CN109604620A - 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法 - Google Patents

一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法 Download PDF

Info

Publication number
CN109604620A
CN109604620A CN201811510816.3A CN201811510816A CN109604620A CN 109604620 A CN109604620 A CN 109604620A CN 201811510816 A CN201811510816 A CN 201811510816A CN 109604620 A CN109604620 A CN 109604620A
Authority
CN
China
Prior art keywords
powder
niticr
mglizn
pbsnagcu
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811510816.3A
Other languages
English (en)
Inventor
王志刚
时奖章
李军
杨慷
陈家宝
郑先明
许翔宇
丁钰明
任鸿皓
屈鹏帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Institute of Technology
Original Assignee
Anyang Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Institute of Technology filed Critical Anyang Institute of Technology
Priority to CN201811510816.3A priority Critical patent/CN109604620A/zh
Publication of CN109604620A publication Critical patent/CN109604620A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种具有自我调控功能的NiTiCr‑MgLiZn复合材料,利用真空‑气雾化技术将Ni、Ti与Cr粉末制备成NiTiCr球形粉末,充当基体材料原始粉末;将Mg、Li与Zn粉末制备成MgLiZn固体润滑相;将Pb、Sn、Ag、Cu粉末与纳米Al2O3制备成润滑调控剂PbSnAgCu‑Al2O3。激光熔融沉积正余弦孔结构NiTiCr‑MgLiZn自润滑复合材料;真空‑压力熔渗PbSnAgCu‑Al2O3于正余弦孔中,制备出一种具有自我调控能力的NiTiCr基自润滑复合材料,其在极端复杂工况尤其是在工况突变的情况下仍能起到优异的减摩抗磨性能。

Description

一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备 方法
技术领域
本发明涉及一种新型金属基复合材料技术领域,特别涉及一种以MgLiZn为固体润滑相NiTiCr基自润滑复合材料,此外也涉及到一种以PbSnAgCu-Al2O3为润滑调控剂的制备方法。
背景技术
NiTiCr三元合金在高温环境下具有良好的拉伸强度、高温蠕变抗力以及相当优异的抗高温疲劳和热腐蚀性能等优点,可以广泛应用于航空、动力、石化等行业中热端结构零部件的制备【王媛媛. Inconel 625合金的高温低周疲劳行为及其疲劳失效分析[D]. 沈阳:沈阳工业大学,2016】。在服役温度大于 650℃时,NiTiCr三元合金具有良好的持久性能、疲劳性能、抗氧化和抗腐蚀性能。从室温到1095℃,NiTiCr三元合金具有良好的强度和韧性,良好的抗氯离子应力腐蚀能力,可以用作航空航天喷气式发动机零部件和化工设备耐腐蚀零部件等原材料【Thomas C, Tait P. The performance of alloy 625 in longterm intermediate temperatureapplications[J]. International Journal ofPressure Vessels and Piping, 1994, 59(2): 1-3】。但合金材料在工况条件突变的情况下其摩擦磨损性能急剧下降,大大降低了机械零部件服役寿命【陶琳,程明,张伟红等.Inconel 625 合金高温高速热变形行为[J].材料热处理学报,2012,33(9):55-59】。因此,开发一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料,用于改善NiTiCr材料极端工况条件下的摩擦磨损已成为一种必要。其制备过程大致描述可以为利用激光熔融沉积技术制备出正余弦曲式孔结构NiTiCr-MgLiZn自润滑复合材料。真空-压力熔渗PbSnAgCu-Al2O3润滑调控剂于正余弦孔结构中,得到一种以PbSnAgCu-Al2O3润滑调控剂的NiTiCr-MgLiZn自润滑复合材料,实现在极端工况条件突变下的润滑调控功能。材料制备方法简单,易于操作,材料性能优异,环保且能源消耗低等,这对于提高NiTiCr-MgLiZn复合材料服役寿命,增强工程使用安全性具有重要意义。
发明内容
为解决以上存在的科学或工程问题,本发明制备出一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料,用于提高材料摩擦磨损性能,延长NiTiCr基材料零部件服役寿命。NiTiCr-MgLiZn自润滑复合材料具有较高纯度、良好致密性,低摩擦与小磨损等优点;特别涉及到一种PbSnAgCu-Al2O3润滑调控剂的制备方法,制备工艺简单,周期短,操作简单且易于控制,适合于批量生产与应用。该润滑行为调控剂能够在服役工况变化的情况下及时调控材料的摩擦磨损性能,且能在工况条件突变下仍能实现良好的润滑功能。
本发明为解决以上提出的问题所采用的技术方案为:一种具有自我调控功能的NiTiCr-MgLiZn复合材料,包括固体润滑相MgLiZn、基体材料NiTiCr与润滑调控剂PbSnAgCu-Al2O3,利用真空-气雾化技术将Ni、Ti与Cr粉末制备成NiTiCr球形粉末,充当基体材料原始粉末;将Mg、Li与Zn粉末制备成MgLiZn固体润滑相;将Pb、Sn、Ag、Cu粉末与纳米Al2O3制备成润滑调控剂PbSnAgCu-Al2O3。激光熔融沉积正余弦孔结构NiTiCr-MgLiZn自润滑复合材料;真空-压力熔渗PbSnAgCu-Al2O3于正余弦孔中,制备出一种具有自我调控能力的NiTiCr基自润滑复合材料。
基体NiTiCr与固体润滑相MgLiZn质量比wt.%为1:0.1-0.4,MgLiZn固体润滑相中Mg:Li:Zn原子比at.%为52:39:2-9,NiTiCr基体材料Ni:Ti:Cr原子比at.%为48:24:20-25,润滑调控剂PbSnAgCu-Al2O3与NiTiCr-MgLiZn复合材料质量比wt.%为10-40:60。调控剂PbSnAgCu:Al2O3质量比(wt.%)为1-9:1,PbSnAgCu膨胀剂Pb:Sn:Ag:Cu原子比at.%为45:24:15:1-12;Al2O3纳米粒子增强剂Al:O原子比at.%为2:3。
一种具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,它主要包括以下几个步骤:
步骤S1:按照权利要求2中的上述比例称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米Al2O3;利用振动混料机对称取的粉末进行均匀化处理,振动频率为30-45Hz,振动力为10000-12000N,振动时间为55-65min;
步骤S2:将Ni粉、Ti粉、Cr粉充分混合后用于NiTiCr原始配料,利用真空-气雾化技术将混合均匀的NiTiCr原始配料制备成可用于激光熔融沉积NiTiCr球形粉末。同理,将混合均匀的Mg粉、Li粉与Zn粉制备成MgLiZn球形粉末,用于NiTiCr材料固体润滑相;将混合均匀的Pb粉、Sn粉、Ag粉、Cu粉及纳米粒子Al2O3制备成PbSnAgCu-Al2O3球形粉末,用于NiTiCr-MgLiZn复合材料润滑调控剂;
步骤S3:利用激光熔融沉积技术将步骤S2中制备的NiTiCr和MgLiZn球形粉末制备成具有正余弦孔结构的NiTiCr-MgLiZn自润滑复合材料;
步骤S4:利用真空-压力熔渗将步骤S2中制备的PbSnAgCu-Al2O3球形粉末填充于正余弦孔结构中,获得一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料。润滑调控剂PbSnAgCu-Al2O3在正余弦孔结构中填充率为90-95%。
步骤S2真空-气雾化熔炼温度为1100-1700℃,真空度为4.1-5.7×10-2Pa,保护气体为氩气,冷却液为超纯水,分别得到三种NiTiCr、MgLiZn和PbSnAgCu-Al2O3球形粉末。
步骤S3中激光熔融沉积正余弦孔结构NiTiCr-MgLiZn自润滑复合材料,激光器线扫描速率为1100-1500mm/s,激光功率为210-260W,层厚为25-40μm,送粉率为5-10g/min,扫描方式为线扫描,填充间距为0.06μm;
步骤S4中真空-压力熔渗炉保护气体为氩气,施加压力为0.6-0.8Mpa,温度控制在600-900℃,加热功率为90-125kW。
步骤S1中称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米Al2O3的粉末总质量50克。与现有技术相比,本发明的有益效果是:
1、本发明采用真空气雾化技术制备NiTiCr、MgLiZn及PbSnAgCu-Al2O3球形粉末,粉末纯度高、球形度好,尺寸分布均匀,含氧量低与粉末粒度细等。
2、激光熔融沉积正余弦孔结构NiTiCr-MgLiZn自润滑复合材料,制备出的正余弦孔结构、孔径尺寸均匀、孔间间距合理、材料组织结构致密、力学性能优异、机械物理化学性能稳定,孔及孔间贯通性好,调控剂填充量高。
3、真空-压力熔渗PbSnAgCu-Al2O3于正余弦孔中,制备出一种具有自我调控能力的NiTiCr基自润滑复合材料。PbSnAgCu-Al2O3优异的润滑调控使NiTiCr材料在极端复杂工况及工况突变下仍然起到优异的润滑性能。
4、本发明涉及到一种NiTiCr基复合材料制备方法工艺简单,制备过程周期短,效率高且能耗低,工艺参数稳定、操作简单且易于控制。
5、本发明制备的一种以PbSnAgCu-Al2O3为调控剂的NiTiCr-MgLiZn自润滑复合材料纯度高、致密性好,摩擦学性能优异等,具有很高的工业价值。
附图说明
图1是一种以PbSnAgCu-Al2O3为润滑调控剂NiTiCr-MgLiZn自润滑复合材料的制备工艺流程图。
图2是本发明实施例1所制备的MgLiZn球形粉末1500倍电镜形貌图。
图3是本发明实施例1所制备的正余弦孔结构NiTiCr-MgLiZn自润滑复合材微观结构图。
图4是本发明实施例2真空-压力熔渗PbSnAgCu-Al2O3润滑调控剂孔中填充状态100倍形貌图。
图5是本发明实施例2一种以PbSnAgCu-Al2O3为调控剂的NiTiCr-MgLiZn自润滑复合材料的断面组织结构2000倍场发射形貌图。
图6与图7为本发明实施例1、2、3制备的一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料摩擦系数与磨损率曲线图。
图8是本发明实施例3以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料的200倍磨痕电子探针形貌图。
图9是本发明实施例3制备的一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料的摩擦磨损表面4000倍场发射扫描电镜图。
具体实施方式
为了更好地理解本发明,以下结合附图和实施例进一步对本发明进行说明,但本发明不仅仅局限于下面的实施例。
实施例1
一种具有自我调控功能的NiTiCr-MgLiZn复合材料,基体NiTiCr与固体润滑相MgLiZn质量比(wt.%)为1:0.1;润滑相MgLiZn中Mg:Li:Zn原子比(at.%)为52:39:2;NiTiCr基体材料中Ni:Ti:Cr原子比(at.%)为48:24:20。PbSnAgCu-Al2O3调控剂与NiTiCr-MgLiZn复合材料质量比(wt.%)为10:60。PbSnAgCu-Al2O3润滑调控剂中PbSnAgCu:Al2O3质量比(wt.%)为1:1。PbSnAgCu调控剂Pb:Sn:Ag:Cu原子比(at.%)为45:24:15:1;Al2O3纳米粒子增强剂Al:O原子比(at.%)为2:3。
上述一种以PbSnAgCu-Al2O3为润滑行为调控剂的NiTiCr-MgLiZn自润滑复合材料制备工艺工艺流程如图1所示,更为具体的工艺步骤可概括如下:
步骤S1:按照一定比例称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米粒子Al2O3粉末总质量50克;利用振动混料机对称取的粉末进行均匀化处理,振动频率为30Hz,振动力为10000N,振动时间为55min;
步骤S2:将Ni粉、Ti粉、Cr粉充分混合形成NiTiCr原始配料,利用真空-气雾化技术将混合均匀NiTiCr原始配料制备成可用于激光熔融沉积的NiTiCr球形粉末。将混合均匀的Mg粉、Li粉与Zn粉制备成MgLiZn球形粉末,用于NiTiCr材料固体润滑相。图2所示本发明实施例1所制备的MgLiZn球形粉末1500倍电镜形貌图。同理,将混合均匀的Pb粉、Sn粉、Ag粉、Cu粉与纳米粒子Al2O3粉末制备成PbSnAgCu-Al2O3球形粉末,用于NiTiCr-MgLiZn复合材料润滑调控剂;真空-气雾化熔炼温度为1100℃,真空度为4.1×10-2Pa,保护气体为氩气,冷却液为超纯水,得到三种NiTiCr、MgLiZn和PbSnAgCu-Al2O3球形粉末;
步骤S3:利用激光熔融沉积技术将步骤S2中制备的NiTiCr和MgLiZn球形粉末制备成具有正余弦孔结构的NiTiCr-MgLiZn自润滑复合材料;激光器线扫描速率为1100mm/s,激光功率为210W,层厚为25μm,送粉率为5g/min,扫描方式为线扫描,填充间距为0.06μm;图3所示为本发明实施例1所制备的正余弦孔结构NiTiCr-MgLiZn自润滑复合材微观结构图。
步骤S4:利用真空-压力熔渗将步骤S2中制备的PbSnAgCu-Al2O3球形粉末填充于步骤S3制备正余弦曲式孔中,获得一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料。真空-压力熔渗施加压力为0.6Mpa,温度控制在600℃,加热功率在90kW。实验结果表明,固体润滑调控剂PbSnAgCu-Al2O3在正余弦孔结构中填充率为90%。
经HVS-1000型数显显微硬度仪测试,本实施例所制备的以PbSnAgCu-Al2O3为润滑调控剂NiTiCr-MgLiZn自润滑复合材料硬度为6.4GPa,密度为5.32g/cm3。由图6和图7可知,NiTiCr基自润滑复合材料摩擦系数低(约0.31)且波动幅度较小,磨损率小,约为2.46×10- 5mm3/(Nm)。小的摩擦系数与低的磨损率表明NiTiCr基自润滑复合材料具有优良的摩擦磨损性能。
实施例2
一种具有自我调控功能的NiTiCr-MgLiZn复合材料,基体NiTiCr与固体润滑相MgLiZn质量比(wt.%)为1:0.3;润滑相MgLiZn中Mg:Li:Zn原子比(at.%)为52:39:6。NiTiCr基体材料中Ni:Ti:Cr原子比(at.%)为48:24:23。PbSnAgCu-Al2O3调控剂与NiTiCr-MgLiZn复合材料质量比(wt.%)为30:60。PbSnAgCu-Al2O3润滑调控剂中PbSnAgCu:Al2O3质量比(wt.%)为0.95:1。其中,PbSnAgCu调控剂中Pb:Sn:Ag:Cu原子比(at.%)为45:24:15:9;Al2O3纳米粒子增强剂中Al:O原子比(at.%)为2:3。
上述一种以PbSnAgCu-Al2O3为润滑行为调控剂的NiTiCr-MgLiZn自润滑复合材料制备方法,更为具体的步骤如下:
步骤S1:按照一定比例称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米粒子Al2O3粉末总质量50克;利用振动混料机对称取的粉末进行均匀化处理,振动频率为37Hz,振动力为11000N,振动时间为60min;
步骤S2:将Ni粉、Ti粉、Cr粉充分混合形成NiTiCr原始配料,利用真空-气雾化技术将混合均匀NiTiCr原始配料制备成可用于激光熔融沉积的NiTiCr球形粉末。将混合均匀的Mg粉、Li粉与Zn粉制备成MgLiZn球形粉末,用于NiTiCr材料固体润滑相;将混合均匀的Pb粉、Sn粉、Ag粉、Cu粉与纳米粒子Al2O3粉末制备成PbSnAgCu-Al2O3球形粉末,用于NiTiCr-MgLiZn复合材料润滑调控剂;真空-气雾化熔炼温度为1300℃,真空度为4.9×10-2Pa,保护气体为氩气,冷却液为超纯水,得到NiTiCr、MgLiZn和PbSnAgCu-Al2O3球形粉末;
步骤S3:利用激光熔融沉积技术将步骤S2中制备的NiTiCr和MgLiZn球形粉末制备成具有正余弦孔结构的NiTiCr-MgLiZn自润滑复合材料;激光器线扫描速率为1200mm/s,激光功率为240W,层厚为35μm,送粉率为7.5g/min,扫描方式为线扫描,填充间距为0.06μm;
步骤S4:利用真空-压力熔渗将步骤S2中制备的PbSnAgCu-Al2O3球形粉末填充于步骤S3制备正余弦曲式孔中,获得一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料。真空-压力熔渗,制备时施加压力为0.7Mpa,温度控制在800℃,加热功率在115kW。图4所示为本发明实施例2真空-压力熔渗PbSnAgCu-Al2O3润滑调控剂孔中填充状态100倍形貌图;如图4所示的实验结果可知,润滑调控剂PbSnAgCu-Al2O3在正余弦孔中填充率为93%。
图5是本发明实施例2一种以PbSnAgCu-Al2O3为调控剂的NiTiCr-MgLiZn自润滑复合材料的断面组织结构2000倍场发射形貌图。如图5所示,经HVS-1000型数显显微硬度仪对实施例2样品进行硬度测试。结果表明,以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料平均硬度为6.47GPa,平均密度为5.53g/cm3。由图6和图7所示的摩擦系数和磨损率可知,NiTiCr基自润滑复合材料摩擦系数低(约0.19)且波动幅度较小,磨损率小(2.21×10-5mm3/(Nm))。这表明实施例2所制备的复合材料在极端环境下具有杰出的润滑行为性能。
实施例3
一种具有自我调控功能的NiTiCr-MgLiZn复合材料,基体NiTiCr与固体润滑相MgLiZn质量比(wt.%)为1:0.4;润滑相MgLiZn中Mg:Li:Zn原子比(at.%)为52:39:9。NiTiCr基体材料中Ni:Ti:Cr原子比(at.%)为48:24:25。PbSnAgCu-Al2O3调控剂与NiTiCr-MgLiZn复合材料质量比(wt.%)为40:60。PbSnAgCu-Al2O3润滑调控剂中PbSnAgCu:Al2O3质量比(wt.%)为9:1。PbSnAgCu调控剂中Pb:Sn:Ag:Cu原子比(at.%)为45:24:15:12;Al2O3纳米粒子增强剂中Al:O原子比(at.%)为2:3。
上述一种以PbSnAgCu-Al2O3为润滑行为调控剂的NiTiCr-MgLiZn自润滑复合材料制备方法,更为具体的步骤如下:
步骤S1:按照一定比例称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米粒子Al2O3粉末总质量50克;利用振动混料机对称取的粉末进行均匀化处理,振动频率为45Hz,振动力为12000N,振动时间为65min;
步骤S2:将Ni粉、Ti粉、Cr粉充分混合形成NiTiCr原始配料,利用真空-气雾化技术将混合均匀NiTiCr原始配料制备成可用于激光熔融沉积的NiTiCr球形粉末。将混合均匀的Mg粉、Li粉与Zn粉制备成MgLiZn球形粉末,用于NiTiCr材料固体润滑相;将混合均匀的Pb粉、Sn粉、Ag粉、Cu粉与纳米粒子Al2O3粉末制备成PbSnAgCu-Al2O3球形粉末,用于NiTiCr-MgLiZn复合材料润滑调控剂;气雾化熔炼温度为1700℃,真空度为5.7×10-2Pa,保护气体为氩气,冷却液为超纯水,得到三种NiTiCr、MgLiZn和PbSnAgCu-Al2O3球形粉末;
步骤S3:利用激光熔融沉积技术将步骤S2中制备的NiTiCr和MgLiZn球形粉末制备成具有正余弦孔结构的NiTiCr-MgLiZn自润滑复合材料;激光器线扫描速率为1500mm/s,激光功率为260W,层厚为40μm,送粉率为10g/min,扫描方式为线扫描,填充间距为0.06μm;
步骤S4:利用真空-压力熔渗将步骤S2中制备的PbSnAgCu-Al2O3球形粉末填充于步骤S3制备正余弦曲式孔中,获得一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料。真空-压力熔渗,制备时施加压力为0.8Mpa,温度控制在900℃,加热功率在125kW。实验结果表明,固体润滑调控剂PbSnAgCu-Al2O3在正余弦孔结构中填充率为95%。
经过HVS-1000型数显显微硬度仪测试,得到一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料硬度为6.52GPa,平均密度5.49g/cm3。利用球盘式摩擦磨损试验机对本实施例3的样品进行摩擦学性能测试。图8所示为本发明实施例3以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料的200倍磨痕电子探针形貌图。图9所示为本发明实施例3制备的一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料的摩擦磨损表面4000倍场发射扫描电镜图。结合图6和图7所示的摩擦系数和磨损率可知,光滑的磨痕与良好的塑性变形有利于NiTiCr-MgLiZn自润滑复合材料获得小的摩擦系数(0.24)与低的磨损率(2.32×10-5mm3/(Nm))。这表明在实施例3中用PbSnAgCu-Al2O3对NiTiCr-MgLiZn自润滑复合材料的润滑行为进行调控,能够实现良好的润滑,且在极端服役工况下NiTiCr-MgLiZn复合材料仍能获得杰出的摩擦磨损性能。

Claims (7)

1.一种具有自我调控功能的NiTiCr-MgLiZn复合材料,其特征在于:包括固体润滑相MgLiZn、基体材料NiTiCr与润滑调控剂PbSnAgCu-Al2O3,利用真空-气雾化技术将Ni、Ti与Cr粉末制备成NiTiCr球形粉末,充当基体材料原始粉末;将Mg、Li与Zn粉末制备成MgLiZn固体润滑相;将Pb、Sn、Ag、Cu粉末与纳米Al2O3制备成润滑调控剂PbSnAgCu-Al2O3;
激光熔融沉积正余弦孔结构NiTiCr-MgLiZn自润滑复合材料;真空-压力熔渗PbSnAgCu-Al2O3于正余弦孔中,制备出一种具有自我调控能力的NiTiCr基自润滑复合材料。
2.如权利要求1所述的具有自我调控功能的NiTiCr-MgLiZn复合材料,其特征在于:基体NiTiCr与固体润滑相MgLiZn质量比wt.%为1:0.1-0.4,MgLiZn固体润滑相中Mg:Li:Zn原子比at.%为52:39:2-9,NiTiCr基体材料Ni:Ti:Cr原子比at.%为48:24:20-25,润滑调控剂PbSnAgCu-Al2O3与NiTiCr-MgLiZn复合材料质量比wt.%为10-40:60,调控剂PbSnAgCu:Al2O3质量比(wt.%)为1-9:1,PbSnAgCu膨胀剂Pb:Sn:Ag:Cu原子比at.%为45:24:15:1-12;Al2O3纳米粒子增强剂Al:O原子比at.%为2:3。
3.如权利要求2所述的具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,其特征在于:它主要包括以下几个步骤:
步骤S1:按照权利要求2中的上述比例称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米Al2O3;利用振动混料机对称取的粉末进行均匀化处理,振动频率为30-45Hz,振动力为10000-12000N,振动时间为55-65min;
步骤S2:将Ni粉、Ti粉、Cr粉充分混合后用于NiTiCr原始配料,利用真空-气雾化技术将混合均匀的NiTiCr原始配料制备成可用于激光熔融沉积NiTiCr球形粉末,同理,将混合均匀的Mg粉、Li粉与Zn粉制备成MgLiZn球形粉末,用于NiTiCr材料固体润滑相;将混合均匀的Pb粉、Sn粉、Ag粉、Cu粉及纳米粒子Al2O3制备成PbSnAgCu-Al2O3球形粉末,用于NiTiCr-MgLiZn复合材料润滑调控剂;
步骤S3:利用激光熔融沉积技术将步骤S2中制备的NiTiCr和MgLiZn球形粉末制备成具有正余弦孔结构的NiTiCr-MgLiZn自润滑复合材料;
步骤S4:利用真空-压力熔渗将步骤S2中制备的PbSnAgCu-Al2O3球形粉末填充于正余弦孔结构中,获得一种以PbSnAgCu-Al2O3为润滑调控剂的NiTiCr-MgLiZn自润滑复合材料,润滑调控剂PbSnAgCu-Al2O3在正余弦孔结构中填充率为90-95%。
4.如权利要求3所述的具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,其特征在于:步骤S2真空-气雾化熔炼温度为1100-1700℃,真空度为4.1-5.7×10-2Pa,保护气体为氩气,冷却液为超纯水,分别得到三种NiTiCr、MgLiZn和PbSnAgCu-Al2O3球形粉末。
5.如权利要求3所述的具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,其特征在于步骤S3中激光熔融沉积正余弦孔结构NiTiCr-MgLiZn自润滑复合材料,激光器线扫描速率为1100-1500mm/s,激光功率为210-260W,层厚为25-40μm,送粉率为5-10g/min,扫描方式为线扫描,填充间距为0.06μm。
6.如权利要求3所述的具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,其特征在于:步骤S4中真空-压力熔渗炉保护气体为氩气,施加压力为0.6-0.8Mpa,温度控制在600-900℃,加热功率为90-125kW。
7.如权利要求3所述的具有自我调控功能的NiTiCr-MgLiZn复合材料的制备方法,其特征在于:步骤S1中称取Ni粉、Ti粉、Cr粉、Mg粉、Li粉、Zn粉、Pb粉、Sn粉、Ag粉、Cu粉和纳米Al2O3的粉末总质量50克。
CN201811510816.3A 2018-12-11 2018-12-11 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法 Withdrawn CN109604620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811510816.3A CN109604620A (zh) 2018-12-11 2018-12-11 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811510816.3A CN109604620A (zh) 2018-12-11 2018-12-11 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109604620A true CN109604620A (zh) 2019-04-12

Family

ID=66007863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811510816.3A Withdrawn CN109604620A (zh) 2018-12-11 2018-12-11 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109604620A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315065A (zh) * 2019-07-19 2019-10-11 安阳工学院 一种TiCoMoNb基轴瓦润滑自调控复合材料及制备方法
CN110923541A (zh) * 2019-12-09 2020-03-27 湖北文理学院 一种NiTiCrCuMo基自润滑复合材料及其制备方法
CN111575570A (zh) * 2020-05-08 2020-08-25 安阳工学院 一种以LiPbAg-BC为调控剂具有自润滑特性与润滑自调控功能材料的制备方法
CN114086218A (zh) * 2021-10-29 2022-02-25 昆明理工恒达科技股份有限公司 锌电积用节能高强度耐腐蚀性阴极铝合金板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320495A (ja) * 1991-04-18 1992-11-11 Nippon Steel Corp 自己潤滑性複合材料及びその製造方法
CN106801194A (zh) * 2017-03-24 2017-06-06 武汉理工大学 一种以Ti3SiC2为润滑相的M50基自润滑复合材料及其制备方法
CN106834808A (zh) * 2017-02-17 2017-06-13 武汉理工大学 一种Ni3Al基自润滑材料及其制备方法
CN106825546A (zh) * 2017-02-20 2017-06-13 武汉理工大学 一种M50‑Ag‑TiC自润滑复合材料及其制备方法
CN106929709A (zh) * 2017-03-22 2017-07-07 武汉理工大学 一种激光熔融沉积Ni3Al基自润滑材料及制备方法
CN107022690A (zh) * 2017-05-03 2017-08-08 合肥工业大学 一种通过压力浸渗铝合金制备铝/碳基复合材料的方法
CN107338434A (zh) * 2016-11-22 2017-11-10 国营芜湖机械厂 激光熔覆原位自生高温自润滑耐磨复合涂层及其制备方法
CN107475710A (zh) * 2017-08-08 2017-12-15 武汉理工大学 一种多层结构的Ni3Al基自润滑材料及其制备方法
CN108188393A (zh) * 2017-12-29 2018-06-22 武汉理工大学 一种双层结构tc4基钛合金自润滑材料及其制备方法
CN108707894A (zh) * 2018-06-09 2018-10-26 沈阳工业大学 一种激光熔覆自润滑耐磨钴基合金所用粉料及工艺方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320495A (ja) * 1991-04-18 1992-11-11 Nippon Steel Corp 自己潤滑性複合材料及びその製造方法
CN107338434A (zh) * 2016-11-22 2017-11-10 国营芜湖机械厂 激光熔覆原位自生高温自润滑耐磨复合涂层及其制备方法
CN106834808A (zh) * 2017-02-17 2017-06-13 武汉理工大学 一种Ni3Al基自润滑材料及其制备方法
CN106825546A (zh) * 2017-02-20 2017-06-13 武汉理工大学 一种M50‑Ag‑TiC自润滑复合材料及其制备方法
CN106929709A (zh) * 2017-03-22 2017-07-07 武汉理工大学 一种激光熔融沉积Ni3Al基自润滑材料及制备方法
CN106801194A (zh) * 2017-03-24 2017-06-06 武汉理工大学 一种以Ti3SiC2为润滑相的M50基自润滑复合材料及其制备方法
CN107022690A (zh) * 2017-05-03 2017-08-08 合肥工业大学 一种通过压力浸渗铝合金制备铝/碳基复合材料的方法
CN107475710A (zh) * 2017-08-08 2017-12-15 武汉理工大学 一种多层结构的Ni3Al基自润滑材料及其制备方法
CN108188393A (zh) * 2017-12-29 2018-06-22 武汉理工大学 一种双层结构tc4基钛合金自润滑材料及其制备方法
CN108707894A (zh) * 2018-06-09 2018-10-26 沈阳工业大学 一种激光熔覆自润滑耐磨钴基合金所用粉料及工艺方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISOMAKI, I 等: "Thermodynamic assessment of the ternary Ni-Ti-Cr system", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
王海斗等: "《固体润滑膜层技术与应用》", 31 March 2009, 国防工业出版社 *
韩彬等: "激光熔覆-离子渗硫层干摩擦学性能", 《材料热处理学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315065A (zh) * 2019-07-19 2019-10-11 安阳工学院 一种TiCoMoNb基轴瓦润滑自调控复合材料及制备方法
CN110923541A (zh) * 2019-12-09 2020-03-27 湖北文理学院 一种NiTiCrCuMo基自润滑复合材料及其制备方法
CN111575570A (zh) * 2020-05-08 2020-08-25 安阳工学院 一种以LiPbAg-BC为调控剂具有自润滑特性与润滑自调控功能材料的制备方法
CN111575570B (zh) * 2020-05-08 2021-10-22 安阳工学院 一种以LiPbAg-BC为调控剂具有自润滑特性与润滑自调控功能材料的制备方法
CN114086218A (zh) * 2021-10-29 2022-02-25 昆明理工恒达科技股份有限公司 锌电积用节能高强度耐腐蚀性阴极铝合金板
CN114086218B (zh) * 2021-10-29 2023-09-19 昆明理工恒达科技股份有限公司 锌电积用节能高强度耐腐蚀性阴极铝合金板

Similar Documents

Publication Publication Date Title
CN109604620A (zh) 一种具有自我调控功能的NiTiCr-MgLiZn复合材料及其制备方法
Kavimani et al. Experimental investigations on wear and friction behaviour of SiC@ r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy
Erdoğan et al. Analysis of the high-temperature dry sliding behavior of CoCrFeNiTi 0.5 Al x high-entropy alloys
Agarwala et al. Electroless alloy/composite coatings: A review
Lu et al. Effects of annealing on laser clad Ti2SC/CrS self-lubricating anti-wear composite coatings on Ti6Al4V alloy: Microstructure and tribology
Premnath et al. The influence of alumina on mechanical and tribological characteristics of graphite particle reinforced hybrid Al-MMC
Peruzzo et al. Reciprocating sliding wear of the sintered 316L stainless steel with boron additions
Hassan et al. Improvement ductility and corrosion resistance of CoCrFeNi and AlCoCrFeNi HEAs by electroless copper technique
Ragab et al. Influence of SiC, SiO2 and graphite on corrosive wear of bronze composites subjected to acid rain
Duan et al. Study on the formation mechanism of the glaze film formed on Ni/Ag composites
Alagarsamy et al. EVALUATION OF MICROHARDNESS AND OPTIMIZATION OF DRY SLIDING WEAR PARAMETERS ON AA7075 (Al-Zn-Mg-Cu) MATRIX COMPOSITES.
CN1727515A (zh) 粉冶零件的水蒸汽氧化
Wu et al. A review on the tribological performances of High‐Entropy Alloys
Zhen et al. Influence of Mo and Al elements on the vacuum high temperature tribological behavior of high strength nickel alloy matrix composites
Turgut et al. Mechanical properties and corrosion resistance of borosintered distaloy steels
Nguyen et al. Microstructure, mechanical and tribological properties of Al0. 3CrFeNiTi0. 3-CaF2/BaF2 self-lubricating composite fabricated by spark plasma sintering
Yu et al. Microstructural and tribological characteristics of in situ induced chrome carbide strengthened CoCrFeMnNi high-entropy alloys
Wu et al. Wear characteristics of Fe-based diamond composites with cerium oxide (CeO2) reinforcements
Li et al. Investigation of single-particle erosion behavior of electroless Ni-P-Ti composite coatings
Yang et al. Dry sliding wear behavior of additively manufactured CoCrWNixAly alloys
Wang et al. Effect of MoS2 content on microstructure and properties of supersonic plasma sprayed Fe-based composite coatings
Gao et al. Study on the oxidation behaviours and the interactions between friction and oxidation of the Ni-based composites with in-situ carbides reinforcement at 800℃
Hua et al. Enhancing high-temperature fretting wear resistance of TC21 titanium alloys by laser cladding self-lubricating composite coatings
Koria et al. Reinforcement of micro and nano material with aluminum alloy (Al7075) metal matrix composite: A review
Kumar et al. Wear and corrosion behavior of high entropy alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190412