CN109650328B - 一种动态特性测试的激波底座激励装置及其工作方法 - Google Patents

一种动态特性测试的激波底座激励装置及其工作方法 Download PDF

Info

Publication number
CN109650328B
CN109650328B CN201811538790.3A CN201811538790A CN109650328B CN 109650328 B CN109650328 B CN 109650328B CN 201811538790 A CN201811538790 A CN 201811538790A CN 109650328 B CN109650328 B CN 109650328B
Authority
CN
China
Prior art keywords
plate
microstructure
light
heating unit
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811538790.3A
Other languages
English (en)
Other versions
CN109650328A (zh
Inventor
田江平
隆武强
冯立岩
崔靖晨
田华
崔泽川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811538790.3A priority Critical patent/CN109650328B/zh
Publication of CN109650328A publication Critical patent/CN109650328A/zh
Application granted granted Critical
Publication of CN109650328B publication Critical patent/CN109650328B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/005Test apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Abstract

一种动态特性测试的激波底座激励装置及其工作方法,属于微型机械电子技术领域。该装置包括筒体、安装在筒体底部的底板、微结构激励单元和光加热单元,微结构激励单元中在十字弹簧片顶部中心通过微结构安装板粘接安装有MEMS微结构,在十字弹簧片底部中心通过陶瓷片粘接安装有板电极;光加热单元中使用了四个遮光板,使得由光加热单元发出的平行光仅能照射在MEMS微结构上;该装置可以实现对MEMS微结构整体的同时加热,确保了微结构表面的温度分布均匀,降低了微结构表面的温度梯度,大幅提高了高温环境下微结构动态特性参数测试的准确性。

Description

一种动态特性测试的激波底座激励装置及其工作方法
技术领域
本发明涉及一种动态特性测试的激波底座激励装置及其工作方法,属于微型机械电子技术领域。
背景技术
由于MEMS微器件具有成本低、体积小、重量轻、集成度高和智能化程度高等一系列特点,目前已经在汽车、航空航天、信息通讯、生物化学、医疗、自动控制、消费品及国防等很多领域都得到广泛的应用。在设计和开发MEMS时,由于系统功能主要是通过微结构的微小位移和变形实现,需要测量微机械部件的动态性能,因此对MEMS的机械运动参数如位移、速度、振幅、频率和振动模态等进行精确测量已经成为开发MEMS的重要内容。随着MEMS产品应用领域的不断拓展,对其动态机械特性的测试和研究不能够仅局限在常态环境下,而是需要结合实际的使用环境,比如高温环境,测试其在高温环境影响下的动态特性,从而能够对产品的稳定性和可靠性进行评估,对器件在设计、制作工艺的改进、以及器件的封装等方面起到指导作用,还可以降低研发成本,减少开发时间。
为了测试微结构在高温环境下的动态特性参数,一方面需要使微结构产生振动,也就是需要对微结构进行激励。由于MEMS微结构具有尺寸小、重量轻和固有频率高等特点,传统机械模态测试中的激励方法和激励装置无法被应用在MEMS微结构的振动激励当中。近三十年来,国内外的研究人员针对MEMS微结构的振动激励方法进行了大量的探索,研究出了一些可用于MEMS微结构的激励方法以及相应的激励装置,其中基于压电陶瓷的底座激励方法能够很好的实现对微结构的激励。
另一方面,就是需要对微结构进行升温,也就是对其进行加热。公开号为CN206074210U的中国实用新型专利公开了一种用于MEMS微结构动态特性测试的高温环境加载装置,在该装置中采用电加热棒作为热源,通过热传导的方法对微结构进行加热;公开号为CN1666952A的中国发明专利公开了一种MEMS圆片或器件的动态测试加载装置,在该装置中采用电加热板作为热源,通过热传导的方法对MEMS圆片进行加热;佘东生等在《基于激波的MEMS 微结构底座冲击激励方法研究》中介绍了一种可加载高温环境的MEMS微结构激波激励装置,在该装置中采用电加热棒作为热源,通过热传导的方法对MEMS微结构进行加热。在采用上述热传导的加热方式对微结构进行加热时,由于热能是经由微结构基底再传递到微结构上的,因此微结构上的温度场分布十分不均匀,微结构上距离基底远端的温度要低于距离基底近端处的温度,根据F. Shen等在《Thermal effects on coated resonantmicrocantilevers》中的研究结果,当微结构上的温度场分布不均匀时,在高温环境下测试微结构动态特性参数的准确性将会大幅降低。因此,现有技术中采用热传导对微结构进行加热的方式具有很大的缺点。
发明内容
本发明所要解决的技术问题是提供一种动态特性测试的激波底座激励装置及其工作方法,该装置能够实现对MEMS微结构加载高温环境,并对处于高温状态下的MEMS微结构进行激励,同时确保微结构表面温度分布均匀,降低微结构表面的温度梯度,提高高温环境下MEMS微结构动态特性参数测试结果的准确性。
为解决上述问题,本发明采用如下技术方案:
一种动态特性测试的激波底座激励装置,包括筒体和安装在筒体底部的底板,其特征是:在底板上设有微结构激励单元,所述微结构激励单元包括第一手动三轴位移台和第二手动三轴位移台,在第一手动三轴位移台的Z轴溜板上安装有第一连接板,在第一连接板顶面中心设有阶梯状安装孔,在安装孔内的环形阶梯处安装有十字弹簧片,在十字弹簧片顶部中心通过微结构安装板粘接安装有MEMS微结构,在十字弹簧片底部中心通过陶瓷片粘接安装有板电极;在第二手动三轴位移台的Z轴溜板上安装有第二连接板,在第二连接板底部中心通孔内通过紧定螺钉安装有陶瓷管,在陶瓷管内套装连接有针电极;所述针电极和板电极分别与高压电容的两极电联接,在针电极和高压电容之间设有第一开关控制通断;所述高压电容的两极分别电联接至高压电源的正负极,并通过第二开关控制通断;
在筒体的顶部圆周均布的安装有四个光加热单元,每个光加热单元依次通过光加热单元安装板、销轴、固定板与筒体相连接,光加热单元可绕销轴转动,在光加热单元安装板上与销轴套装部的螺纹孔内有紧定螺钉;所述光加热单元包括螺纹连接的前套筒和后套筒,在后套筒尾部中心孔内安装有平行光源;
在前套筒内部设有台阶孔,在前套筒前端设有第一遮光板、第二遮光板、第三遮光板和第四遮光板,四个遮光板在前套筒前端面上的投影呈圆周均布,其中第一遮光板和第四遮光板对称布置在靠近前套筒前端处,第二遮光板和第三遮光板对称布置在远离前套筒前端处;每个遮光板上均安装有导向轴,导向轴穿过前套筒前端面的突出部并连接在推板上,在推板中心处设有调节旋钮,调节旋钮穿过推板的中心孔并螺纹连接在前套筒前端面的突出部上,在推板和前套筒前端面的突出部之间设有复位弹簧,复位弹簧套装在调节旋钮上,用于调节遮光板的位置。
一种动态特性测试的激波底座激励装置的工作方法:首先,转动光加热单元安装板,旋拧前套筒,并调节推板,同时调节手动三轴位移台,使光加热单元发射出的平行光仅能照射在MEMS微结构上;
然后,将第一开关和第二开关全部置于断开状态,调节第二手动三轴位移台,使针电极的针尖对准板电极的中心位置,并保证它们之间的距离大于高压电容(10)充分充电后的最大空气击穿间隙;
其次,使用光加热单元对MEMS微结构进行加热,在红外测温仪器的协助下将MEMS微结构加热到目标温度;再次,闭合第二开关,使用高压电源为高压电容充电, 当充电完成后再断开第二开关;
最后,闭合第一开关,调节第二手动位移台,使针电极接近板电极,当针电极的针尖和板电极之间的距离满足当前充电电压下的空气击穿条件时,空气间隙被击穿,完成放电并产生激波,实现对MEMS微结构的冲击激励,同时使用非接触的光学测振仪器获取MEMS微结构的振动响应,从而获取MEMS微结构在该目标温度下的动态特性参数。
本发明的有益效果是:
1、由于在装置中使用光辐射的加热方式,因此可以实现对MEMS微结构整体的同时加热,确保了微结构表面的温度分布均匀,降低了微结构表面的温度梯度,大幅提高了高温环境下微结构动态特性参数测试的准确性。
2、由于在光加热单元中使用了四个遮光板,四个遮光板在光路垂直方向上围成一个矩形间隙,使得由每个光加热单元发出的平行光仅能通过矩形间隙照射在MEMS微结构上,通过调节光线的入射角度,可以使平行光仅能照射到MEMS微结构上,避免了激励装置中不耐高温零件的不必要的温升,提高了激励装置可靠性,拓展了装置的适用范围。
3、由于在装置中采用针、板电极放电来产生激波,提高了激励装置的可靠性和稳定性。
附图说明
图1是一种动态特性测试的激波底座激励装置的立体结构示意图。
图2是一种动态特性测试的激波底座激励装置的俯视图。
图3是光加热单元的立体结构示意图。
图4是光加热单元的前视图。
图5是图4的A-A剖视图。
图6是微结构激励单元的立体结构示意图。
图7是微结构激励单元的前视图。
图8是图7的B-B剖视图。
图9是高压电容的充放电图。
图中:1.筒体,2.固定板,3.光加热单元安装板,4.光加热单元,401.后套筒,402.前套筒,404.调节旋钮,405.推板,406.导向轴,407.复位弹簧,408.第一遮光板,409.第二遮光板,410.第三遮光板,411.第四遮光板,412.平行光源,5.微结构激励单元,501.第一手动三轴位移台,502.第二手动三轴位移台,503.第一连接板,504.第二连接板,505.针电极,506.紧定螺钉,507.陶瓷管,508.MEMS微结构,509.微结构安装板,510.十字弹簧片,511.陶瓷片,512.板电极,6.底板,7.销轴,8. 紧定螺钉,9.第一开关,10.高压电容,11.第二开关,12.高压电源。
具体实施方式
如图1-9所示,这种动态特性测试的激波底座激励装置包括筒体1和安装在筒体1底部的底板6,其特征是:在底板1上设有微结构激励单元5,所述微结构激励单元5包括第一手动三轴位移台501和第二手动三轴位移台502,在第一手动三轴位移台501的Z轴溜板上安装有第一连接板503,在第一连接板503顶面中心设有阶梯状安装孔,在安装孔内的环形阶梯处安装有十字弹簧片510,在十字弹簧片510顶部中心通过微结构安装板509粘接安装有MEMS微结构508,在十字弹簧片510底部中心通过陶瓷片511粘接安装有板电极512;在第二手动三轴位移台502的Z轴溜板上安装有第二连接板504,在第二连接板504底部中心通孔内通过紧定螺钉506安装有陶瓷管507,在陶瓷管507内套装连接有针电极505;所述针电极505和板电极512分别与高压电容10的两极电联接,在针电极505和高压电容10之间设有第一开关9控制通断;所述高压电容10的两极分别电联接至高压电源12的正负极,并通过第二开关11控制通断。
在筒体1的顶部圆周均布的安装有四个光加热单元4,每个光加热单元4依次通过光加热单元安装板3、销轴7、固定板2与筒体1相连接,光加热单元4可绕销轴7转动,在光加热单元安装板3上与销轴7套装部的螺纹孔内有紧定螺钉8;所述光加热单元4包括螺纹连接的前套筒402和后套筒401,在后套筒401尾部中心孔内安装有平行光源412。
在前套筒402内部设有台阶孔,在前套筒402前端设有第一遮光板408、第二遮光板409、第三遮光板410和第四遮光板411,四个遮光板在前套筒402前端面上的投影呈圆周均布,其中第一遮光板408和第四遮光板411对称布置在靠近前套筒402前端处,第二遮光板409和第三遮光板410对称布置在远离前套筒402前端处;每个遮光板上均安装有导向轴406,导向轴406穿过前套筒402前端面的突出部并连接在推板405上,在推板405中心处设有调节旋钮404,调节旋钮穿404过推板405的中心孔并螺纹连接在前套筒402前端面的突出部上,在推板405和前套筒402前端面的突出部之间设有复位弹簧407,复位弹簧407套装在调节旋钮404上,用于调节遮光板的位置。
这种动态特性测试的激波底座激励装置的工作方法:首先,转动光加热单元安装板3,旋拧前套筒402,并调节推板405,同时调节手动三轴位移台501,使光加热单元4发射出的平行光仅能照射在MEMS微结构503上;然后,将第一开关9和第二开关11全部置于断开状态,调节第二手动三轴位移台502,使针电极505的针尖对准板电极512的中心位置,并保证它们之间的距离大于高压电容10充分充电后的最大空气击穿间隙;其次,使用光加热单元4对MEMS微结构508进行加热,在红外测温仪器的协助下将MEMS微结构508加热到目标温度,待达到目标温度后,控制电动两轴位移台2将光加热单元4移动到靠近筒体1边缘处,让出测试光路;再次,闭合第二开关11,使用高压电源12为高压电容10充电, 当充电完成后再断开第二开关11;最后,闭合第一开关9,调节第二手动位移台502,使针电极505接近板电极512,当针电极505的针尖和板电极512之间的距离满足当前充电电压下的空气击穿条件时,空气间隙被击穿,完成放电并产生激波,实现对MEMS微结构 508的冲击激励,同时使用非接触的光学测振仪器获取MEMS微结构508的振动响应,从而获取MEMS微结构508在该目标温度下的动态特性参数。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (2)

1.一种动态特性测试的激波底座激励装置,包括筒体(1)和安装在筒体(1)底部的底板(6),在底板上设有微结构激励单元(5),其特征是:所述微结构激励单元(5)包括第一手动三轴位移台(501)和第二手动三轴位移台(502),在第一手动三轴位移台(501)的Z轴溜板上安装有第一连接板(503),在第一连接板(503)顶面中心设有阶梯状安装孔,在安装孔内的环形阶梯处安装有十字弹簧片(510),在十字弹簧片(510)顶部中心通过微结构安装板(509)粘接安装有MEMS微结构(508),在十字弹簧片(510)底部中心通过陶瓷片(511)粘接安装有板电极(512);在第二手动三轴位移台(502)的Z轴溜板上安装有第二连接板(504),在第二连接板(504)底部中心通孔内通过紧定螺钉(506)安装有陶瓷管(507),在陶瓷管(507)内套装连接有针电极(505);所述针电极(505)和板电极(512)分别与高压电容(10)的两极电联接,在针电极(505)和高压电容(10)之间设有第一开关(9)控制通断;所述高压电容(10)的两极分别电联接至高压电源(12)的正负极,并通过第二开关(11)控制通断;
在筒体(1)的顶部圆周均布的安装有四个光加热单元(4),每个光加热单元(4)依次通过光加热单元安装板(3)、销轴(7)、固定板(2)与筒体(1)相连接,光加热单元(4)可绕销轴(7)转动,在光加热单元安装板(3)上与销轴(7)套装部的螺纹孔内有紧定螺钉(8);所述光加热单元(4)包括螺纹连接的前套筒(402)和后套筒(401),在后套筒(401)尾部中心孔内安装有平行光源(412);
在前套筒(402)内部设有台阶孔,在前套筒(402)前端设有第一遮光板(408)、第二遮光板(409)、第三遮光板(410)和第四遮光板(411),四个遮光板在前套筒(402)前端面上的投影呈圆周均布,其中第一遮光板(408)和第四遮光板(411)对称布置在靠近前套筒(402)前端处,第二遮光板(409)和第三遮光板(410)对称布置在远离前套筒(402)前端处;每个遮光板上均安装有导向轴(406),导向轴(406)穿过前套筒(402)前端面的突出部并连接在推板(405)上,在推板(405)中心处设有调节旋钮(404),调节旋钮穿(404)过推板(405)的中心孔并螺纹连接在前套筒(402)前端面的突出部上,在推板(405)和前套筒(402)前端面的突出部之间设有复位弹簧(407),复位弹簧(407)套装在调节旋钮(404)上,用于调节遮光板的位置。
2.根据权利要求1所述的一种动态特性测试的激波底座激励装置的工作方法,其特征在于:
首先,转动光加热单元安装板(3),旋拧前套筒(402),并调节推板(405),同时调节手动三轴位移台(501),使光加热单元(4)发射出的平行光仅能照射在MEMS微结构(503)上;
然后,将第一开关(9)和第二开关(11)全部置于断开状态,调节第二手动三轴位移台(502),使针电极(505)的针尖对准板电极(512)的中心位置,并保证它们之间的距离大于高压电容(10)充分充电后的最大空气击穿间隙;
其次,使用光加热单元(4)对MEMS微结构(508)进行加热,在红外测温仪器的协助下将MEMS微结构(508)加热到目标温度;再次,闭合第二开关(11),使用高压电源(12)为高压电容(10)充电, 当充电完成后再断开第二开关(11);
最后,闭合第一开关(9),调节第二手动位移台(502),使针电极(505)接近板电极(512),当针电极(505)的针尖和板电极(512)之间的距离满足当前充电电压下的空气击穿条件时,空气间隙被击穿,完成放电并产生激波,实现对MEMS微结构(508)的冲击激励,同时使用非接触的光学测振仪器获取MEMS微结构(508)的振动响应,从而获取MEMS微结构(508)在该目标温度下的动态特性参数。
CN201811538790.3A 2018-12-17 2018-12-17 一种动态特性测试的激波底座激励装置及其工作方法 Expired - Fee Related CN109650328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811538790.3A CN109650328B (zh) 2018-12-17 2018-12-17 一种动态特性测试的激波底座激励装置及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811538790.3A CN109650328B (zh) 2018-12-17 2018-12-17 一种动态特性测试的激波底座激励装置及其工作方法

Publications (2)

Publication Number Publication Date
CN109650328A CN109650328A (zh) 2019-04-19
CN109650328B true CN109650328B (zh) 2020-05-19

Family

ID=66113442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811538790.3A Expired - Fee Related CN109650328B (zh) 2018-12-17 2018-12-17 一种动态特性测试的激波底座激励装置及其工作方法

Country Status (1)

Country Link
CN (1) CN109650328B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1587140B1 (de) * 2004-03-12 2011-09-21 Robert Bosch Gmbh Elektronisches Bauteil mit einer Schaltung, die mit einer Gelschicht versehen ist und Verfahren zur Herstellung des Bauteils
CN1282598C (zh) * 2005-03-29 2006-11-01 华中科技大学 Mems圆片或器件的动态测试加载装置
EP2635900A2 (en) * 2010-11-01 2013-09-11 KOC Universitesi Miniaturized integrated micro electo-mechanical systems (mems) optical sensor array
CN106477518B (zh) * 2016-09-30 2017-12-15 渤海大学 一种可在高温环境下对mems金属微结构进行激励的激波激励装置
CN206074210U (zh) * 2016-10-15 2017-04-05 渤海大学 一种用于mems微结构动态特性测试的高温环境加载装置
CN107655647A (zh) * 2017-09-27 2018-02-02 哈尔滨工业大学 结构热模态试验连续脉冲序列激励装置

Also Published As

Publication number Publication date
CN109650328A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Lim et al. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system
CN206074210U (zh) 一种用于mems微结构动态特性测试的高温环境加载装置
Lee et al. Shape memory alloy (sma)‐based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed
Gao et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems
Song et al. Significant power enhancement of magneto-mechano-electric generators by magnetic flux concentration
CN106477518B (zh) 一种可在高温环境下对mems金属微结构进行激励的激波激励装置
Rodrigues et al. Analysis of innovative plasma actuator geometries for boundary layer control
Cao et al. Exploiting bistability for high-performance dielectric elastomer resonators
CN109827727B (zh) 一种加载高温环境的激波底座激励装置及其工作方法
CN109650328B (zh) 一种动态特性测试的激波底座激励装置及其工作方法
Yu et al. A PMNN‐PZT piezoceramic based magneto‐mechano‐electric coupled energy harvester
CN114189172A (zh) 一种精准调控微粒净电量的方法及装置
Ewall-Wice et al. Optomechanical actuation of diamagnetically levitated pyrolytic graphite
CN109682558B (zh) 一种动态特性测试的激波聚焦激励装置及其工作方法
JP2012502420A (ja) 方法
CN109668703B (zh) 一种动态特性测试的压电式激励装置及其工作方法
CN109626320B (zh) 一种加载高温环境的激波聚焦激励装置及其工作方法
CN109612660B (zh) 一种动态特性测试的超声波激励装置及其工作方法
CN109668702B (zh) 一种加载高温环境的压电式激励装置及其工作方法
Ulmen Formation and extraction of a dense plasma jet from a helicon-plasma-injected inertial electrostatic confinement device
CN109437097B (zh) 一种加载高温环境的超声波激励装置及其工作方法
CN106629584B (zh) 一种用于mems金属微结构动态特性测试的非接触式激波激励装置
Gao et al. An Electromagnetic-Piezoelectric Hybrid Harvester Based on Magnetic Circuit Switch for Vibration Energy Harvesting
Zheng et al. Sequentially-excited multi-oscillator piezoelectric rotary energy harvester for charging capacity enhancement
CN106370372B (zh) 一种用于mems微结构动态特性测试的聚焦激波激励装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200519

Termination date: 20211217

CF01 Termination of patent right due to non-payment of annual fee