulfinate 产率75%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):8.32 (d, <i>J</i> = 8.4 Hz, 2H), 7.86(d, <i>J</i> = 8.4 Hz, 2H), 7.11 (d, <i>J</i>= 8.4 Hz, 2H), 7.01 (d, <i>J</i> = 8.4Hz, 2H), 6.88 (d, <i>J</i> = 8.4 Hz,2H), 6.80 (d, <i>J</i> = 8.4 Hz, 2H),5.79 (t, <i>J</i> = 7.6 Hz, 1H), 4.17-4.11 (m, 1H), 3.83 (s, 3H),3.8-3.72 (m, 4H), 2.50-2.44 (m,2H).Yield 75%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 8.32 (d, <i>J</i> = 8.4 Hz, 2H), 7.86 (d, <i>J</i> = 8.4 Hz, 2H), 7.11 (d, <i>J</i>= 8.4 Hz, 2H), 7.01 (d, <i>J</i> = 8.4Hz, 2H), 6.88 (d, <i>J</i> = 8.4 Hz, 2H), 6.80 (d, <i>J</i> = 8.4 Hz, 2H), 5.79 (t, <i> >J</i> = 7.6 Hz, 1H), 4.17-4.11 (m, 1H), 3.83 (s, 3H), 3.8-3.72 (m, 4H), 2.50-2.44 (m, 2H).
3333
Figure 147398DEST_PATH_IMAGE016
Figure 147398DEST_PATH_IMAGE016
2,4,6-三甲基苯亚磺酸钠Sodium 2,4,6-Trimethylbenzenesulfinate 产率80%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):7.07 (d, <i>J</i> = 8.8 Hz, 2H), 7.00(d, <i>J</i> = 8.8 Hz, 2H), 6.93 (s,2H), 6.86 (d, <i>J</i> = 8.4 Hz, 2H),7.78 (d, <i>J</i> = 8.8 Hz, 2H), 5.78(t, <i>J</i> = 7.6 Hz, 1H), 4.00 (t, <i>J</i>= 6.8 Hz, 2H), 3.83 (s, 3H),3.78 (s, 3H), 2.60 (s, 6H),2.48-2.43 (m, 2H), 2.30 (s,3H).Yield 80%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 7.07 (d, <i>J</i> = 8.8 Hz, 2H), 7.00 (d, <i>J</i> = 8.8 Hz, 2H), 6.93 (s, 2H), 6.86 (d, <i>J</i> = 8.4 Hz, 2H), 7.78 (d, <i >J</i> = 8.8 Hz, 2H), 5.78(t, <i>J</i> = 7.6 Hz, 1H), 4.00 (t, <i>J</i>= 6.8 Hz, 2H) , 3.83 (s, 3H), 3.78 (s, 3H), 2.60 (s, 6H), 2.48-2.43 (m, 2H), 2.30 (s, 3H).
3434
Figure 389024DEST_PATH_IMAGE016
Figure 389024DEST_PATH_IMAGE016
2-萘亚磺酸钠Sodium 2-naphthalene sulfinate 产率85%;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):8.48 (s, 1H), 7.97-7.91 (m,3H), 7.83 (d, <i>J</i> = 8.8 Hz, 1H),7.69-7.63 (m, 2H), 7.01-6.94(m, 4H), 6.84-6.81 (m, 2H),6.75-6.71 (m, 2H), 5.73 (t, <i>J</i> =7.6 Hz, 1H), 4.13 (t, <i>J</i> = 6.4Hz, 2H), 3.81 (s, 3H), 3.78 (s,3H), 2.48-2.43 (m, 2H).Yield 85%; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): 8.48 (s, 1H), 7.97-7.91 (m, 3H), 7.83 (d, <i>J</i> = 8.8 Hz, 1H), 7.69-7.63 (m, 2H), 7.01-6.94(m, 4H), 6.84-6.81 (m, 2H), 6.75-6.71 (m, 2H) , 5.73 (t, <i>J</i> =7.6 Hz, 1H), 4.13 (t, <i>J</i> = 6.4Hz, 2H), 3.81 (s, 3H), 3.78 (s, 3H), 2.48-2.43 (m, 2H).

以上所述实施例仅为本发明的优选实施例,而并非本发明可行实施的穷举。对于本领域技术人员而言,在不背离本发明原理和精神的前提下,对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。The above-mentioned embodiments are only preferred embodiments of the present invention, rather than an exhaustive list of feasible implementations of the present invention. For those skilled in the art, without departing from the principle and spirit of the present invention, any obvious changes made to it should be considered to be included in the protection scope of the claims of the present invention.

Claims (13)

1.一种碳-碳σ键活化制备(E)-1-苯基-4-磺酰基丁-1-烯类化合物的合成方法,其特征在于,所述方法包括如下步骤:1. A synthetic method for preparing ( E )-1-phenyl-4-sulfonylbut-1-ene compound by activation of carbon-carbon σ bond, is characterized in that, described method comprises the steps: 在Schlenk封管反应器中,以式I所示的亚甲基环丙烷类化合物, 式II所示的有机基亚磺酸钠类化合物为反应原料,加入一定量的水、氧化剂和有机溶剂,加热搅拌反应,通过TLC或GC-MS监测反应完成后,经后处理得式III所示的(E)-1-苯基-4-磺酰基丁-1-烯类化合物;In the Schlenk sealed tube reactor, the methylene cyclopropane compounds shown in formula I and the sodium organosulfinate compounds shown in formula II are used as reaction raw materials, and a certain amount of water, an oxidant and an organic solvent are added, The reaction is heated and stirred, and after the completion of the reaction is monitored by TLC or GC-MS, the ( E )-1-phenyl-4-sulfonylbut-1-ene compound shown in formula III is obtained by post-treatment;
Figure DEST_PATH_IMAGE001
Figure DEST_PATH_IMAGE001
其中,式I, 式II和/或式III中,R1表示所连接的苯环上的一个或多个取代基,选自氢、C1-C20的烷基、C1-C20的烷氧基、C1-C20的烷硫基、C6-C20的芳基、C3-C20的杂芳基、C3-C20的环烷基、C6~C20芳基-C1~C20烷基,C6~C20芳基-C1~C20烷氧基,硝基、卤素、-OH、-SH、-CN、-COOR4、-COR5、-OCOR6、-NR7R8;其中,R4、R5、R6、R7、R8各自独立地选自氢、C1-C20的烷基、C6-C20的芳基、C3-C20的环烷基中的任意一种或多种;Wherein, in formula I, formula II and/or formula III, R 1 represents one or more substituents on the connected benzene ring, selected from hydrogen, C 1 -C 20 alkyl, C 1 -C 20 Alkoxy, C 1 -C 20 alkylthio, C 6 -C 20 aryl, C 3 -C 20 heteroaryl, C 3 -C 20 cycloalkyl, C 6~ C 20 aryl -C 1~ C 20 alkyl, C 6~ C 20 aryl-C 1~ C 20 alkoxy, nitro, halogen, -OH, -SH, -CN, -COOR 4 , -COR 5 , -OCOR 6 , -NR 7 R 8 ; wherein, R 4 , R 5 , R 6 , R 7 , R 8 are each independently selected from hydrogen, C 1 -C 20 alkyl, C 6 -C 20 aryl, C Any one or more of 3 -C 20 cycloalkyl groups; R2选自氢、取代或未取代的C1-C20的烷基、取代或未取代的C6-C20的芳基、C6~C20芳基-C1~C20烷基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 6 -C 20 aryl, C 6~ C 20 aryl-C 1~ C 20 alkyl; Wherein, the substituent in the substituted or unsubstituted is selected from C 1 -C 6 alkyl group, C 1 -C 6 alkoxy group, C 1 -C 6 acyl group, halogen, -NO 2 , -CN , -OH, C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 ; R3选自取代或未取代的C1-C20的烷基、取代或未取代的C6-C20的芳基、取代或未取代的C3-C20的杂芳基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 3 is selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 3 -C 20 heteroaryl; wherein, the The substituents in the substituted or unsubstituted are selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 acyl, halogen, -NO 2 , -CN, -OH , C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 ; 其中,所述的氧化剂为K2S2O8Wherein, the oxidant is K 2 S 2 O 8 .
2.根据权利要求1所述的合成方法,其特征在于,式I, 式II和/或式III中,R1表示所连接的苯环上的一个或多个取代基,选自氢、C1-C6的烷基、C1-C6的烷氧基、C6-C14的芳基、C6~C14芳基-C1~C6烷基,C6~C14芳基-C1~C6烷氧基,硝基、卤素、-OH、-SH、-CN、-COOR4、-COR5、-OCOR6、-NR7R8;其中,R4、R5、R6、R7、R8各自独立地选自氢、C1-C6的烷基、C6-C14的芳基中的任意一种;2. synthetic method according to claim 1 is characterized in that, in formula I, formula II and/or formula III, R 1 represents one or more substituents on the connected benzene ring, selected from hydrogen, C 1 - C6 alkyl, C1 - C6 alkoxy, C6 - C14 aryl, C6 ~ C14 aryl-C1 ~ C6 alkyl, C6 ~ C14 aryl -C 1~ C 6 alkoxy, nitro, halogen, -OH, -SH, -CN, -COOR 4 , -COR 5 , -OCOR 6 , -NR 7 R 8 ; wherein, R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from any one of hydrogen, C 1 -C 6 alkyl, and C 6 -C 14 aryl; R2选自氢、取代或未取代的C1-C6的烷基、取代或未取代的C6-C14的芳基、C6~C14芳基-C1~C6烷基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C14的芳基、C3-C6的环烷基,-NMe2R 2 is selected from hydrogen, substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 6 -C 14 aryl, C 6~ C 14 aryl-C 1~ C 6 alkyl; Wherein, the substituent in the substituted or unsubstituted is selected from C 1 -C 6 alkyl group, C 1 -C 6 alkoxy group, C 1 -C 6 acyl group, halogen, -NO 2 , -CN , -OH, C 6 -C 14 aryl, C 3 -C 6 cycloalkyl, -NMe 2 ; R3选自取代或未取代的C1-C6的烷基、取代或未取代的C6-C14的芳基、取代或未取代的C3-C14的杂芳基;其中,所述取代或未取代的中的取代基选自C1-C6的烷基、C1-C6的烷氧基、C1-C6的酰基、卤素、-NO2、-CN、-OH、C6-C20的芳基、C3-C6的环烷基,-NMe2R 3 is selected from substituted or unsubstituted C 1 -C 6 alkyl, substituted or unsubstituted C 6 -C 14 aryl, substituted or unsubstituted C 3 -C 14 heteroaryl; wherein, the The substituents in the substituted or unsubstituted are selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 acyl, halogen, -NO 2 , -CN, -OH , C 6 -C 20 aryl, C 3 -C 6 cycloalkyl, -NMe 2 . 3.根据权利要求1-2任一项所述的合成方法,其特征在于,式I化合物选自如下式I-1~I-22结构所示的化合物:3. according to the synthetic method described in any one of claim 1-2, it is characterized in that, formula I compound is selected from the compound shown in following formula I-1~I-22 structure:
Figure 338207DEST_PATH_IMAGE002
Figure 338207DEST_PATH_IMAGE002
.
4.根据权利要求1-2任意一项的所述的合成方法,其特征在于,式II化合物选自三氟甲基亚磺酸钠、苯亚磺酸钠、对甲氧基苯亚磺酸钠、对甲基苯亚磺酸钠、对氟苯亚磺酸钠、对氯苯亚磺酸钠、对溴苯亚磺酸钠、对三氟甲基苯亚磺酸钠、对氰基苯亚磺酸钠、对硝基苯亚磺酸钠、间甲基苯亚磺酸钠、2,4,6-三甲基苯亚磺酸钠、2-萘亚磺酸钠、苄基亚磺酸钠、2-噻吩亚磺酸钠、甲亚磺酸钠。4. according to the described synthetic method of any one of claim 1-2, it is characterised in that the compound of formula II is selected from sodium trifluoromethanesulfinate, sodium benzenesulfinate, p-methoxybenzenesulfinic acid Sodium, sodium p-toluene sulfinate, sodium p-fluorobenzene sulfinate, sodium p-chlorobenzene sulfinate, sodium p-bromobenzene sulfinate, sodium p-trifluoromethyl benzene sulfinate, p-cyanobenzene Sodium sulfinate, sodium p-nitrobenzene sulfinate, sodium m-toluene sulfinate, sodium 2,4,6-trimethylbenzene sulfinate, sodium 2-naphthalene sulfinate, benzyl sulfinate sodium, 2-thiophene sulfinate, sodium methanesulfinate. 5.根据权利要求1-2任意一项所述的合成方法,其特征在于,所述反应在惰性气氛或空气气氛下进行。5. The synthetic method according to any one of claims 1-2, wherein the reaction is carried out in an inert atmosphere or an air atmosphere. 6.根据权利要求5所述的合成方法,其特征在于,所述反应在氩气气氛下进行。6. The synthesis method according to claim 5, wherein the reaction is carried out under an argon atmosphere. 7.根据权利要求1-2任意一项所述的合成方法,其特征在于,所述的有机溶剂选自甲苯、四氢呋喃、1,4-二氧六环、乙腈中的任意一种。7. The synthetic method according to any one of claims 1-2, wherein the organic solvent is selected from any one of toluene, tetrahydrofuran, 1,4-dioxane, and acetonitrile. 8.根据权利要求7所述的合成方法,其特征在于,所述的有机溶剂为甲苯。8. synthetic method according to claim 7 is characterized in that, described organic solvent is toluene. 9.根据权利要求1-2任意一项所述的合成方法,其特征在于,所述的加热搅拌反应的反应温度为40-120℃;所述反应的反应时间为12-72小时。9 . The synthesis method according to claim 1 , wherein the reaction temperature of the heating and stirring reaction is 40-120° C.; the reaction time of the reaction is 12-72 hours. 10 . 10.根据权利要求9所述的合成方法,其特征在于,所述的加热搅拌反应的反应温度为80℃;所述反应的反应时间为24~48小时。10. synthetic method according to claim 9 is characterized in that, the reaction temperature of described heating and stirring reaction is 80 ℃; The reaction time of described reaction is 24~48 hours. 11.根据权利要求1-2任意一项所述的合成方法,其特征在于,其中式I化合物、式II化合物、氧化剂K2S2O8、水的摩尔比为1:(1~3):(1-3):(2-8)。11. The synthetic method according to any one of claims 1-2, wherein the mol ratio of the compound of formula I, compound of formula II, oxidant K 2 S 2 O 8 and water is 1:(1~3) :(1-3):(2-8). 12.根据权利要求11所述的合成方法,其特征在于,式I化合物、式II化合物、氧化剂K2S2O8、水的摩尔比为1:2:2:4。12 . The synthesis method according to claim 11 , wherein the molar ratio of the compound of formula I, the compound of formula II, the oxidant K 2 S 2 O 8 and water is 1:2:2:4. 13 . 13.根据权利要求1-2任意一项所述的合成方法,其特征在于,所述的后处理操作如下:将反应完成后的混合液减压浓缩,得到残余物,再将残余物经柱胶柱层析分离得到式III所示的目标产物,其中硅胶柱层析分离的洗脱液为正己烷和乙酸乙酯的混合液。13. according to the synthetic method described in any one of claim 1-2, it is characterized in that, described post-processing operation is as follows: the mixed solution after the reaction is concentrated under reduced pressure, obtains residue, then residue is passed through column The target product represented by formula III is obtained by separation by gel column chromatography, wherein the eluent separated by silica gel column chromatography is a mixture of n-hexane and ethyl acetate.
CN201811473383.9A 2018-12-04 2018-12-04 A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds Expired - Fee Related CN109651209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811473383.9A CN109651209B (en) 2018-12-04 2018-12-04 A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811473383.9A CN109651209B (en) 2018-12-04 2018-12-04 A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds

Publications (2)

Publication Number Publication Date
CN109651209A CN109651209A (en) 2019-04-19
CN109651209B true CN109651209B (en) 2020-08-11

Family

ID=66112782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811473383.9A Expired - Fee Related CN109651209B (en) 2018-12-04 2018-12-04 A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds

Country Status (1)

Country Link
CN (1) CN109651209B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109956854B (en) * 2019-04-30 2022-01-14 湖南第一师范学院 A kind of preparation method of 7-methoxy-3-phenyl-1,2-dihydronaphthalene
CN110540516B (en) * 2019-06-06 2021-03-26 湖南理工学院 Preparation method of 1-sulfonylmethyl-3, 4-dihydronaphthalene
CN111039737B (en) * 2020-01-06 2022-08-02 湖南理工学院 A kind of synthetic method of 2-cyanoalkylsulfonyl 3,4-dihydronaphthalene compound
CN113816878A (en) * 2021-11-02 2021-12-21 扬州工业职业技术学院 A kind of preparation method of 3-butene-1-sulfonyl fluoride compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658836B (en) * 2018-05-15 2021-04-20 宁波大学 A kind of preparation method of 3-substituted-3-azidoindol-2-one compounds
CN108707081B (en) * 2018-07-09 2020-12-15 南昌航空大学 A kind of olefin 1,2-difunctionalization reaction method
CN108912036B (en) * 2018-08-24 2021-06-25 南昌航空大学 A kind of method for preparing allyl indole compounds by 1,4-difunctionalization reaction of alkene

Also Published As

Publication number Publication date
CN109651209A (en) 2019-04-19

Similar Documents

Publication Publication Date Title
CN109651209B (en) A method for preparing (E)-1-phenyl-4-sulfonylbut-1-ene compounds by activation of carbon-carbon σ-bonds
Ando et al. Iodine-catalyzed aziridination of alkenes using chloramine-T as a nitrogen source
Xu et al. Chemoselective Synthesis of Unsymmetrical Internal Alkynes or Vinyl Sulfones via Palladium‐Catalyzed Cross‐Coupling Reaction of Sodium Sulfinates with Alkynes
US6136157A (en) Method for organic reactions
Yuan et al. Phosphine-catalyzed [4+ 2] cyclization of para-quinone methide derivatives with allenes
Gu et al. Cu (i)/Fe (iii)-Catalyzed C–P cross-coupling of styrenes with H-phosphine oxides: a facile and selective synthesis of alkenylphosphine oxides and β-ketophosphonates
Gui et al. E-Selective synthesis of vinyl sulfones via silver-catalyzed sulfonylation of styrenes
Hughes et al. Development of pharmaceutically relevant bio-based intermediates though aldol condensation and Claisen–Schmidt reactions of dihydrolevoglucosenone (Cyrene®)
CN109651210B (en) Preparation method of 3-sulfonyl-1, 2-dihydronaphthalene compound
Paul et al. A facile iron-catalyzed dual C–C bond cleavage: an approach towards triarylmethanes
Li et al. Facile synthesis of 2-vinylindolines via a phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process
CN106938978B (en) A kind of synthetic method of two sulfuryls alkene derivatives
CN109705001B (en) A kind of method for photocatalytic preparation of 3-sulfonyl-1,2-dihydronaphthalene compound
CN108689901B (en) Synthetic method of aziridine compound
CN116354857B (en) A preparation method of β-aminosulfone and its derivatives
Yu et al. Regioselective intramolecular cyclization of o-alkynyl arylamines with the in situ formation of ArXCl to construct poly-functionalized 3-selenylindoles
Piringer et al. Enantioselective Syntheses of 3, 4‐Dihydropyrans Employing Isochalcogenourea‐Catalyzed Formal (4+ 2)‐Cycloadditions of Allenoates
Hu et al. Photoinduced remote regioselective radical alkynylation of unactivated C–H bonds
Terashima et al. Syntheses of α-CF 3-α-quaternary ketones via p-quinone methides and their derivatization to compounds with successively congested stereogenic centers
Qian et al. tert-Butoxide mediated cascade desulfonylation/arylation/hydrolysis of cyclic sulfonyimines using diaryliodonium salts: synthesis of diaryl ether derivatives bearing a 2-aldehyde group
Stefani et al. Synthesis of α, β-unsaturated aryl esters via Heck reaction of unsymmetrical aryl tellurides
Hou et al. Phosphine-catalysed α-umpolung addition of nucleophiles to δ-acetoxy allenoates: stereoselective synthesis of 2, 4-dienoates
Schmidt et al. Concise assembly of 7-ethynyl-6, 8-dioxabicyclo [3.2. 1] octanes from acetylenes and ketones
CN109867593B (en) A kind of γ-hydroxy ketone derivative and its synthesis method
Nath et al. Organocatalytic asymmetric Michael addition of 1-acetylcyclohexene and 1-acetylcyclopentene to nitroolefins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811

Termination date: 20211204

CF01 Termination of patent right due to non-payment of annual fee