CN109599635A - 车载电池的温度调节方法和温度调节系统 - Google Patents

车载电池的温度调节方法和温度调节系统 Download PDF

Info

Publication number
CN109599635A
CN109599635A CN201710945825.4A CN201710945825A CN109599635A CN 109599635 A CN109599635 A CN 109599635A CN 201710945825 A CN201710945825 A CN 201710945825A CN 109599635 A CN109599635 A CN 109599635A
Authority
CN
China
Prior art keywords
battery
temperature
heat exchange
semiconductor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710945825.4A
Other languages
English (en)
Other versions
CN109599635B (zh
Inventor
伍星驰
谈际刚
王洪军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201710945825.4A priority Critical patent/CN109599635B/zh
Publication of CN109599635A publication Critical patent/CN109599635A/zh
Application granted granted Critical
Publication of CN109599635B publication Critical patent/CN109599635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种车载电池的温度调节方法和温度调节系统,车载电池温度调节系统包括半导体换热模块;多个电池热管理模块,多个电池热管理模块可选择的与半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;与多个电池热管理模块一一对应的多个换热器,换热器与对应地电池热管理模块可选择的导通形成第二换热流路;车载空调,车载空调用于对所述多个换热器进行换热;控制器,与半导体换热模块、多个电池热管理模块及车载空调连接。该系统可以在多个电池之间的温度差较大时,通过半导体换热模块对多个电池的温度进行均,从而可以提高电池的循环寿命。

Description

车载电池的温度调节方法和温度调节系统
技术领域
本发明涉及汽车技术领域,特别涉及一种车载电池的温度调节方法、一种非临时性计算机可读存储介质和一种车载电池的温度调节系统。
背景技术
目前,电动汽车中车载电池系统可能包括多个电池,各个电池之间由于布置位置不同,或者是由于电池的温度调节系统提供给每个电池的加热/冷功率却不均,导致各个电池之间的温度存在较大差异,电池的温度一致性较差,进而会导致电池循环寿命降低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种车载电池的温度调节系统,该方系统法可以在多个电池之间的温度差较大时,通过半导体换热模块对多个电池的温度进行均,从而可以提高电池的循环寿命。
本发明的第二个目的在于提出一种车载电池的温度调节方法。
本发明的第三个目的在于提出一种非临时性计算机可读存储介质。
为达到上述目的,本发明第一方面实施例提出了一种车载电池的温度调节系统,包括:半导体换热模块,具有发热端及冷却端用以提供加热功率/冷却功率;多个电池热管理模块,所述多个电池热管理模块可选择的与所述半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;
与所述多个电池热管理模块一一对应的多个换热器,所述换热器与对应地所述电池热管理模块可选择的导通形成第二换热流路;车载空调,所述车载空调用于对所述多个换热器进行换热;控制器,与所述半导体换热模块、所述多个电池热管理模块及所述车载空调连接。
根据本发明实施例的车载电池的温度调节系统,通过控制器获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,以及在多个电池之间的温度差大于预设温度阈值时,对多个电池的温度进行均衡。由此,该系统可以在多个电池之间的温度差较大时,通过半导体换热模块对多个电池的温度进行均,从而可以提高电池的循环寿命。
为达到上述目的,本发明第二方面实施例提出了一种车载电池的温度调节方法,车载电池温度调节系统包括:半导体换热模块,具有发热端及冷却端用以提供加热功率/冷却功率;多个电池热管理模块,所述多个电池热管理模块可选择的与所述半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;与所述多个电池热管理模块一一对应的多个换热器,所述换热器与对应地所述电池热管理模块可选择的导通形成第二换热流路;车载空调,所述车载空调用于对所述多个换热器进行换热;控制器,与所述半导体换热模块、所述多个电池热管理模块及所述车载空调连接,所述方法包括以下步骤:获取所述多个电池的温度;判断所述多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值;如果所述最大值大于所述预设温度阈值,则通过所述半导体换热模块或所述车载空调对温度差为最大值所对应的所述两个电池的温度进行均衡。根据本发明实施例的车载电池的温度调节方法,首先获取多个电池的温度,然后判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值,如果最大值大于预设温度阈值,则通过半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡。由此,该方法可以在多个电池之间的温度差较大时,通过半导体换热模块对多个电池的温度进行均,从而可以提高电池的循环寿命。
为达到上述目的,本发明第三方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的温度调节方法。
本发明实施例的非临时性计算机可读存储介首先获取多个电池的温度,然后判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值,如果最大值大于预设温度阈值,则通过半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡,从而可以提高电池的循环寿命。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1a-1b是根据本发明一个实施例的车载电池的温度调节系统的方框示意图;
图2是根据本发明一个实施例的车载电池的温度调节系统的控制拓扑图;
图3a-3b是根据本发明另一个实施例的车载电池的温度调节系统的方框示意图;
图4a-4b是根据本发明又一个实施例的车载电池的温度调节系统的方框示意图
图5是根据本发明一个实施例的车载电池的温度调节方法的流程图;
图6是根据本发明另一个实施例的车载电池的温度调节方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来描述本发明实施例提出的车载电池的温度调节方法、非临时性计算机可读存储介质和车载电池的温度调节系统。
图1a-1b是根据本发明一个实施例的车载电池的温度调节系统的结构示意图。如图1a-1b所示,该系统包括多个电池热管理模块、多个换热器、半导体换热模块3、车载空调和控制器(图中未具体示出)。
其中,半导体换热模块3具有发热端及冷却端用以提供加热功率/冷却功率;多个电池热管理模块中的一部分电池热管理模块与半导体换热模块3中的半导体冷却端相连,多个电池热管理模块中多个电池热管理模块可选择的与半导体换热模块3中的冷却端或发热端进行热交换以形成第一换热流路。多个换热器与多个电池热管理模块一一对应,换热器与对应地电池热管理模块可选择的导通形成第二换热流路。车载空调用于对多个换热器进行换热。控制器用于获取多个电池的温度,判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值;如果最大值大于预设温度阈值,则控制半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡。。预设温度阈值可以根据实际情况进行预设,例如可以为8℃。
进一步地,如图1a-1b所示,车载空调包括:与多个换热器一一对应设置的多个风机,多个风机分别通过多个调节阀与空调风出风口相连,风机包括第一风机51和第二风机52,调节阀包括第一调节阀61和第二调节阀62,控制器通过控制调节调节阀的开度对温度差为最大值所对应的两个电池的温度进行均衡。
进一步地,如图1a-1b所示,电池包括第一电池41和第二电池42,电池热管理模块包括第一电池热管理模块11和第二电池热管理模块12,换热器包括第一换热器21和第二换热器22。第一电池热管理模块11的第一端通过第一三通阀71分别与第一换热器21的第一端和半导体换热模块3中半导体发热端的第一端相连,第一电池热管理模块11的第二端通过第二三通阀72分别与第一换热器21的第二端和半导体换热模块3中半导体发热端的第二端相连。
第二电池热管理模块12的第一端通过第三三通阀73分别与第二换热器22的第一端和半导体换热模块3中半导体冷却端的第一端相连,第二电池热管理模块12的第二端通过第四三通阀74分别与第二换热器22的第二端和半导体换热模块3中半导体冷却端的第二端相连。
当第一电池热管理模块11的第二换热流路所对应的第一电池41的温度低于第二电池热管理模块12的第二换热流路所对应的第二电池的温度42时,控制器选择以下任一控制策略:
(1)控制车载空调进入制热模式、第一换热器对应的第一调节阀61开启以及第二换热器22所对应的第二调节阀62关闭,并控制第一三通阀71和第二三通阀72导通第一换热器21、第一电池热管理模块11和半导体换热模块3;
(2)控制车载空调进入制热模式、第一换热器21所对应的第一调节阀61增大开度以及第二换热器22所对应的第二调节阀62减小开度,并控制第一三通阀71和第二三通阀72导通第一换热器21、第一电池热管理模块11和半导体换热模块3,以及控制第三三通阀73和第四三通阀74导通第二换热器22、第二电池热管理模块12和半导体换热模块3;
(3)控制车载空调进入制冷模式、第一换热器21所对应的第一调节阀61关闭以及第二换热器22所对应的第二调节阀62开启,并控制第三三通阀73和第四三通阀74导通第二换热器22、第二电池热管理模块12和半导体换热模块3;
(4)控制车载空调进入制冷模式、第一换热器21所对应的第一调节阀61减小开度以及第二换热器22所对应的第二调节阀62增大开度,并控制第一三通阀71和第二三通阀72导通第一换热器21、第一电池热管理模块11和半导体换热模块3,以及控制第三三通阀73和第四三通阀74导通第二换热器22、第二电池热管理模块12和半导体换热模块3;
当第一电池热管理模块11的第二换热流路所对应的第一电池41的温度高于第二电池热管理模块12的第二换热流路所对应的第二电池42的温度时,选择以下任一控制策略:
1、控制车载空调进入制冷模式、第一换热器21所对应的第一调节阀61开启以及第二换热器22所对应的第二调节阀62关闭,并控制第一三通阀71和第二三通阀72导通第一换热器21、第一电池热管理模块11和半导体换热模块3;
2、控制车载空调进入制冷模式、第一换热器21所对应的第一调节阀61增大开度以及第二换热器22所对应的第二调节阀62减小开度,并控制第一三通阀71和第二三通阀72导通第一换热器、第一电池热管理模块11和半导体换热模块3,以及控制第三三通阀73和第四三通阀74导通所第二换热器22、第二电池热管理模块12和半导体换热模块3;
3、控制车载空调进入制热模式、第一换热器21所对应的第一调节阀61关闭以及第二换热器22所对应的第二调节阀62开启,并控制第三三通阀73和第四三通阀74导通第二换热器22、第二电池热管理模块12和半导体换热模块3;
4、控制车载空调进入制热模式、第一换热器21所对应的第一调节阀61减小开度以及第二换热器22所对应的第二调节阀62增大开度,并控制第一三通阀71和第二三通阀72导通第一换热器21、第一电池热管理模块11和半导体换热模块3,以及控制第三三通阀73和第四三通阀74导通第二换热器22、第二电池热管理模块12和半导体换热模块3。
可以理解,上述的电池包括第一电池41和第二电池42仅为示例性的,电池也可以为两个以上。当然,电池无论为两个还是两个以上,本领域技术人员都可很容易根据本发明理解温度调节系统的工作原理,在本发明中仅以包括第一电池41和第二电池42为例进行描述,旨在用于解释本发明,而不能理解为对本发明的限制。
进一步地,控制器可以通过控制半导体换热模块3供电方向以将温度低的电池与半导体换热模块3中的半导体发热端相连,并将温度高的电池与半导体换热模块中2的半导体冷却端相连,控制器还用以根据多个电池之间的温度差和均衡需求目标时间t生成均衡需求功率P3,半导体换热模块3还用于根据均衡需求功率P3对多个电池的温度进行均衡。目标时间t可以根据实际情况进行预设,例如,可以为1小时。
可以理解,电池指安装在车辆上,为车辆提供动力输出以及为车辆上的其它用电设备提供电的储能设备,可进行反复充电。电池可以为电池包或者电池模组。
具体地,均衡需求功率P3即将多个电池之间的温度差调节至预设范围内,例如3℃以内时,所需要的加热功率/冷却功率。半导体换热模块3具有半导体发热端和半导体冷却端,当供电电源反接后,发热端和冷却端位置交换。图1a为半导体换热模块3正向供电温度调节系统的示意图,图1b为半导体换热模块反向供电温度调节系统的示意图。
如图2所示,控制器可以包括电池管理器、电池热管理控制器、车载空调控制器和半导体控制器。电池管理器可以与半导体控制器进行CAN(Controller Area Network,控制器局域网络)通信。电池管理器用于对电池3进行管理,可以检测每个电池的电压、电流、温度等信息,当电池之间的温度差异超过预设温度阈值时,电池管理器发送电池温度均衡功能启动信息至车载空调控制器,当电池之间的温度差异满足要求,例如电池之间的温度差异小于3℃时,发出电池温度均衡完成信息至车载空调控制器。电池管理器还可以根据当前电池温度和电流参数,并根据一段时间之内的平均电流估算动力电池的发热参数,同时可以根据当前多个电池之间的温度差以及目标时间,估算均衡需求功率P3,并把均衡需求功率P3发送给车载空调控制器。
车载空调控制器可以与半导体控制器和电池热管理控制器进行CAN通信,车载空调控制器可以在接收到电池管理器发送电池温度均衡功能启动信息和均衡需求功率P3转发给半导体控制器和电池热管理控制器。半导体控制器可以与车载空调控制器和电池热管理控制器进行进行CAN通信,以便确定是否需要开启电池温度均衡功能,半导体控制器可以对半导体换热模块3的供电方向和功率进行控制。当两个电池之间存在较大温差时,例如温差超过8℃,那么,半导体控制器控制器半导体换热模块3进入电池温度均衡工作模式。半导体换热模块3的冷却端接入温度较高的电池的换热流路,发热端接入到温度较低的电池的换热流路中,以对温度较高的电池进行冷却,对温度较低的电池进行加热,使得温度较高的电池与温度较低电池之间进行热量交换,半导体换热模块3提高了电池之间的换热速率。例如,图1a所示为第一电池41的温度较低,第二电池42的温度较高;图1b所示为第一电池41的温度较高,第二电池42的温度较低。通过改变半导体换热模块3的供电方向,即可完成电池的温度均衡。换热流路中的介质直接流入半导体换热模块3,也可提高换热效率。在对电池进行加热/冷却的过程中,半导体控制器还可以实时根据均衡需求功率P3调节半导体换热模块3的加热功率/冷却功率,以在目标时间内完成电池的温度均衡。
均衡需求功率P3包括加热需求功率P3a和冷却需求功率P3b,两个电池之间的质量、内阻和电流相同时,当对电池进行冷却时,电池管理器可以根据公式:生成均冷却需求功率P3b;当对电池进行加热时,电池管理器可以根据公式:生成加热需求功率P3a。其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M为电池的质量,I为电池的电流,R为电池的内阻。
当两个电池的质量、电流和内阻不相等时,以电池1温度较低,电池2温度较高,电池1需要加热,电池2需要冷却为例,电池管理器可以根据以下公式(1)计算加热需求功率P3a和并根据公式(2)计算冷却需求功率P3b:
其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M1为第一电池的质量,M2为第二电池的质量,I1为第一电池的电流,I2为第二电池的质量,R1为第一电的内阻,R2为第二电池的内阻,第一电池41的温度变化为第二电池42的温度变化为:
上述公式的控制方法中把电池的电流产热完全抵消,所以在整个电池温度均衡过程中,温度较高的电池温度不会上升,但是均衡的需求功率更高。
下面的介绍另一种调节方式,即只考虑尽快减少电池之间的温度差异,并不保证电池的温度是否会上升。这种情况适用于电池温度不是很高,且电池之间的温度差异较大时,没有必要限制电池的温度不升高。具体的计算公式如下:
假设第一电池41的温度高于电第二电池42时,第一电池41需要冷却,第二电池42需要加热,则两个电池之间的电流不同导致的发热功率相差为|I1 2R1-I2 2R2|,电池管理器可以根据以下公式(3)计算加热需求功率P3a和并根据公式(4)计算冷却需求功率P3b:
即P3a=P3b。
其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M1为第一电池的质量,M2为第二电池的质量,I1为第一电池的电流,I2为第二电池的质量,R1为第一电的内阻,R2为第二电池的内阻
当进入电池温度均衡工作模式后,控制器可以根据加热需求功率P3a和冷却需求功率P3b中的较大值对半导体换热模块3的功率进行调节。例如P3a≥P3b,则半导体换热模块3按照加热需求功率P3a运行;如果P3a<P3b,则半导体换热模块3按照冷却需求功率P3b运行。又或者半导体换热模块调整工作功率,如果P1a≥P3b,使得半导体换热模块3可以按照大于加热需求功率P3a的功率运行;如果P3a<P3b,半导体换热模块3按照大于冷却需求功率P3b运行。同时,在电池温度均衡过程中,确保半导体换热模块发热端的加热功率≥P3a,冷却端的冷却功率≥P3b,使得发热端和冷却端均满足温度均衡功率需求。
可以理解,在本发明中,半导体换热模块3功率增大时,可同时增大半导体冷却端的冷却功率和半导体发热端的加热功率。
进一步地,如图1a-1b所示,车载空调可以包括:与多个换热器对应的多个风机,多个风机分别通过多个调节阀与空调风出风口相连,风机包括第一风机51和第二风机52,调节阀包括第一调节阀61和第二调节阀62。
如图1a-1b所示,每个电池热管理模块包括设置在换热流路上的泵102、第一温度传感器104、第二温度传感器105和流速传感器106,泵102、第一温度传感器104、第二温度传感器105和流速传感器106与控制器连接;其中:泵102用于使换热流路中的介质流动;第一温度传感器104用于检测流入车载电池的介质的入口温度;第二温度传感器105用于检测流出车载电池的介质的出口温度;流速传感器106用于检测换热流路中的介质的流速。
如图1a-1b,电池热管理模块还包括设置在换热流路上的介质容器103和加热器101,介质容器103用于存储及向换热流路提供介质。加热器101用以对冷却管道中的介质进行加热,以提供加热功率,在电池温度较低时对电池的温度进行调节。
具体地,换热器(第一换热器21和第二换热器22)、第一调节阀61、第二调节阀62、第一风机51和第二风机52集成在车载空调内部,车载空调可提供制冷功率,如图2所示,车载空调受车载空调控制器控制,车载空调的控制器也可以控制第一调节阀61、第二调节阀62的开通或者关断,且可以对第一调节阀61、第二调节阀62的开度进行调节。第一风机51和第二风机52也受车载空调控制器的控制,风速可调。
当某个电池的温度较高时,例如高于40℃,那么车载电池的温度调节系统进入冷却模式,车载空调、电池热管理模块开始工作。车载空调控制器控制相应的调节阀开启,例如第一电池41的温度高于40℃,那么车载空调控制器控制第一调节阀61开启,第一风机51将车载空调的冷却风吹向第一换热器21,以对第一换热器21中冷却管道中的介质进行冷却,介质再经第一电池热管理模块11对第一电池41进行冷却。车载空调控制器还可通过调节第一调节阀61的开度调节用于冷却电池的冷却功率。同理,车载空调控制器也可对第二电池42进行冷却。
当电池冷却功能启动时,电池冷却分支回路1为:空调出风口—第一调节阀61—第一风机51—第一换热器21。电池冷却分支回路2为:空调风出风口—第二调节阀62—第二风机52—第二换热器22。
根据本发明的一个实施例,控制器还用于获取电池的温度调节实际功率P2和温度调节需求功率P1,以使车载空调根据电池的温度调节实际功率P2和温度调节需求功率P1对制冷功率进行调节。
具体地,控制器还用于检测电池的温度,并在某个电池的温度大于第一温度阈值(例如40℃)时,控制温度调节系统进入冷却模式,以对电池进行冷却;以及在某个电池的温度小于第二温度阈值(例如0℃)时,控制温度调节系统进入加热模式,以对电池进行加热。
在进入冷却模式或加热模式后,控制器还实时获取电池的温度调节需求功率P1和温度调节实际功率P2,其中,温度调节需求功率P1即在目标时间内将电池的温度调节至设定的目标温度,需要提供给电池的功率,电池温度调节实际功率P2即当前对电池进行温度调节时,电池得到的实际功率,目标温度和目标时间为设定值,可以根据车载电池的实际情况进行预设,例如,当对电池进行冷却,目标温度可以设置在35℃左右,当对电池进行加热时,目标温度可以设置为10℃,目标时间可以设定为1小时。控制器可以根据电池的温度调节需求功率P1和温度调节实际功率P2对车载空调的制冷功率或加热器101的加热功率进行调节,以使电池可以在目标时间内完成温度调节,使车载电池的温度维持在预设范围,避免发生由于温度过高或过低影响车载电池性能的情况。
下面结合具体地实施例描述电池热管理模块如何获取电池的温度调节实际功率P2和温度调节需求功率P1。
根据本发明的一个实施例,控制器可以用于分别获取电池开启温度调节时的第一参数,并根据第一参数生成电池的第一温度调节需求功率,以及获取电池在温度调节时的第二参数,并根据第二参数生成电池的第二温度调节需求功率,并根据电池的第一温度调节需求功率和电池的第二温度调节需求功率生成电池的温度调节需求功率P1。
进一步地,根据本发明的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,控制器获取初始温度和目标温度之间的第一温度差ΔT1,并根据第一温度差ΔT1和目标时间t生成第一温度调节需求功率。
更进一步地,控制器通过以下公式(7)生成第一温度调节需求功率:
ΔT1*C*M/t (7),
其中,ΔT1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池4的比热容,M为电池4的质量。
第二参数为电池4在预设时间内的平均电流I,控制器通过以下公式(8)生成第二温度调节需求功率:
I2*R, (8),
其中,I为平均电流,R为电池的内阻。
具体地,可通过电流霍尔传感器检测电池的充放电电流参数,控制器可以根据一段时间内电池的电流参数,估算电池的平均电流。
当对电池进行冷却时,P1=ΔT1*C*M/t+I2*R;当对电池进行加热时,P1=ΔT1*C*M/t-I2*R。
根据本发明的一个实施例,控制器分别根据第一温度传感器104检测的入口温度和第二温度传感器105检测的出口温度生成第二温度差ΔT2,并根据每个电池的第二温度差ΔT2和流速传感器106检测的流速v生成电池的温度调节实际功率P2。
进一步地,根据本发明的一个实施例,通过以下公式生成温度调节实际功率P2:P2=ΔT2*c*m,其中,ΔT2为第二温度差,c为流路中介质的比热容,m为单位时间内流过流路的横截面积的介质质量,其中,m=v*ρ*s,v为介质的流速,ρ为介质的密度,s为流路的横截面积。
具体地,车辆上电后,控制器判断电池是否需要进行温度调节,如果某个电池的温度过高或过低,开启温度调节功能,并发送低转速信息给泵,泵以默认转速(如低转速)开始工作。然后,控制器通过获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(7)可以计算出每个电池的第一温度调节需求功率。同时,控制器获取每个电池在预设时间内的平均电流I,并根据公式(8)可以计算出每个电池的第二温度调节需求功率。然后,控制器根据每个电池的第一温度调节需求功率和第二温度调节需求功率可以计算出温度调节需求功率P1(即将电池的温度在目标时间内调节至目标温度的需求功率),其中,当对电池进行冷却时,P1=ΔT1*C*M/t+I2*R,当对电池进行加热时,P1=ΔT1*C*M/t-I2*R。并且,控制器分别获取第一温度传感器和第二温度传感器检测温度信息,并获取流速传感器检测的流速信息,根据公式P2=ΔT2*c*m可以计算出每个电池的温度调节实际功率P2。
下面结合具体地实施例说明车载空调如何根据电池的温度调节实际功率P2和温度调节需求功率P1对制冷功率进行调节。
具体地,如果有一个电池的温度高于40℃,则温度调节系统冷却功能启动,电池管理器发送电池冷却功能启动信息给车载空调控制器。电池管理器采集当前电池温度和电流参数,并根据一段时间之内的平均电流估算电池的发热参数,根据电池组当前平均温度与电池目标温度之间的差值,以及电池的平均电流估算电池的温度调节需求功率P1,并把电池冷却需求功率发送给车载空调控制器。同时电池管理器发送需要进行冷却的电池的编号。
如果电池管理器检测到第一电池41的温度低于35℃,则电池管理器发送第一电池41冷却完成信息。如果电池管理器检测到第二电池42的温度低于35℃,则电池管理器发送第二电池42的冷却完成信息。如果检测到第一电池41的温度比第二电池42的温度高3℃以上,则电池管理器发送增加第一电池41的冷却功率报文信息。如果第二电池42的温度比第一电池41的温度高3℃以上,则电池管理器发送增加第二电池42的电池冷却功率报文信息。
如果电池管理器检测到2个电池的温度均低于35℃,则电池冷却完成,电池管理器发送电池冷却完成信息给车载空调。如果冷却功能开启1个小时之后,电池的温度仍然高于35℃,则电池管理器增大电池冷却功率需求。
如果有一个电池的温度低于0℃,则温度调节系统加热功能启动。电池管理器采集当前电池温度和电流参数,并根据一段时间之内的平均电流估算电池的发热参数,根据电池实际温度与电池目标温度之间的差值,以及电池的平均电流估算动力电池的温度调节需求功率P1,并将温度调节需求功率P1发送至电池热管理控制器,以使电池热管理控制器根据温度调节需求功率P1控制加热器101进行加热工作。
如果电池管理器检测到第一电池41的温度高于10℃,则电池管理器发送第一电池41加热完成信息。如果电池管理器检测到第二电池42的温度高于10℃,则电池管理器发送第二电池42加热完成信息。如果检测到第一电池41的温度比第二电池4的温度低3℃以上,则电池管理器发送增加第一电池41的电池加热功率报文信息。如果检测到第二电池42的温度比第一电池41的电温度低3℃以上,则电池管理器发送增加第二电池42的加热功率报文信息。
如果电池管理器检测到2个电池的温度均高于10℃,则电池加热完成,电池管理器发送电池加热完成信息给电池管理控制器。如果加热功能开启2个小时之后,仍有电池的温度仍然低于10℃,则电池管理器增大加热器的加热功率。
如果电池的温度在0℃到40℃之间,且第一电池和第二电池42的温度相差超过8℃,则电池管理器发送电池温度均衡功能启动信息。电池管理器采集当前电池之间的温度差异和目标均衡时间,估算电池组所需温度均衡功率,发送电池温度均衡功率需求信息,以使半导体控制器控制半导体换热模块根据电池温度均衡功率需求信息对电池进行温度均衡。在电池温度均衡功能启动过程中,如果电池管理器检测到满足电池加热功能启动条件,则电池管理器退出温度均衡功能,进入电池加热功能。如果电池管理器检测到满足电池冷却功能启动条件,则电池管理器退出温度均衡功能,进入电池冷却功能。如果第一电池41和第二电池42电池平均温度相差小于3℃,则电池管理器发送电池温度均衡功能完成信息。
车载空调得电后,如果车载空调控制器收到电池管理器发送的电池冷却功能启动信息,则电池冷却功能启动,车载空调控制器发送电池冷却功能启动信息给电池热管理控制器和半导体控制器。车载空调控制器接收电池管理器发送的电池的温度调节需求功率P1,并把该信息转发给电池热管理控制器。在电池冷却过程中,车载空调控制器控制第一调节阀61和第二调节阀62开启,同时控制第一风机51和第二风机52开始工作。车载空调控制器接收电池热管理控制器发送的水温信息和电池的温度调节实际功率P2,并把该信息转发给电池管理器和半导体换热模块3。在电池冷却过程中,车载空调控制器对比电池的温度调节需求功率P1和温度调节实际功率P2,如果电池的温度调节实际功率P2小于温度调节需求功率P1,则车载空调控制器控制增大制冷功率,同时加快第一风机51和第二风机52的转速。如果电池管理器检测到第一电池41的温度比第二电池42的温度高3℃以上,则电池管理器发送增加第一电池41的冷却功率报文信息至车载空调,则车载空调控制器根据增加第一电池41的冷却功率报文信息增大第一调节阀61的开度并减小第二调节阀62的开度,使得第一电池41的冷却功率增大,第二电池42的冷却功率减少,从而缩小电池之间的电池温度差异。如果第二电池42的温度比第一电池41的温度高3℃以上,则电池管理器发送增加第二电池42的电池冷却功率报文信息,车载空调控制器根据增加第二电池42的电池冷却功率报文信息增大第二调节阀62的开度并减小第一调节阀61的开度,使得第一电池41的冷却功率减小,第二电池42的冷却功率增加,从而缩小电池之间的电池温度差异。
在电池冷却过程中,如果车载空调控制器接收到电池管理器发送的第一电池41冷却完成信息,则控制第一调节阀61关闭,第一风机51停止工作。如果车载空调控制器接收到电池管理器发送的第二电池冷却完成信息,则控制第二调节阀62关闭,第二风机52停止工作。如果车载空调控制器接收到电池管理器发送的电池冷却完成信息,则转发电池冷却完成信息给电池热管理控制器和半导体控制器,电池冷却完成。
除可通过车载空调为电池提供冷却功率,还可通过半导体换热模块为电池提供冷却功率。
根据本发明的一个实施例,如图1a-1b所示,当对电池进行冷却,且第一电池的温度大于第二电池的温度时,控制器还用于改变半导体换热模块3供电电方向,使半导体换热模块反向供电,控制第一三通阀71和所述第二三通阀71导通、第三三通阀73和第四三通阀74导通,使半导体换热模块的半导体冷却端与第一换热器21相连,半导体换热模块的半导体发热端与第二换热器22相连。如图1b;当对电池进行冷却,且在第二电池的温度大于第一电池的温度时,控制器还用于改变半导体换热模块3供电方向,使半导体换热模块正向供电,控制所述第一三通阀71和第二三通阀72开启,并控制第三三通阀73和第四三通阀74开启,使半导体换热模块的半导体冷却端与第二换热器22相连,使半导体换热模块的半导体发热端与第一换热器21相连,如图1a所示。
具体地,如图1a-1b所示,如果半导体控制器收到车载空调控制器发送的电池冷却功能启动信息,则电池冷却功能启动,半导体控制器发送电池冷却功能启动信息给电池热管理控制器。半导体控制器接收车载空调发送的各个电池的温度调节需求功率P1。半导体控制器接收电池热管理控制器发送的水温信息和各个电池的温度调节实际功率。在电池冷却功能开启过程中,如果半导体控制器接收到电池管理器发送的增加第一电池41的电池冷却功率报文信息,即第一电池41的温度比第二电池42的温度高3℃以上,则半导体控制器控制器半导体换热模块3反向供电,电池热管理控制器控制第一三通阀71和第二三通阀72的通道1和通道2开启,且控制第三三通阀73和第四三通阀74的通道1开启,通道2开启,使得冷却端接入第一电池41的循环回路,加热端接入第二电池42的循环回路。如果半导体控制器接收到电池管理器发送增加第二电池42的冷却功率报文信息,即第二电池42的温度比第一电池41的温度高3℃以上,则半导体控制器控制半导体换热模块3正向供电,电池热管理控制器控制第一三通阀71和第二三通阀72的通道1开启、通道2开启,且控制第三三通阀73和第四三通阀74的通道1和通道2开启,使得冷却端接入第二电池42的循环回路,加热端接入第一电池41的循环回路。如果半导体控制器没有收到上述信息,则切断半导体换热模块的电源。
如果有一个电池的温度低于0℃,则温度调节系统加热功能启动。在对电池进行加热时,除可通过加热器101提供加热功率,还可通过半导体换热模块提供加热功率。
根据本发明的一个实施例,当温度调节系统工作在加热模式,且第一电池的温度小于第二电池的温度时,控制器还用于控制半导体换热模块的供电方向和第一至第四三通阀71-74的通道的开/闭使半导体换热模块的加热端与第一换热器21相连,半导体换热模块的冷却端与第二换热器22相连。当温度调节系统工作在加热模式,且在第二电池的温度小于第一电池的温度时,控制器还用于控制半导体换热模块的供电方向和第一至第四三通阀71-74的通道的开/闭使半导体换热模块的加热端与第二换热器22相连,半导体换热模块的冷却端与第一换热器21相连。
具体地,如果半导体控制器收到车载空调发送的电池加热功能启动信息,则电池加热功能启动,半导体控制器发送电池加热功能启动信息给电池热管理控制器。半导体换控制器接收车载空调发送的电池的温度调节需求功率P1。半导体控制器接收电池热管理控制器发送的水温信息和各个动力电池的温度调节实际功率P2等信息。在电池加热功能开启过程中,如果半导体控制器接收到电池管理器发送增加第一电池41加热功率报文信息,即第一电池41的温度比第二电池4的温度低3℃以上,则控制器控制半导体换热模块3正向供电,第一三通阀71和第二三通阀72的通道1开启、通道2关闭,第三三通阀73和第四三通阀74的通道1开启、通道2关闭,使得半导体换热模块加热端接入第一电池41的循环回路,半导体换热模块冷却端接入第二电池42的循环回路。如果半导体控制器接收到电池管理器发送增加第二电池42加热功率报文信息,则控制器控制半导体换热模块3反向供电,第一三通阀71和第二三通阀72的通道1开启、通道2关闭,第三三通阀73和第四三通阀74的通道1开启、通道2关闭使得半导体换热模块的加热端接入第二电池42的循环回路,半导体换热模块冷却端接入第一电池41的循环回路。如果半导体控制器没有收到上述信息,则切断半导体换热模块电源。
在半导体加热器加热过程中,如果电池的温度调节需求功率P1大于温度调节实际功率P2,则半导体换热模块增大加热功率。
可以理解,在冷却功能启动时,加热器101关闭。在加热功能启动时,加热器101开启,第一电子阀213关闭,第一至第四三通阀71-74的通道2关闭。
又或者如图3a-3b所示,半导体换热模块3还包括第三风机和第四风机,第三风机与半导体换热模块的发热端和冷却端的其中一者相对设置,第四风机与半导体换热模块的发热端和冷却端的另一者相对设置。
电池温度调节系统也可以如图3a-3b所示,当对电池进行冷却,且第一电池的温度大于第二电池的温度时,控制器还用于改变半导体换热模块3供电电源,控制第一至第四三通阀71-74使半导体换热模块的冷却端与第一换热器21相连,同时控制第四风机工作,如图3b所示;当对电池进行冷却,且在第二电池的温度大于第一电池的温度时,控制器还用于改变半导体换热模块3供电电源,控制第一至第四三通阀71-74使半导体换热模块的冷却端与第二换热器22相连,同时控制第三风机工作,如图3a所示。
图1a-1b和图3a-3b的主要区别在于,图3a-3b中增加了换热风机,图1a-1b中的方案,两个电池之间需要同时接入半导体换热模块的其中一端的循环回路中,才可以实现温度均衡,即必须一个电池加热,另一个电池冷却同时进行,图1a-1b可以快速实现电池之间的温度均衡。而图3a-3b所示方案,则可以只通过控制其中一个电池接入到温度均衡回路,另一端通过风机和外部环境进行热交换,即如果第一电池的温度较高,则可以单独将第一电池41接入冷却端,而不必将第二电池42接入到加热回路,图3a-3b的方案可以使得第二电池42更快完成冷却。具体地,如图3a-3b所示,半导体换热模块得电后,如果半导体控制器收到车载空调控制器发送的电池冷却功能启动信息,则电池冷却功能启动,半导体换控制器发送电池冷却功能启动信息给电池热管理控制器。半导体控制器接收车载空调控制器发送的各个电池的温度调节需求功率P1。半导体控制器接收电池热管理控制器发送的水温信息和各个电池的温度调节实际功率。在电池冷却功能开启过程中,如果半导体控制器接收到电池管理器发送的增加第一电池41的电池冷却功率报文信息,即第一电池41的温度比第二电池42的温度高3℃以上,则控制半导体换热模块3反向供电,控制器控制第一三通阀71和第二三通阀72的通道1和通道2开启,且控制第三三通阀73和第四三通阀74的通道1关闭,通道2开启,使得半导体冷却端接入第一电池41的循环回路,同时控制第四风机开始工作。如果半导体控制器接收到电池管理器发送增加第二电池42的冷却功率报文信息,即第二电池42的温度比第一电池41的温度高3℃以上,则控制半导体换热模块3正向供电,第一电池热管理模块11控制第一三通阀71和第二三通阀72的通道1关闭、通道2开启,且第二电池热管理模块12控制第三三通阀73和第四三通阀74的通道1和通道2开启,使得半导体冷却端接入第二电池42的循环回路,同时控制第三风机开始工作。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块的电源。
具体地,如图3a-3b所示,在电池加热功能开启过程中,如果第一电池的温度比第二电池的温度低3℃以上,则控制半导体换热模块正向供电,控制第一三通阀71和第二三通阀72的通道1开启,通道2关闭,且控制第三三通阀73和第四三通阀74的通道1关闭,通道2关闭,使得加热端接入第一电池41的循环回路,同时控制第四风机开始工作(图3a)。如果第二电池42的温度比第一电池41的温度低3℃以上,则控制半导体换热模块3反向供电,第一三通阀71和第二三通阀72的通道1关闭、通道2关闭,且控制第三三通阀73和第四三通阀74的通道1开启,通道2关闭,使得加热端接入第二电池42的循环回路,同时控制第三风机开始工作(图3b)。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块的电源。
根据本发明的一个实施例,如图4a-4b所示,车载电池的温度调节系统还可以包括设置在空调风出风口和车厢之间的第三调节阀63和车厢风机53,车厢风机53用于对车厢进行制冷。
具体地,当车厢内需要制冷时,车载空调控制器控制第三调节阀63开启,车厢风机53将空调出风口的冷量吹向车厢以对车厢进行制冷。
进一步地,如图4a-4b和图所示,车载空调控制器还用于在电池的温度达到第三预设温度时,减少第三调节阀63的开度,同时增加第一调节阀61和第二调节阀62的开度,以及在电池的温度未达到第三预设温度时,进一步判断车厢内温度是否达到空调设定温度,其中,如果达到空调设定温度,则车载空调减少第三调节阀63的开度,同时增加第一调节阀61和第二调节阀62的开度;如果未达到空调设定温度,则车载空调保持第一调节阀61、第二调节阀62和第三调节阀63的开度不变。其中,第三预设温度温度可以根据实际情况进行预设,例如可以为45℃。
具体地,车载空调得电后,如果车载空调控制器收到电池管理器发送的电池冷却功能启动信息,则电池冷却功能启动,车载空调控制器发送电池冷却功能启动信息给电池热管理控制器和半导体控制器。车载空调控制器接收电池管理器发送的电池冷却功率需求信息(温度调节需求功率P1),并把该信息转发给电池热管理控制器和半导体控制器。在电池冷却过程中,车载空调控制器控制第一调节阀61和第二调节阀62开启,同时控制第一风机51和第二风机52开始工作。车载空调控制器接收电池热管理控制器发送的水温信息和动力电池的实际冷却功率信息(温度调节实际功率P2),并把该信息转发给电池管理器和半导体控制器。在电池冷却过程中,如果电池的温度调节实际功率P2小于电池的温度调节需求功率P1,则判断电池平均温度是否达到45℃(较高温度),如果电池平均温度达到45℃,则车载空调控制器减少第三调节阀63的开度,增大第一调节阀61和第二调节阀62的开度,减少车内冷却风流量,增加电池冷却回路的冷却风流量,以调整电池冷却和车内冷却的制冷量分配。车载空调控制器实时比较第一电池41的电池冷却分支回路和第二电池42的电池冷却分支回路的冷却功率,如果两个冷却分支回路的温度调节实际功率P2之和小于两个电池的温度调节需求功率P1之和,则减少第三调节阀63的开度,增第一调节阀61和第二调节阀62的开度,如果两个冷却分支回路的温度调节实际功率P2之和大于等于两个电池的温度调节需求功率P1之和,则减少第一调节阀61和第二调节阀62的开度,或者保持第一调节阀61和第二调节阀62的开度不变。
如果电池的温度不高于45℃,则判断车厢内的温度是否达到空调设定温度,如果达到,则车载空调控制器减少第三调节阀63的开度,增大第一调节阀61和第二调节阀62的开度的开度,调整车内冷却分支回路和电池冷却分支回路的冷却风流量。如果车厢内的温度没有达到空调设定温度,则优先满足车内的制冷量需求。在电池冷却过程中,如果车载空调控制器接收到电池管理器发送的电池冷却完成信息,则转发电池冷却完成信息给电池热管理控制器,电池冷却完成。
根据本发明实施例的车载电池的温度调节系统,通过电池管理器获取多个电池的温度,并判断多个电池之间的温度差是否大于预设温度阈值,以使在多个电池之间的温度差大于预设温度阈值时,对多个电池的温度进行均衡。由此,该系统可以在多个电池之间的温度差较大时,通过半导体换热模块对多个电池的温度进行均,从而可以提高电池的循环寿命。并且,还可以根据各个电池的温度调节需求功率和温度调节实际功率对电池进行温度调节,从而可以在车载电池温度过高或过低时,根据车载电池的实际状况对电池温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度过高或过低影响车载电池性能的情况。
图5是根据本发明一个实施实例的车载电池的温度调节方法的流程图。其中,如图1a-1b所示,车载电池温度调节系统包括半导体换热模块,具有发热端及冷却端用以提供加热功率/冷却功率;多个电池热管理模块,多个电池热管理模块可选择的与半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;与多个电池热管理模块一一对应的多个换热器,换热器与对应地电池热管理模块可选择的导通形成第二换热流路;车载空调,车载空调用于对多个换热器进行换热;控制器,与所半导体换热模块、多个电池热管理模块及车载空调连接。如图5所示,温度调节方法包括以下步骤:
S1,获取多个电池的温度。
S2,判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值。其中,预设温度阈值可以根据实际情况进行预设,例如,可以为8℃。
S3,如果最大值大于预设温度阈值,则通过半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡。
进一步地,在本发明的实施例中,对多个电池的温度进行均衡具体包括:控制半导体换热模块的供电方向以将温度低的电池与半导体换热模块中的半导体发热端相连,并将温度高的电池与半导体换热模块中的半导体冷却端相连;根据多个电池之间的温度差和均衡需求目标时间生成均衡需求功率P3;根据均衡需求功率P3控制半导体换热模块对多个电池的温度进行均衡。目标时间t可以根据实际情况进行预设,例如,可以为1小时。
具体地,均衡需求功率P3即将多个电池之间的温度差调节至预设范围内,例如3℃以内时,需要得到的加热功率/冷却功率。半导体换热模块具有半导体发热端和半导体冷却端,当供电电源反接后,发热端和冷却端位置交换。图1a为半导体换热模块正向供电温度调节系统的示意图,图1b为半导体换热模块反向供电温度调节系统的示意图。
当两个电池之间存在较大温差时,例如温差超过8℃,那么,温度调节系统进入电池温度均衡工作模式。半导体换热模块的冷却端接入温度较高的电池的液冷回路,发热端接入到温度较低的电池的液冷回路中,以对温度较高的电池进行冷却,对温度较低的电池进行加热,使得温度较高的电池与温度较低电池之间进行热量交换,半导体换热模块提高了电池之间的换热速率。例如,图1a所示为第一电池的温度较低,第二电池的温度较高;图1b所示为第一电池的温度较高,第二电池的温度较低。半导体换热模块通过改变供电方向,即可完成电池的温度均衡。电池介质直接流入半导体换热模块,也可提高电池的换热效率。在对电池进行加热/冷却的过程中,半导体换热模块还实时根据均衡需求功率调节加热功率/冷却功率,以在目标时间内完成电池的温度均衡。
均衡需求功率P3包括加热需求功率P3a和冷却需求功率P3b,两个电池之间的质量、内阻和电流相同时,当对电池进行冷却时,可以根据公式:生成均冷却需求功率P3b;当对电池进行加热时,电池管理器可以根据公式:生成加热需求功率P3a。其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M为电池的质量,I为电池的电流,R为电池的内阻。
两个电池的质量M、I、和R建议区分开来,因为电池1和电池2之间的质量、电流和内阻有可能不同。当两个电池之间的质量、内阻和电流相同时,上述公式才成立。
当两个电池的质量、电流和内阻不相等时,以电池1温度较低,电池2温度较高,电池1需要加热,电池2需要冷却为例,可以根据以下公式(1)计算加热需求功率P3a和并根据公式(2)计算冷却需求功率P3b:
其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M1为第一电池的质量,M2为第二电池的质量,I1为第一电池的电流,I2为第二电池的质量,R1为第一电的内阻,R2为第二电池的内阻,第一电池41的温度变化为第二电池42的温度变化为:
上述公式的控制方法中把电池的电流产热完全抵消,所以在整个电池温度均衡过程中,温度较高的电池温度不会上升,但是均衡的需求功率更高。
下面的介绍另一种调节方式,即只考虑尽快减少电池之间的温度差异,并不保证电池的温度是否会上升。这种情况适用于电池温度不是很高,且电池之间的温度差异较大时,没有必要限制电池的温度不升高。具体的计算公式如下:
假设第一电池的温度高于电第二电池时,第一电池需要冷却,第二电池需要加热,则两个电池之间的电流不同导致的发热功率相差为|I1 2R1-I2 2R2|,可以根据以下公式(3)计算加热需求功率P3a和并根据公式(4)计算冷却需求功率P3b:
即P3a=P3b。
其中,ΔT1为两个电池之间的温度差值,t为目标时间,C为电池的比热容,M1为第一电池的质量,M2为第二电池的质量,I1为第一电池的电流,I2为第二电池的质量,R1为第一电的内阻,R2为第二电池的内阻
当进入电池温度均衡工作模式后,控制半导体换热模块根据加热需求功率P3a和冷却需求功率P3b中的较大值进行温度均衡调节。例如P3a≥P3b,则控制半导体换热模块按照加热需求功率P3a运行;如果P3a<P3b,则半导体换热模块2按照冷却需求功率P3b运行。又或者半导体换热模块调整工作功率,如果P3a≥P3b,使得半导体换热模块可以按照大于加热需求功率P3a的功率运行;如果P3a<P3b,半导体换热模块按照大于冷却需求功率P3b运行。同时,在电池温度均衡过程中,确保半导体换热模块发热端的加热功率≥P3a,冷却端的冷却功率≥P3b,使得发热端和冷却端均满足温度均衡功率需求。
可以理解,在本发明中,半导体换热模块功率增大时,可同时增大半导体冷却端的冷却功率和半导体发热端的加热功率。
进一步地,如图1a-1b所示,车载电池的温度条调节系统还包括:与多个换热器一一对应设置的多个风机,多个风机分别通过多个调节阀与空调风出风口相连,风机包括第一风机和第二风机,调节阀包括第一调节阀和第二调节阀。
如图1a-1b所示,电池热管理模块包括第一电池热管理模块和第二电池热管理模块,换热器包括第一换热器和第二换热器,第一电池热管理模块的第一端通过第一三通阀分别与第一换热器的第一端和半导体换热模块中发热端的第一端相连,第一电池热管理模块的第二端通过第二三通阀分别与第一换热器的第二端和半导体换热模块中发热端的第二端相连。第二电池热管理模块的第一端通过第三三通阀分别与第二换热器的第一端和半导体换热模块中冷却端的第一端,第二电池热管理模块的第二端通过第四三通阀分别与第二换热器的第二端和半导体换热模块中冷却端的第二端相连,对温度差为最大值所对应的两个电池的温度进行均衡具体包括:
当第一电池热管理模块的第二换热流路所对应的第一电池的温度低于所述第二电池热管理模块的第二换热流路所对应的第二电池的温度时,选择以下任一控制策略:
(1)控制车载空调进入制热模式、第一换热器所对应的第一调节阀开启以及第二换热器所对应的第二调节阀关闭,并控制第一三通阀和第二三通阀导通第一换热器、第一电池热管理模块和半导体换热模块3;
(2)控制车载空调进入制热模式、第一换热器所对应的第一调节阀增大开度以及第二换热器所对应的第二调节阀减小开度,并控制第一三通阀和第二三通阀导通第一换热器、第一电池热管理模块和半导体换热模块,以及控制第三三通阀和第四三通阀导通第二换热器、第二电池热管理模块和半导体换热模块。
(3)控制车载空调进入制冷模式、第一换热器所对应的第一调节阀关闭以及第二换热器所对应的第二调节阀开启,并控制第三三通阀和第四三通阀导通第二换热器、第二电池热管理模块和半导体换热模块。
(4)控制车载空调进入制冷模式、第一换热器所对应的第一调节阀减小开度以及第二换热器所对应的第二调节阀增大开度,并控制第一三通阀和第二三通阀导通第一换热器、所述第一电池热管理模块和半导体换热模块,以及控制第三三通阀和第四三通阀导通第二换热器、所述第二电池热管理模块和半导体换热模块。
当第一电池热管理模块的第二换热流路所对应的第一电池的温度高于第二电池热管理模块的第二换热流路所对应的第二电池的温度时,选择以下任一控制策略:
1、控制车载空调进入制冷模式、第一换热器所对应的第一调节阀开启以及第二换热器所对应的第二调节阀关闭,并控制第一三通阀和第二三通阀导通第一换热器、第一电池热管理模块和半导体换热模块。
2、控制车载空调进入制冷模式、第一换热器所对应的第一调节阀增大开度以及第二换热器所对应的第二调节阀减小开度,并控制第一三通阀和第二三通阀导通第一换热器、第一电池热管理模块和半导体换热模块,以及控制第三三通阀和第四三通阀导通第二换热器、第二电池热管理模块和半导体换热模块。
3、控制车载空调进入制热模式、第一换热器所对应的第一调节阀关闭以及第二换热器所对应的第二调节阀开启,并控制第三三通阀和第四三通阀导通第二换热器、第二电池热管理模块和半导体换热模块。
4、控制车载空调进入制热模式、第一换热器所对应的第一调节阀减小开度以及第二换热器所对应的第二调节阀增大开度,并控制第一三通阀和第二三通阀导通第一换热器、第一电池热管理模块和半导体换热模块,以及控制第三三通阀和第四三通阀导通第二换热器、第二电池热管理模块和半导体换热模块。
通过半导体换热模块对温度差为最大值所对应的两个电池的温度进行均衡具体包括:控制半导体换热模块的供电方向以将两个电池中温度低的电池与半导体换热模块中的半导体发热端相连,并将温度高的电池与半导体换热模块中的半导体冷却端相连。
如图1a-1b所示,每个电池热管理模块包括设置在换热流路上的泵、第一温度传感器、第二温度传感器和流速传感器,泵、第一温度传感器、第二温度传感器和流速传感器与控制器连接;其中:泵用于使换热流路中的介质流动;第一温度传感器用于检测流入车载电池的介质的入口温度;第二温度传感器用于检测流出车载电池的介质的出口温度;流速传感器用于检测换热流路中的介质的流速。通过车载空调对温度差为最大值所对应的两个电池的温度进行均衡具体包括:通过调节调节阀的开度对温度差为最大值所对应的两个电池的温度进行均衡。
如图1a-1b,电池热管理模块还包括设置在换热流路上的介质容器和加热器,介质容器1用于存储及向换热流路提供介质。加热器用以对冷却管道中的介质进行加热,以提供加热功率,在电池温度较低时对电池的温度进行调节。
根据本发明的一个实施例,如图6所示,车载电池的温度调节方法还可以包括:
S10,获取多个电池的温度。
S20,判断是否存在某个电池的温度大于第一温度阈值。
S30,如果任一个电池的温度大于第一温度阈值,则进入冷却模式。
S40,如果所有电池的温度都小于或等于第一预设阈值,则进一步判断是否存在某个电池的温度小于第二温度阈值。
S50,如果任一个电池的温度小于第二温度阈值,则进入加热模式。其中第一温度阈值大于第二温度阈值,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
S60,如果所有电池的温度都大于或等于第二温度阈值且小于或等于第一温度阈值,则判断多个电池之间的温度差是否大于预设温度阈值。
S70,如果多个电池之间的温度差大于预设温度阈值,则进入温度均衡模式。
具体地,当某个电池的温度较高时,例如高于40℃,那么车载电池的温度调节系统进入冷却模式,车载空调、电池热管理模块开始工作。控制相应的调节阀开启,例如第一电池的温度高于40℃,那么控制第一调节阀开启,第一风机将车载空调的冷却风吹向第一换热器,以对第一换热器中冷却管道中的介质进行冷却,介质再经第一电池热管理模块对第一电池进行冷却。还可通过调节第一调节阀的开度调节用于冷却电池的冷却功率。同理,也可对第二电池进行冷却。当某个电池的温度较较低时,那么车载电池的温度调节系统进入加热模式,电池热管理模块开始工作,加热器开启,以对换热流路中的介质进行加热。
当电池冷却功能启动时,电池冷却分支回路1为:空调出风口—第一调节阀—第一风机—第一换热器。电池冷却分支回路2为:空调风出风口—第二调节阀—第二风机—第二换热器。
根据本发明的一个实施例,上述的温度调节方法还包括:分别获取电池的温度调节实际功率P2;分别获取多个电池的温度调节需求功率P1,根据温度调节实际功率P2和温度调节需求功率P1对多个电池的温度进行调节。
在进入冷却模式或加热模式后,还实时获取电池的温度调节需求功率P1和温度调节实际功率P2,其中,温度调节需求功率P1即在目标时间内将电池的温度调节至设定的目标温度,需要提供给电池的功率,电池温度调节实际功率P2即当前对电池进行温度调节时,电池得到的实际功率,目标温度和目标时间为设定值,可以根据车载电池的实际情况进行预设,例如,当对电池进行冷却,目标温度可以设置在35℃左右,当对电池进行加热时,目标温度可以设置为10℃,目标时间可以设定为1小时。可以根据电池的温度调节需求功率P1和温度调节实际功率P2对车载空调的制冷功率或加热器的加热功率进行调节,以使电池可以在目标时间内完成温度调节,使车载电池的温度维持在预设范围,避免发生由于温度过高或过低影响车载电池性能的情况。
下面结合具体地实施例描述如何获取电池的温度调节实际功率P2和温度调节需求功率P1。
根据本发明的一个实施例,可以分别获取电池开启温度调节时的第一参数,并根据第一参数生成电池的第一温度调节需求功率,以及获取电池在温度调节时的第二参数,并根据第二参数生成电池的第二温度调节需求功率,并根据电池的第一温度调节需求功率和电池的第二温度调节需求功率生成电池的温度调节需求功率P1。
进一步地,根据本发明的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,控制器获取初始温度和目标温度之间的第一温度差ΔT1,并根据第一温度差ΔT1和目标时间t生成第一温度调节需求功率。
更进一步地,通过以下公式(7)生成第一温度调节需求功率:
ΔT1*C*M/t (7),
其中,ΔT1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池4的比热容,M为电池4的质量。
第二参数为电池4在预设时间内的平均电流I,通过以下公式(8)生成第二温度调节需求功率:
I2*R, (8),
其中,I为平均电流,R为电池的内阻。
具体地,可通过电流霍尔传感器检测电池的充放电电流参数,可以根据一段时间内电池的电流参数,估算电池的平均电流。
当对电池进行冷却时,P1=ΔT1*C*M/t+I2*R;当对电池进行加热时,P1=ΔT1*C*M/t-I2*R。
根据本发明的一个实施例,分别根据第一温度传感器检测的入口温度和第二温度传感器检测的出口温度生成第二温度差ΔT2,并根据每个电池的第二温度差ΔT2和流速传感器检测的流速v生成电池的温度调节实际功率P2。
进一步地,根据本发明的一个实施例,通过以下公式生成温度调节实际功率P2:P2=ΔT2*c*m,其中,ΔT2为第二温度差,c为流路中介质的比热容,m为单位时间内流过流路的横截面积的介质质量,其中,m=v*ρ*s,v为介质的流速,ρ为介质的密度,s为流路的横截面积。
具体地,车辆上电后,判断电池是否需要进行温度调节,如果某个电池的温度过高或过低,开启温度调节功能,并发送低转速信息给泵,泵以默认转速(如低转速)开始工作。然后,通过获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(7)可以计算出每个电池的第一温度调节需求功率。同时,获取每个电池在预设时间内的平均电流I,并根据公式(8)可以计算出每个电池的第二温度调节需求功率。然后,根据每个电池的第一温度调节需求功率和第二温度调节需求功率可以计算出温度调节需求功率P1(即将电池的温度在目标时间内调节至目标温度的需求功率),其中,当对电池进行冷却时,P1=ΔT1*C*M/t+I2*R,当对电池进行加热时,P1=ΔT1*C*M/t-I2*R。并且,分别获取第一温度传感器和第二温度传感器检测温度信息,并获取流速传感器检测的流速信息,根据公式P2=ΔT2*c*m可以计算出每个电池的温度调节实际功率P2。
下面结合具体地实施例说明如何根据电池的温度调节实际功率P2和温度调节需求功率P1对车载空调的制冷功率进行调节。
根据本发明的一个实施例,当为冷却模式时,根据多个电池的温度调节实际功率P2和温度调节需求功率P1对多个电池的温度进行调节,具体包括:
判断每个电池的温度调节需求功率P1是否大于温度调节实际功率P2。
如果某个温度调节实际功率P2小于电池温度调节需求功率P1,则增加车载空调的制冷功率和/或增加第一风机和/或第二风机的转速。
也就是说,在对电池进行冷却时,如果电池的温度调节实际功率P2小于电池温度调节需求功率P1,那么增加车载空调的制冷功率,同时增加第一风机和/或第二风机的转速,以增加吹向换热器的冷量,从而增加温度调节实际功率P2,以使电池可以在目标时间内完成温度调节。
根据本发明的一个实施例,如图1a-1b所示,电池热管理模块还包括设置在换热流路上的介质容器和加热器,其中,介质容器用于存储及向换热流路提供介质,加热器用于对换热流路中的介质进行加热,当为加热模式时,根据多个电池的温度调节实际功率P2和温度调节需求功率P1对多个电池的温度进行调节,具体包括:判断每个电池的温度调节需求功率P1是否大于温度调节实际功率P2;如果某个电池的温度调节需求功率P1大于温度调节实际功率P2,则增加加热器的加热功率。
根据本发明的一个实施例,如图1a-1b所示,车载空调可以包括:与多个换热器对应的多个风机,多个风机通过多个调节阀与空调风出风口相连,风机包括第一风机和第二风机,调节阀包括第一调节阀和第二调节阀,上述的方法还包括:当为冷却模式,且第一电池的温度大于第二电池的温度时,减小第一调节阀的开度并增大第二调节阀的开度,以及当为冷却模式,且第二电池的温度大于第一电池的温度时,增大第二调节阀的开度并减小第一调节阀的开度。
具体地,
如果有一个电池的温度高于40℃,则温度调节系统冷却功能启动,电池管理器发送电池冷却功能启动信息给车载空调控制器。电池管理器采集当前电池温度和电流参数,并根据一段时间之内的平均电流估算电池的发热参数,根据电池组当前平均温度与电池目标温度之间的差值,以及电池的平均电流估算电池的温度调节需求功率P1,并把电池冷却需求功率发送给车载空调控制器。同时电池管理器发送需要进行冷却的电池的编号。
如果电池管理器检测到第一电池的温度低于35℃,则电池管理器发送第一电池冷却完成信息。如果电池管理器检测到第二电池的温度低于35℃,则电池管理器发送第二电池的冷却完成信息。如果检测到第一电池的温度比第二电池的温度高3℃以上,则电池管理器发送增加第一电池的冷却功率报文信息。如果第二电池的温度比第一电池的温度高3℃以上,则电池管理器发送增加第二电池的电池冷却功率报文信息。
如果电池管理器检测到2个电池的温度均低于35℃,则电池冷却完成,电池管理器发送电池冷却完成信息给车载空调。如果冷却功能开启1个小时之后,电池的温度仍然高于35℃,则电池管理器增大电池冷却功率需求。
如果有一个电池的温度低于0℃,则温度调节系统加热功能启动。电池管理器采集当前电池温度和电流参数,并根据一段时间之内的平均电流估算电池的发热参数,根据电池实际温度与电池目标温度之间的差值,以及电池的平均电流估算动力电池的温度调节需求功率P1,并将温度调节需求功率P1发送至电池热管理控制器,以使电池热管理控制器根据温度调节需求功率P1控制加热器101进行加热工作。
如果电池管理器检测到第一电池的温度高于10℃,则电池管理器发送第一电池加热完成信息。如果电池管理器检测到第二电池的温度高于10℃,则电池管理器发送第二电池加热完成信息。如果检测到第一电池的温度比第二电池4的温度低3℃以上,则电池管理器发送增加第一电池的电池加热功率报文信息。如果检测到第二电池的温度比第一电池的电温度低3℃以上,则电池管理器发送增加第二电池的加热功率报文信息。
如果电池管理器检测到2个电池的温度均高于10℃,则电池加热完成,电池管理器发送电池加热完成信息给电池管理控制器。如果加热功能开启2个小时之后,仍有电池的温度仍然低于10℃,则电池管理器增大加热器的加热功率。
如果电池的温度在0℃到40℃之间,且第一电池和第二电池的温度相差超过8℃,则电池管理器发送电池温度均衡功能启动信息。电池管理器采集当前电池之间的温度差异和目标均衡时间,估算电池组所需温度均衡功率,发送电池温度均衡功率需求信息,以使半导体控制器控制半导体换热模块根据电池温度均衡功率需求信息对电池进行温度均衡。在电池温度均衡功能启动过程中,如果电池管理器检测到满足电池加热功能启动条件,则电池管理器退出温度均衡功能,进入电池加热功能。如果电池管理器检测到满足电池冷却功能启动条件,则电池管理器退出温度均衡功能,进入电池冷却功能。如果第一电池和第二电池电池平均温度相差小于3℃,则电池管理器发送电池温度均衡功能完成信息。
车载空调得电后,如果车载空调控制器收到电池管理器发送的电池冷却功能启动信息,则电池冷却功能启动,车载空调控制器发送电池冷却功能启动信息给电池热管理控制器和半导体控制器。车载空调控制器接收电池管理器发送的电池的温度调节需求功率P1,并把该信息转发给电池热管理控制器。在电池冷却过程中,车载空调控制器控制第一调节阀和第二调节阀开启,同时控制第一风机和第二风机开始工作。车载空调控制器接收电池热管理控制器发送的水温信息和电池的温度调节实际功率P2,并把该信息转发给电池管理器和半导体换热模块。在电池冷却过程中,车载空调控制器对比电池的温度调节需求功率P1和温度调节实际功率P2,如果电池的温度调节实际功率P2小于温度调节需求功率P1,则车载空调控制器控制增大制冷功率,同时加快第一风机和第二风机的转速。如果电池管理器检测到第一电池的温度比第二电池的温度高3℃以上,则电池管理器发送增加第一电池的冷却功率报文信息至车载空调,则车载空调控制器根据增加第一电池的冷却功率报文信息增大第一调节阀61的开度并减小第二调节阀的开度,使得第一电池的冷却功率增大,第二电池的冷却功率减少,从而缩小电池之间的电池温度差异。如果第二电池的温度比第一电池的温度高3℃以上,则电池管理器发送增加第二电池的电池冷却功率报文信息,车载空调控制器根据增加第二电池的电池冷却功率报文信息增大第二调节阀的开度并减小第一调节阀的开度,使得第一电池的冷却功率减小,第二电池的冷却功率增加,从而缩小电池之间的电池温度差异。
在电池冷却过程中,如果车载空调控制器接收到电池管理器发送的第一电池冷却完成信息,则控制第一调节阀关闭,第一风机停止工作。如果车载空调控制器接收到电池管理器发送的第二电池冷却完成信息,则控制第二调节阀关闭,第二风机停止工作。如果车载空调控制器接收到电池管理器发送的电池冷却完成信息,则转发电池冷却完成信息给电池热管理控制器和半导体控制器,电池冷却完成。
除可通过车载空调和加热器为电池提供冷却功率和加热功率,还可通过半导体换热模块为电池提供冷却功率和加热功率。
根据本发明的一个实施例,如图1a-1b所示,电池热管理模块包括第一电池热管理模块和第二电池热管理模块,换热器包括第一换热器和第二换热器,第一电池热管理模块的第一端通过第一三通阀分别与第一换热器的第一端和半导体换热模块中半导体发热端的第一端相连,第一电池热管理模块的第二端通过第二三通阀分别与第一换热器的第二端和半导体换热模块中半导体发热端的第二端相连。第二电池热管理模块的第一端通过第三三通阀分别与第二换热器的第一端和半导体换热模块中半导体冷却端的第一端相连,第二电池热管理模块的第二端通过第四三通阀分别与第二换热器的第二端和半导体换热模块中半导体冷却端的第二端相连。温度调节方法方法还可以包括:
当为冷却模式,且第一电池的温度大于第二电池的温度时,控制半导体换热模块的供电方向,并控制第一三至第四三通阀导通,使半导体换热模块的半导体冷却端与第一换热器相连,所述半导体换热模块的半导体发热端与第二换热器相连;当为冷却模式,且在第二电池的温度大于第一电池的温度时,控制半导体换热模块的供电方向,并控制第一至第四三通阀开启,使半导体换热模块的半导体冷却端与第二换热器相连,半导体换热模块的半导体发热端与第一换热器相连。
当为加热模式,且第一电池的温度小于第二电池的温度时,控制半导体换热模块的供电方向,并控制第一三至第四三通阀开启,使半导体换热模块的半导体发热端与第一换热器相连,半导体换热模块的半导体冷却端与第二换热器相连;当为加热模式,且在第二电池的温度小于第一电池的温度时,控制半导体换热模块的供电方向,并控制第一至第四三通阀开启,以使半导体换热模块的半导体发热端与第二换热器相连,半导体换热模块的半导体冷却端与第一换热器相连。
具体地,如图1a-1b所示,半导体换热模块得电后,如果收到车载空调发送的电池冷却功能启动信息,则电池冷却功能启动,半导体换热模块发送电池冷却功能启动信息给电池热管理控制器。半导体换热模块接收车载空调发送的各个电池的温度调节需求功率P1。半导体换热模块接收电池热管理控制器发送的水温信息和各个电池的温度调节实际功率。在电池冷却功能开启过程中,如果半导体换热模块接收到电池管理器发送的增加第一电池的电池冷却功率报文信息,即第一电池的温度比第二电池的温度高3℃以上,则半导体换热模块反向供电,并控制第一至第四三通阀的通道1和通道2开启,使得半导体冷却端接入第一电池的循环回路,半导体发热端接入第二电池的循环回路,以对第一电池进行冷却、第二电池进行加热,均衡第一电池和第二电池的温度。如果半导体换热模块接收到电池管理器发送增加第二电的冷却功率报文信息,即第二电池的温度比第一电池的温度高3℃以上,则半导体换热模块正向供电,并控制并控制第一至第四三通阀的通道1和通道2开启,使得半导体冷却端接入第二电池的循环回路,半导体发热端接入第一电池的循环回路,以对第一电池进行加热、第二电池进行冷却,均衡第一电池和第二电池的温度。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块的电源。
如果有一个电池的温度低于0℃,则电池热管理系统加热功能启动。在对电池进行加热时,除可通过加热器提供加热功率,还可通过半导体换热模块提供加热功率。
在电池加热功能开启过程中,如果第一电池的温度比第二电池的温度低3℃以上,则半导体换热模块正向供电,并控制第一至第四三通阀的通道1开启、通道2关闭,使得半导体发热端接入第一电池的循环回路,半导体冷却端接入第二电池的循环回路,以对第一电池进行加热、第二电池进行冷却,均衡第一电池和第二电池的温度。如果第二电池的温度比第一电池的温度低3℃以上,则半导体换热模块反向供电,并控制第一至第四三通阀的通道1开启、通道2关闭,使得半导体冷却端接入第一电池的循环回路,半导体发热端接入第二电池的循环回路,以对第一电池进行冷却、第二电池进行加热,均衡第一电池和第二电池的温度。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块电源。
可以理解,在冷却功能启动时,加热器关闭。在加热功能启动时,加热器开启,第一调节阀和第二调节阀关闭。
根据本发明的一个实施例,如图3a-3b所示,所述车载电池的温度调节系统还可以包括第三风机和第四风机,第三风机与半导体换热模块的发热端和冷却端的其中一者相对设置,第四风机与半导体换热模块的发热端和冷却端的另一者相对设置,所述方法还包括:
当为冷却模式,且第一电池的温度大于第二电池的温度时,控制半导体换热模块的供电方向,并控制第一三通阀和第二三通阀开启,第三三通阀和第四三通阀关闭,第四风机工作,以使半导体换热模块的半导体冷却端与第一换热器相连。当为冷却模式,且在第二电池的温度大于第一电池的温度时,控制半导体换热模块的供电方向,并控制第一三通阀和所述第二三通阀关闭,第三三通阀和第四三通阀开启,第三风机工作,以使半导体换热模块的半导体冷却端与第二换热器相连。
图1a-1b和图3a-3b的主要区别在于,图3a-3b中增加了换热风机,图1a-1b中的方案,两个电池之间需要同时接入半导体换热模块的其中一端的循环回路中,才可以实现温度均衡,即必须一个电池加热,另一个电池冷却同时进行,图1a-1b可以快速实现电池之间的温度均衡。而图3a-3b所示方案,则可以只通过控制其中一个电池接入到温度均衡回路,另一端通过风机和外部环境进行热交换,即如果第一电池的温度较高,则可以单独将第一电池41接入冷却端,而不必将第二电池接入到加热回路,图3a-3b的方案可以使得第二电池更快完成冷却。
具体地,如图3a-3b所示,半导体换热模块得电后,如果收到车载空调发送的电池冷却功能启动信息,则电池冷却功能启动,半导体换热模块发送电池冷却功能启动信息给电池热管理控制器。半导体换热模块接收车载空调发送的各个电池的温度调节需求功率P1。半导体换热模块接收电池热管理控制器发送的水温信息和各个电池的温度调节实际功率。在电池冷却功能开启过程中,如果半导体换热模块接收到电池管理器发送的增加第一电池的电池冷却功率报文信息,即第一电池的温度比第二电池的温度高3℃以上,则半导体换热模块反向供电,并控制第一三通阀和第二三通阀的通道1和通道2开启,以及控制第三三通阀和第四三通阀的通道1关闭,通道2开启,使得半导体冷却端接入第一电池的循环回路,同时第四风机工作,将发热端的热量吹散。如果半导体换热模块接收到电池管理器发送增加第二电的冷却功率报文信息,即第二电池的温度比第一电池的温度高3℃以上,则半导体换热模块正向供电,并控制第一三通阀和第二三通阀的通道1关闭、通道2开启以及控制第三三通阀和第四三通阀的通道1和通道2开启,使得半导体冷却端接入第二电池的循环回路,同时第三风机工作,将发热端的热量吹散。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块的电源。
如果有一个电池的温度低于0℃,则电池热管理系统加热功能启动。在对电池进行加热时,除可通过加热器提供加热功率,还可通过半导体换热模块提供加热功率。
在电池加热功能开启过程中,如果第一电池的温度比第二电池的温度低3℃以上,则半导体换热模块正向供电,第一三通阀和第二三通阀的通道1开启、通道2关闭,第三三通阀和第四三通阀的通道1关闭、通道2关闭,使得半导体换热器发热端接入第一电池的循环回路,同时第四风机工作,将冷却端的冷量吹散。如果第二电池的温度比第一电池的温度低3℃以上,则半导体换热模块反向供电,第一三通阀和第二三通阀的通道1、通道2关闭,第三三通阀和第四三通阀的通道1开启、通道2关闭,使得半导体换热器发热端接入第二电池的循环回路,同时第散风机工作,将冷却端的冷量吹散。如果半导体热管理模块没有收到上述信息,则切断半导体换热模块电源。
在半导体加热器加热过程中,如果电池的温度调节需求功率P1大于温度调节实际功率P2,则半导体换热模块增大的加热功率。
可以理解,在冷却功能启动时,加热1关闭。在加热功能启动时,加热器开启,第一调节阀和第二调节阀关闭,第一至第四三通阀的通道2关闭。
根据本发明的一个实施例,如图4a-4b所示,车载电池的温度调节系统还可以包括设置在空调风出风口和车厢之间的第三调节阀和车厢风机,车厢风机用于对车厢进行制冷。上述方法还可以包括:判断电池的温度是否达到第三预设温度;如果达到第三预设温度,则减少第三调节阀的开度,同时增加第一调节阀和第二调节阀的开度;如果未达到第三预设温度,则进一步判断车厢内温度是否达到空调设定温度;如果达到空调设定温度,则减少第三调节阀的开度,同时增加第一调节阀和第二调节阀的开度;如果未达到空调设定温度,则保持第一调节阀、第二调节阀和第三调节阀的开度不变。其中,第三预设温度温度可以根据实际情况进行预设,例如可以为45℃。
具体地,具体地,当车厢内需要制冷时,车载空调控制第三风机开启,车厢风机将空调出风口的冷量吹向车厢以对车厢进行制冷。
当对电池冷却时,控制第一调节阀和第二调节阀开启,同时控制第一风机和第二风机开始工作。在电池冷却过程中,如果电池的温度调节实际功率P2小于电池的温度调节需求功率P1,则判断电池平均温度是否达到45℃(较高温度),如果电池平均温度达到45℃,则减少第三调节阀的开度,增大第一调节阀和第二调节阀的开度,减少车内冷却风流量,增加电池冷却回路的冷却风流量,以调整电池冷却和车内冷却的制冷量分配。并且,实时比较第一电池的电池冷却分支回路和第二电池的电池冷却分支回路的冷却功率,如果两个冷却分支回路的温度调节实际功率P2之和小于两个电池的温度调节需求功率P1之和,则减少第三调节阀的开度,增第一调节阀和第二调节阀的开度,如果两个冷却分支回路的温度调节实际功率P2之和大于等于两个电池的温度调节需求功率P1之和,则减少第一调节阀61和第二调节阀62的开度,或者保持第一调节阀和第二调节阀的开度不变。
如果电池的温度不高于45℃,则判断车厢内的温度是否达到空调设定温度,如果达到,则减少第三调节阀的开度,增大第一调节阀和第二调节阀的开度的开度,调整车内冷却分支回路和电池冷却分支回路的冷却风流量。如果车厢内的温度没有达到空调设定温度,则优先满足车内的制冷量需求。在电池冷却过程中,如果车载空调接收到电池管理器发送的电池冷却完成信息,则转发电池冷却完成信息给电池热管理控制器,电池冷却完成。
综上所述,根据本发明实施例的车载电池的温度调节方法,首先获取多个电池的温度,然后判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值,如果最大值大于预设温度阈值,则通过半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡。由此,该方法可以在多个电池之间的温度差较大时,对多个电池的温度进行均,从而可以提高电池的循环寿命。并且,还可以根据各个电池的温度调节需求功率和温度调节实际功率对电池进行温度调节,从而可以在车载电池温度过高或过低时,根据车载电池的实际状况对电池温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度过高或过低影响车载电池性能的情况。
此外,本发明的实施例还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的温度调节方法。
本发明实施例的非临时性计算机可读存储介首先获取多个电池的温度,然后判断多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值,如果最大值大于预设温度阈值,则通过半导体换热模块或车载空调对温度差为最大值所对应的两个电池的温度进行均衡,从而可以提高电池的循环寿命。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (27)

1.一种车载电池的温度调节系统,其特征在于,包括:
半导体换热模块,具有发热端及冷却端用以提供加热功率/冷却功率;
多个电池热管理模块,所述多个电池热管理模块可选择的与所述半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;
与所述多个电池热管理模块一一对应的多个换热器,所述换热器与对应地所述电池热管理模块可选择的导通形成第二换热流路;
车载空调,所述车载空调用于对所述多个换热器进行换热;
控制器,与所述半导体换热模块、所述多个电池热管理模块及所述车载空调连接。
2.如权利要求1所述的车载电池的温度调节系统,其特征在于,所述车载空调包括:与所述多个换热器一一对应设置的多个风机,所述多个风机分别通过多个调节阀与空调风出风口相连,所述风机包括第一风机和第二风机,所述调节阀包括第一调节阀和第二调节阀。
3.如权利要求1所述的车载电池的温度调节系统,其特征在于,所述电池热管理模块包括第一电池热管理模块和第二电池热管理模块,所述换热器包括第一换热器和第二换热器,所述第一电池热管理模块的第一端通过第一三通阀分别与所述第一换热器的第一端和所述半导体换热模块中半导体发热端的第一端相连,所述第一电池热管理模块的第二端通过第二三通阀分别与所述第一换热器的第二端和所述半导体换热模块中半导体发热端的第二端相连,
所述第二电池热管理模块的第一端通过第三三通阀分别与所述第二换热器的第一端和所述半导体换热模块中半导体冷却端的第一端相连,所述第二电池热管理模块的第二端通过第四三通阀分别与所述第二换热器的第二端和所述半导体换热模块中半导体冷却端的第二端相连。
4.如权利要求1-3中任一项所述的车载电池的温度调节系统,其特征在于,所述半导体换热模块还包括第三风机和第四风机,所述第三风机与所述半导体换热模块的发热端和冷却端的其中一者相对设置,所述第四风机与所述半导体换热模块的发热端和冷却端的另一者相对设置。
5.如权利要求3所述的车载电池的温度调节系统,其特征在于,所述电池热管理模块包括设置在所述换热流路上的泵、第一温度传感器、第二温度传感器和流速传感器,所述泵、第一温度传感器、第二温度传感器和流速传感器与所述控制器连接;其中:
所述泵用于使所述换热流路中的介质流动;
所述第一温度传感器用于检测流入所述车载电池的介质的入口温度;
所述第二温度传感器用于检测流出所述车载电池的介质的出口温度;
所述流速传感器用于检测所述换热流路中的介质的流速。
6.如权利要求5所述的车载电池的温度调节系统,其特征在于,所述电池热管理模块还包括设置在所述换热流路上的介质容器,所述介质容器用于存储及向所述换热流路提供介质。
7.如权利要求5所述的车载电池的温度调节系统,其特征在于,所述电池热管理模块还包括加热器,所述加热器与所述控制器连接,用于加热所述换热流路中的介质。
8.如权利要求5所述的车载电池的温度调节系统,其特征在于,还包括设置在所述空调风出风口和车厢之间的第三调节阀和车厢风机。
9.一种车载电池的温度调节方法,其特征在于,车载电池温度调节系统包括:半导体换热模块,具有发热端及冷却端用以提供加热功率/冷却功率;多个电池热管理模块,所述多个电池热管理模块可选择的与所述半导体换热模块中的冷却端或发热端进行热交换以形成第一换热流路;与所述多个电池热管理模块一一对应的多个换热器,所述换热器与对应地所述电池热管理模块可选择的导通形成第二换热流路;车载空调,所述车载空调用于对所述多个换热器进行换热;控制器,与所述半导体换热模块、所述多个电池热管理模块及所述车载空调连接,所述方法包括以下步骤:
获取所述多个电池的温度;
判断所述多个电池中任意两个电池之间的温度差的最大值是否大于预设温度阈值;
如果所述最大值大于所述预设温度阈值,则通过所述半导体换热模块或所述车载空调对温度差为最大值所对应的所述两个电池的温度进行均衡。
10.如权利要求9所述的车载电池的温度调节方法,其特征在于,所述车载空调包括:与所述多个换热器一一对应设置的多个风机,所述多个风机分别通过多个调节阀与空调风出风口相连,所述风机包括第一风机和第二风机,所述调节阀包括第一调节阀和第二调节阀;
所述通过所述车载空调对温度差为最大值所对应的所述两个电池的温度进行均衡具体包括:
通过调节所述调节阀的开度对温度差为最大值所对应的所述两个电池的温度进行均衡。
11.如权利要求10所述的车载电池的温度调节方法,其特征在于,所述电池热管理模块包括第一电池热管理模块和第二电池热管理模块,所述换热器包括第一换热器和第二换热器,所述第一电池热管理模块的第一端通过第一三通阀分别与所述第一换热器的第一端和所述半导体换热模块中发热端的第一端相连,所述第一电池热管理模块的第二端通过第二三通阀分别与所述第一换热器的第二端和所述半导体换热模块中发热端的第二端相连,
所述第二电池热管理模块的第一端通过第三三通阀分别与所述第二换热器的第一端和所述半导体换热模块中冷却端的第一端相连,所述第二电池热管理模块的第二端通过第四三通阀分别与所述第二换热器的第二端和所述半导体换热模块中冷却端的第二端相连,所述对温度差为最大值所对应的所述两个电池的温度进行均衡具体包括:
当所述第一电池热管理模块的第二换热流路所对应的第一电池的温度低于所述第二电池热管理模块的第二换热流路所对应的第二电池的温度时,选择以下任一控制策略:
控制所述车载空调进入制热模式、所述第一换热器所对应的第一调节阀开启以及所述第二换热器所对应的第二调节阀关闭,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块;
控制所述车载空调进入制热模式、所述第一换热器所对应的第一调节阀增大开度以及所述第二换热器所对应的第二调节阀减小开度,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块,以及控制所述第三三通阀和第四三通阀导通所述第二换热器、所述第二电池热管理模块和所述半导体换热模块;
控制所述车载空调进入制冷模式、所述第一换热器所对应的第一调节阀关闭以及所述第二换热器所对应的第二调节阀开启,并控制所述第三三通阀和第四三通阀导通所述第二换热器、所述第二电池热管理模块和所述半导体换热模块;
控制所述车载空调进入制冷模式、所述第一换热器所对应的第一调节阀减小开度以及所述第二换热器所对应的第二调节阀增大开度,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块,以及控制所述第三三通阀和第四三通阀导通所述第二换热器、所述第二电池热管理模块和所述半导体换热模块;
当所述第一电池热管理模块的第二换热流路所对应的第一电池的温度高于所述第二电池热管理模块的第二换热流路所对应的第二电池的温度时,选择以下任一控制策略:
控制所述车载空调进入制冷模式、所述第一换热器所对应的第一调节阀开启以及所述第二换热器所对应的第二调节阀关闭,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块;
控制所述车载空调进入制冷模式、所述第一换热器所对应的第一调节阀增大开度以及所述第二换热器所对应的第二调节阀减小开度,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块,以及控制所述第三三通阀和第四三通阀导通所述第二换热器与所述第二电池热管理模块和所述半导体换热模块;
控制所述车载空调进入制热模式、所述第一换热器所对应的第一调节阀关闭以及所述第二换热器所对应的第二调节阀开启,并控制所述第三三通阀和第四三通阀导通所述第一换热器与所述第二电池热管理模块;
控制所述车载空调进入制热模式、所述第一换热器所对应的第一调节阀减小开度以及所述第二换热器所对应的第二调节阀增大开度,并控制所述第一三通阀和第二三通阀导通所述第一换热器、所述第一电池热管理模块和所述半导体换热模块,以及控制所述第三三通阀和第四三通阀导通所述第二换热器、所述第二电池热管理模块和所述半导体换热模块。
12.如权利要求9所述的车载电池的温度调节方法,其特征在于,所述通过所述半导体换热模块对温度差为最大值所对应的所述两个电池的温度进行均衡具体包括:
控制所述半导体换热模块的供电方向以将所述两个电池中温度低的所述电池与所述半导体换热模块中的半导体发热端相连,并将温度高的所述电池与所述半导体换热模块中的半导体冷却端相连。
13.如权利要求9所述的车载电池的温度调节方法,其特征在于,
所述电池热管理模块包括第一电池热管理模块和第二电池热管理模块,所述换热器包括第一换热器和第二换热器,所述第一电池热管理模块的第一端通过第一三通阀分别与所述第一换热器的第一端和所述半导体换热模块中发热端的第一端相连,所述第一电池热管理模块的第二端通过第二三通阀分别与所述第一换热器的第二端和所述半导体换热模块中发热端的第二端相连,
所述第二电池热管理模块的第一端通过第三三通阀分别与所述第二换热器的第一端和所述半导体换热模块中冷却端的第一端相连,所述第二电池热管理模块的第二端通过第四三通阀分别与所述第二换热器的第二端和所述半导体换热模块中冷却端的第二端相连,所述对温度差为最大值所对应的所述两个电池的温度进行均衡具体包括:
控制所述半导体换热模块的供电方向,并控制所述第一三通阀和第二三通阀导通所述两个电池中温度低的所述电池与所述半导体换热模块中的半导体发热端,以及控制所述第三三通阀和第四三通阀导通导通所述两个电池中温度高的所述电池与所述半导体换热模块中的半导体冷却端。
14.如权利要求13所述的车载电池的温度调节方法,其特征在于,还包括:
根据所述多个电池中任意两个电池之间的温度差的最大值和均衡需求目标时间生成均衡需求功率;
根据所述均衡需求功率控制所述半导体换热模块或所述车载空调对温度差为最大值所对应的所述两个电池的温度进行均衡。
15.如权利要求9所述的车载电池的温度调节方法,其特征在于,所述方法还包括:
获取所述多个电池的温度;
当任一个电池的温度大于第一温度阈值时,进入冷却模式;
当任一个电池的温度小于第二温度阈值时,进入加热模式,其中所述第一温度阈值大于第二温度阈值。
16.如权利要求15所述的车载电池的温度调节方法,其特征在于,还包括:
分别获取所述多个电池的温度调节实际功率;
分别获取所述多个电池的温度调节需求功率;
根据所述述多个电池的温度调节实际功率和温度调节需求功率对所述多个电池的温度进行调节。
17.如权利要求16所述的车载电池的温度调节方法,其特征在于,所述电池热管理模块包括设置在所述换热流路上的泵、第一温度传感器、第二温度传感器和流速传感器,所述泵、第一温度传感器、第二温度传感器和流速传感器与所述控制器连接;其中:
所述泵用于使所述换热流路中的介质流动;
所述第一温度传感器用于检测流入所述车载电池的介质的入口温度;
所述第二温度传感器用于检测流出所述车载电池的介质的出口温度;
所述流速传感器用于检测所述换热流路中的介质的流速,所述分别获取所述多个电池的温度调节实际功率具体包括:
分别获取用于调节所述车载电池温度的冷却流路的入口温度和出口温度,并分别获取介质流入所述冷却流路的流速;
分别根据所述入口温度和出口温度生成第二温度差;
根据所述第二温度差和所述流速生成所述多个电池的温度调节实际功率。
18.如权利要求17所述的基于半导体的车载电池温度调节方法,其特征在于,通过以下公式生成所述温度调节实际功率:
ΔT2*c*m,
其中,所述ΔT2为所述第二温度差,c为所述冷却流路中介质的比热容,m为单位时间内流过所述冷却流路的横截面积的介质质量,其中,m=v*ρ*s,v为所述介质的流速,ρ为所述介质的密度,s为所述流路的横截面积。
19.如权利要求15所述的基于半导体的车载电池温度调节方法,其特征在于,当为冷却模式时,所述根据所述多个电池的温度调节实际功率和温度调节需求功率对所述多个电池的温度进行调节,具体包括:
判断每个电池的所述温度调节需求功率是否大于所述温度调节实际功率;
如果某个电池的所述温度调节需求功率大于所述温度调节实际功率,则增加所述车载空调的制冷功率和/或增加所述第一风机和/或第二风机的转速。
20.如权利要求15所述的基于半导体的车载电池温度调节方法,其特征在于,所述电池热管理模块还包括设置在所述换热流路上的介质容器和加热器,其中,所述介质容器用于存储及向所述换热流路提供介质,所述加热器用于对换热流路中的介质进行加热,当为加热模式时,所述根据所述多个电池的温度调节实际功率和温度调节需求功率对所述多个电池的温度进行调节,具体包括:
判断每个电池的所述温度调节需求功率是否大于所述温度调节实际功率;
如果某个电池的所述温度调节需求功率大于所述温度调节实际功率,则增加所述加热器的加热功率。
21.如权利要求15所述的车载电池温度调节方法,其特征在于,所述车载空调包括:与所述多个换热器对应的多个风机,所述多个风机通过多个调节阀与空调风出风口相连,所述风机包括第一风机和第二风机,所述调节阀包括第一调节阀和第二调节阀,所述方法还包括:
当为冷却模式,且所述第一电池的温度大于所述第二电池的温度时,减小所述第二调节阀的开度并增大所述第一调节阀的开度;
当为冷却模式,且所述第二电池的温度大于所述第一电池的温度时,减小所述第一调节阀的开度并增加所述第二调节阀的开度。
22.如权利要求21所述的车载电池的温度调节方法,其特征在于,所述电池热管理模块包括第一电池热管理模块和第二电池热管理模块,所述换热器包括第一换热器和第二换热器,所述第一电池热管理模块的第一端通过第一三通阀分别与所述第一换热器的第一端和所述半导体换热模块中半导体发热端的第一端相连,所述第一电池热管理模块的第二端通过第二三通阀分别与所述第一换热器的第二端和所述半导体换热模块中半导体发热端的第二端相连,
所述第二电池热管理模块的第一端通过第三三通阀分别与所述第二换热器的第一端和所述半导体换热模块中半导体冷却端的第一端相连,所述第二电池热管理模块的第二端通过第四三通阀分别与所述第二换热器的第二端和所述半导体换热模块中半导体冷却端的第二端相连,所述方法还包括:当为冷却模式,且所述第一电池的温度大于所述第二电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三至第四三通阀导通,使所述半导体换热模块的半导体冷却端与所述第一换热器相连,所述半导体换热模块的半导体发热端与所述第二换热器相连;
当为冷却模式,且在所述第二电池的温度大于所述第一电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一至第四三通阀开启,使所述半导体换热模块的半导体冷却端与所述第二换热器相连,所述半导体换热模块的半导体发热端与所述第一换热器相连。
23.如权利要求21所述的车载电池的温度调节方法,其特征在于,还包括:
当为加热模式,且所述第一电池的温度小于所述第二电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三至第四三通阀开启,使所述半导体换热模块的半导体发热端与所述第一换热器相连,所述半导体换热模块的半导体冷却端与所述第二换热器相连;
当为加热模式,且在所述第二电池的温度小于所述第一电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一至第四三通阀开启,以使所述半导体换热模块的半导体发热端与所述第二换热器相连,所述半导体换热模块的半导体冷却端与所述第一换热器相连。
24.如权利要求21所述的车载电池的温度调节方法,其特征在于,所述车载电池的温度调节系统还包括第三风机和第四风机,所述第三风机与所述半导体换热模块的发热端和冷却端的其中一者相对设置,所述第四风机与所述半导体换热模块的发热端和冷却端的另一者相对设置,所述方法还包括:
当为冷却模式,且所述第一电池的温度大于所述第二电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三通阀和所述第二三通阀开启,所述第三三通阀和所述第四三通阀关闭,所述第四风机工作,以使所述半导体换热模块的半导体冷却端与所述第一换热器相连;
当为冷却模式,且在所述第二电池的温度大于所述第一电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三通阀和所述第二三通阀关闭,所述第三三通阀和所述第四三通阀开启,所述第三风机工作,以使所述半导体换热模块的半导体冷却端与所述第二换热器相连。
25.如权利要求24所述的车载电池的温度调节方法,其特征在于,还包括:
当为加热模式,且所述第一电池的温度小于所述第二电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三通阀和所述第二三通阀开启,所述第三三通阀和所述第四三通阀关闭,所述第四风机工作,以使所述半导体换热模块的半导体发热端与所述第一换热器相连;
当为加热模式,且在所述第二电池的温度小于所述第一电池的温度时,控制所述半导体换热模块的供电方向,并控制所述第一三通阀和所述第二三通阀关闭,所述第三三通阀和所述第四三通阀开启,所述第三风机工作,以使所述半导体换热模块的半导体发热端与所述第二换热器相连。
26.如权利要求21所述的车载电池的温度调节方法,其特征在于,所述车载电池的温度调节系统还包括设置在所述空调风出风口和车厢之间的第三调节阀和车厢风机,所述方法还包括:
判断所述电池的温度是否达到第三预设温度;
如果达到所述第三预设温度,则减少所述第三调节阀的开度,同时增加所述第一调节阀和第二调节阀的开度;
如果未达到所述第三预设温度,则进一步判断车厢内温度是否达到空调设定温度;
如果达到所述空调设定温度,则减少所述第三调节阀的开度,同时增加所述第一调节阀和第二调节阀的开度;
如果未达到所述空调设定温度,则保持所述第一调节阀、第二调节阀和第三调节阀的开度不变。
27.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求9-26中任一项所述的车载电池的温度调节方法。
CN201710945825.4A 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节系统 Active CN109599635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710945825.4A CN109599635B (zh) 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710945825.4A CN109599635B (zh) 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节系统

Publications (2)

Publication Number Publication Date
CN109599635A true CN109599635A (zh) 2019-04-09
CN109599635B CN109599635B (zh) 2020-11-20

Family

ID=65956515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710945825.4A Active CN109599635B (zh) 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节系统

Country Status (1)

Country Link
CN (1) CN109599635B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112009198A (zh) * 2020-08-06 2020-12-01 北京新能源汽车股份有限公司 用于车辆的制冷系统和车辆
CN112038731A (zh) * 2020-07-30 2020-12-04 东风时代(武汉)电池系统有限公司 电池温度控制方法、电池管理控制器、系统及汽车
CN113660838A (zh) * 2021-08-20 2021-11-16 江苏中科新源半导体科技有限公司 一种半导体热堆精密控温液冷源系统
CN115732800A (zh) * 2022-11-29 2023-03-03 江苏区宇能源有限公司 一种车载储能制冷制热系统及其运行方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962000A (zh) * 2010-09-10 2011-02-02 奇瑞汽车股份有限公司 一种纯电动汽车动力电池的加热系统及其控制方法
US20110307131A1 (en) * 2009-01-09 2011-12-15 Roland Norden Device for the energy management of a vehicle
CN102315498A (zh) * 2010-06-30 2012-01-11 上海汽车集团股份有限公司 电池热管理控制方法
CN103253149A (zh) * 2013-05-30 2013-08-21 天津清源电动车辆有限责任公司 电动汽车空气循环电池箱温度管理系统
CN105356003A (zh) * 2015-10-19 2016-02-24 中国科学院广州能源研究所 电动汽车动力电池组与空调联合多模式热管理系统
CN106004338A (zh) * 2016-07-27 2016-10-12 宁波吉利汽车研究开发有限公司 汽车热管理系统及汽车
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN107089113A (zh) * 2017-03-31 2017-08-25 广东美芝精密制造有限公司 车辆空调设备及具有其的车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110307131A1 (en) * 2009-01-09 2011-12-15 Roland Norden Device for the energy management of a vehicle
CN102315498A (zh) * 2010-06-30 2012-01-11 上海汽车集团股份有限公司 电池热管理控制方法
CN101962000A (zh) * 2010-09-10 2011-02-02 奇瑞汽车股份有限公司 一种纯电动汽车动力电池的加热系统及其控制方法
CN103253149A (zh) * 2013-05-30 2013-08-21 天津清源电动车辆有限责任公司 电动汽车空气循环电池箱温度管理系统
CN105356003A (zh) * 2015-10-19 2016-02-24 中国科学院广州能源研究所 电动汽车动力电池组与空调联合多模式热管理系统
CN106004338A (zh) * 2016-07-27 2016-10-12 宁波吉利汽车研究开发有限公司 汽车热管理系统及汽车
CN106274372A (zh) * 2016-11-14 2017-01-04 吉林大学 具有电池热管理功能的热泵式汽车空调
CN107089113A (zh) * 2017-03-31 2017-08-25 广东美芝精密制造有限公司 车辆空调设备及具有其的车辆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038731A (zh) * 2020-07-30 2020-12-04 东风时代(武汉)电池系统有限公司 电池温度控制方法、电池管理控制器、系统及汽车
CN112009198A (zh) * 2020-08-06 2020-12-01 北京新能源汽车股份有限公司 用于车辆的制冷系统和车辆
CN113660838A (zh) * 2021-08-20 2021-11-16 江苏中科新源半导体科技有限公司 一种半导体热堆精密控温液冷源系统
CN113660838B (zh) * 2021-08-20 2023-11-17 安徽中科新源半导体科技有限公司 一种半导体热堆精密控温液冷源系统
CN115732800A (zh) * 2022-11-29 2023-03-03 江苏区宇能源有限公司 一种车载储能制冷制热系统及其运行方法
CN115732800B (zh) * 2022-11-29 2023-08-22 江苏区宇能源有限公司 一种车载储能制冷制热系统及其运行方法

Also Published As

Publication number Publication date
CN109599635B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN109599635A (zh) 车载电池的温度调节方法和温度调节系统
CN109599634A (zh) 车载电池的温度调节方法和温度调节系统
CN109599614A (zh) 车载电池的温度调节方法和温度调节系统
CN109599622A (zh) 车载电池的温度调节方法和温度调节系统
CN109599628A (zh) 车载电池的温度调节方法和温度调节系统
CN109599605B (zh) 车载电池的温度调节方法和温度调节系统
KR102406231B1 (ko) 차량 내 배터리의 온도 조절 시스템
CN109599613A (zh) 车载电池的温度调节方法和温度调节系统
CN109768347A (zh) 一种基于双循环的动力电池包热管理系统
CN109599608A (zh) 车载电池的温度调节系统
CN109599637A (zh) 车载电池的温度调节方法和温度调节系统
CN109599617B (zh) 车载电池的温度调节方法和温度调节系统
CN109599619B (zh) 车载电池的温度调节方法和温度调节系统
CN109599610B (zh) 车载电池的温度调节方法和温度调节系统
CN109599612A (zh) 车载电池的温度调节方法和温度调节系统
CN109599624B (zh) 车载电池的温度调节方法和温度调节系统
CN109599615A (zh) 基于半导体的车载电池温度调节方法和温度调节系统
CN110015193A (zh) 基于半导体的车载电池温度调节方法和温度调节系统
CN109599606A (zh) 车载电池的温度调节方法和温度调节系统
CN109599625A (zh) 基于半导体的车载电池温度调节方法和温度调节系统
TWI656045B (zh) 車載電池的溫度調節系統
CN109599620B (zh) 车载电池的温度调节系统
CN109599616B (zh) 车载电池的温度调节系统和方法
CN109599611B (zh) 车载电池的温度调节方法和温度调节系统
CN109599631B (zh) 车载电池的温度系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant