CN109592783A - 一种高负荷生态地滤污水处理系统 - Google Patents

一种高负荷生态地滤污水处理系统 Download PDF

Info

Publication number
CN109592783A
CN109592783A CN201910057015.4A CN201910057015A CN109592783A CN 109592783 A CN109592783 A CN 109592783A CN 201910057015 A CN201910057015 A CN 201910057015A CN 109592783 A CN109592783 A CN 109592783A
Authority
CN
China
Prior art keywords
layer
sewage
pipe
aproll
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910057015.4A
Other languages
English (en)
Inventor
马金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Zhong Ke Green Technology Co Ltd
Original Assignee
Hunan Zhong Ke Green Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Zhong Ke Green Technology Co Ltd filed Critical Hunan Zhong Ke Green Technology Co Ltd
Priority to CN201910057015.4A priority Critical patent/CN109592783A/zh
Publication of CN109592783A publication Critical patent/CN109592783A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本发明公开一种高负荷生态地滤污水处理系统,包括地滤池和位于所述地滤池内部的地下渗滤单元;地下渗滤单元自上而下包括:横向布置的多层散水层、与所述散水层交错布置的渗滤层以及位于底部的精滤层;其中:每个散水层内均埋设有用于布水布气的管网,管网由若干管道连接而成,管道在长度方向上间隔开设有若干喷射孔;管网通过进水管和污水输送设备连接,以将污水池内的污水输入散水层,管网通过进气管与送气设备连接;精滤层底部设置有至少一个排气管,排气管的端部向外伸出地滤池。该方案解决了通气不畅,布气不均导致的污水处理效率低的问题,多层供气提高负荷并实现高效污水处理。

Description

一种高负荷生态地滤污水处理系统
技术领域
本发明涉及污水处理技术领域,尤其是一种高效生态地滤污水处理设备,该方法主要用于生活污水、农村污水、雨水及低浓度有机废水的处理。
背景技术
污水土地处理方法主要包括污水快速渗滤、慢速渗滤、地表漫流、湿地技术和地下渗滤等五种类型。在这些方法中,地下渗滤技术不会影响地表的环境和景观,可建于城区和生活小区,在国内外具有广泛的应用前景。然而,传统的地下渗滤系统的污水导入不均匀,地下渗滤系统的占地面积大,污水在导入地下渗滤系统的过程中,由于需要提高污水处理的效率,不可避免的会加重地下渗滤系统的负荷,进而使得下渗过程中微生物不能对污水进行良好的氧化分解,现有的地下渗滤系统技术既不能提高污水处理的效率,又不能保证污水处理的质量,难以得到大规模的推广使用。
公开号为CN102432105B的专利文献公开了一种高效脱氮除磷地下渗滤污水处理方法,包括如下步骤:原污水经下渗区在下渗过程处理后,再经上渗区在上渗过程被处理,最后排出;其中,下渗区采用上下多层分别进原污水进行多层联合散水,最底层进入的原污水为反硝化反应提供碳源。但是由于多层布水提高了进水量,同时在下渗过程中以及硝化反应中需要消耗更多的氧气,该发明公开的处理方法采用中间散水层进气以提高供氧量,存在通气不畅,布气不均的缺陷。
发明内容
本发明提供一种高负荷生态地滤污水处理系统,用于克服现有技术中通气不畅,布气不均等缺陷,通过多点布气,提高气流的流动速度和均匀性,从而提高下渗过程中生化反应效率,进而提高负荷及污水处理效率。
为实现上述目的,本发明提出一种高负荷生态地滤污水处理系统,至少包括地滤池和位于所述地滤池内部的地下渗滤单元;
所述地下渗滤单元自上而下包括:横向布置的多层散水层、与所述散水层交错布置的渗滤层以及位于底部的精滤层;其中:
每个所述散水层内均埋设有用于布水布气的管网,所述管网由若干管道,所述管道在长度方向上间隔开设有若干喷射孔;
所述管网通过进水管和污水输送设备连接,以将污水池内的污水输入散水层,所述管网通过进气管与送气设备连接;
所述精滤层底部设置有至少一个排气管,所述排气管的端部向外伸出所述地滤池。
本发明还提供一种高负荷生态地滤污水处理系统,原污水经过多层散水层在散水层水平面方向上流动的同时,均向下流入各散水层下方的渗滤层进行过滤,拦截颗粒有机物,大颗粒有机物最终由生物接触氧化分解,同时原污水中的溶解有机物被附着在渗滤层的滤料表面的微生物膜吸附并分解,而进行氧化分解需要足够的氧气,通过自上而下排列的各散水层分别向各渗滤层布气,减小因气压沿流动方向呈梯度式递减给远离气源位置的渗滤层或精滤层内部造成布气不均的影响;相邻两所述散水层之间的气流方向相反且彼此交错,在位于相邻两所述散水层之间的渗滤层内部形成紊流,可消除背气面供氧不足问题;多个气流源呈层状分布均从各渗滤层顶部向下穿过渗滤层,废气经最底层的精滤层底部的排气管排出,使得渗滤层内部及精滤层内部的填料及滤料能够充分与氧气接触并进行氧化分解,提高下渗处理效率,从而提高污水处理效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为发明实施例提供的高负荷生态地滤污水处理系统的工艺流程图;
图2发明实施例提供的高负荷生态地滤污水处理系统中水流分布示意图;
图3为发明实施例提供的高负荷生态地滤污水处理系统中气流分布示意图;
图4为发明实施例提供的高负荷生态地滤污水处理系统的示意图;
图5为发明实施例提供的高负荷生态地滤污水处理系统中进水管与管网的连接示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种高负荷生态地滤污水处理系统。在本发明中的地滤污水处理系统适用于地下渗滤床和生物渗滤床。
实施例
请参照图1~3,本发明提供一种高负荷生态地滤污水处理系统,包括污水预处理池100、污水调节分配池200、地滤池、位于所述地滤池内部的地下渗滤单元300和生物滤池单元400;
所述地下渗滤单元300自上而下包括:横向(本实施例中包括水平面方向)布置的多层散水层、与所述散水层交错布置的渗滤层以及位于底部的精滤层;其中:每个所述散水层内均埋设有用于布水布气的管网,所述管网由若干管道纵横交叉连接形成,所述管道在长度方向上间隔开设有若干喷射孔;喷射孔的方向可以向上、向下、向两侧或者倾斜向前、倾斜向上、倾斜向下等方向,只要有利于水流和气流在散水层内部的渗透和流动即可满足使用要求;
本实施例中,原污水经污水预处理池100格栅沉淀去除颗粒污泥和厌氧预处理后进入污水调节分配池200,由置于污水调节分配池200的潜污泵定时将其输送入地下渗滤单元300,地下渗滤单元300对原污水采用多层联合散水,大部分污染物在下渗过程中被去除。地下渗滤单元300采用三层联合布水,地下渗滤单元300从上到下依次包括覆盖层301、阻根-密封层302、第一散水层303(内部埋设第一布水-布气层303a即第一管网)、第一渗滤层304、第二散水层305(内部埋设第二布水-布气层305a即第二管网)、第二渗滤层306、第三散水层307(内部埋设第三布水-布气层307a即第三管网)、第三渗滤层308、精滤层309;原污水经过第一布水-布气层、第二布水-布气层、第三布水-布气层向第一渗滤层304、第二渗滤层306、第三渗滤层308及精滤层309下渗的过程中在第一布水-布气层303a、第二布水-布气层305a、第三布水-布气层307a所在的水平面上蔓延流动,布满整个第一散水层303、第二散水层305和第三散水层307。
所述管网通过进水管310和污水输送设备(污水泵201)连接,以将污水调节分配池200内的污水借助管网输入各散水层,所述管网通过进气管311与送气设备(鼓风机315-1)连接;所述进水管的进水端与设置在污水预处理池内的污水输送设备出水口连接,所述污水输送设备间歇的向进水管供应待处理的污水;
所述精滤层309底部设置有至少一个排气管312。
作为一种实施方式,所述排气管312一端设置在所述精滤层侧壁上,另一端向外伸出所述地滤池,废气经地滤池旁边的排水检查井外排,或者从地滤池外部的地下土壤向上设管道外排;
作为另一种实施方式,所述排气管312自所述精滤层底部向上穿过地下渗滤单元从所述地滤池顶部向外伸出;当地滤池规模较大时,处理的废水量较大时,为了排气均匀无死角,需要布设多个排气管,此种结构排气管312不需要穿过地滤池的侧壁,施工简单,减少了地滤池的故障点。原污水经污水预处理池100进行预处理;原污水经格栅滤网沉淀去除颗粒污泥和厌氧预处理;经过预处理的污水进入污水调节分配池200;经污水泵20将污水调节分配池200内的污水间歇式送入各散水层;置于调节分配池的潜污泵201定时输送预处理的污水;污水经上下布置的多层散水层分别从不同高度在水平面方向蔓延流动的同时向下依次经渗滤层和精滤层进行下渗处理;原污水进水完成待各散水层的污水落干后,经各层所述散水层分别从不同高度同时在水平面方向及垂直水平面向下的方向多点均匀布气,气流穿过渗滤层和精滤层,废气从位于最底层的精滤层底部的排气孔排出;污水在渗滤层及精滤层309内生化反应后经生物滤池单元400下渗处理后排出。经生物滤池单元400对氮、磷等污染物进一步去除,最后排出。
为提高布水布气的均匀性,减少死角导致的分解和处理的不均衡,进而提高反应的效率;原污水在第一散水层303、第二散水层305和第三散水层307按1:1:1的比例进行分流;
参见图1,由于提高了污水渗入量,相应的,随之也要为大量污水在穿过渗滤层期间的生化反应提供足够的氧气;第一布水-布气层303a、第二布水-布气层305a、第三布水-布气层307a均进气,使整个地下渗滤系统的各层填料和滤料保持好氧环境;原污水的输入为间歇式,进气也为间歇式。第一布水-布气层303a、第二布水-布气层305a、第三布水-布气层307a的布水-布气管在布水间歇还被用作布气管对系统送气供氧,使整个地下渗滤系统的各层填料和滤料保持好氧环境,具有双重功能,结构紧凑。
自上而下排列的各散水层(包括第一散水层303、第二散水层305和第三散水层307)分别向各渗滤层(第一渗滤层304、第二渗滤层306和第三渗滤层308)布气,减小因气力沿流动方向呈梯度式递减给远离气源位置的渗滤层或精滤层内部造成布气不均的影响,多个气流源呈层状分布均从各渗滤层顶部向下穿过渗滤层,废气经最底层的精滤层309底部排出,使得渗滤层内部及精滤层内部的填料及滤料能够充分与氧气接触并进行氧化分解,提高下渗处理效率,从而提高污水处理效率。
生物滤池单元400由上往下依次是:碳源层、脱氮脱氮除磷层和集水层;地下渗滤单元300和生物滤池单元400上下紧密相连。地下渗滤单元的高度为1.3~1.5米,生物滤池单元的高度为0.5~0.6米。
优选地,为改变地下滤池内部气体的流动方向,在地下渗滤单元300中第一散水层303上方从上到下依次设置覆盖层301、阻根-密封层302,覆盖层301为原位土壤层、水泥硬化层或地砖层,也可以在表面种植地毯草;由HDPE膜和膨润土构成,上为HPDE厚度0.5mm,下黏土为膨润土,厚度为20~30mm。
第一层、第二层和第三层的布水-布气层主要由粒径为5~40mm的砾石组成,装填厚度为10~20cm;渗滤层主要由石英砂组成,饱和透水系数为0.1~1.0cm/s,装填厚度为10~20cm;精滤层主要由石英砂、原位土和沸石混合组成,饱和透水系数为0.01~0.1cm/s,装填厚度为20~40cm;碳源层主要由粒径为5~40mm的砾石组成,装填厚度为10cm;脱氮除磷层主要由红砖碎块和砾石混合组成,粒径为5~20mm,装填厚度为50~70cm;集水层主要由粒径为5~40mm的砾石组成,装填厚度为15厘米;生态滤池做防渗处理。经生物滤池对氮、磷等污染物进一步去除,最后排出;其中,地下渗滤单元位于生物滤池单元之上,两者紧密相连;原污水经地下渗滤单元处理后到达生物滤池单元,这时液面高度会上升,这个区域形成好氧厌氧交替区;好氧厌氧交替区的上方由于通气送氧状况良好,形成好氧区;好氧厌氧交替区的下方处于完全饱水带从而形成厌氧区。
生活污水经预处理后,上清液由潜污泵提升进入第一、第二和第三布水-布气层,污水流经填料层和渗滤层时,污染物会被填料和滤料表面的生物膜进行分解逐渐下降,大部分污水在重力作用下直接向下渗滤依次穿过渗滤层和精滤层,小部分污水还在散水层内横向运移的同时逐渐向下渗滤,最终也依次进入细滤层和精滤层。渗滤层拦截大部分颗粒有机物,精滤层拦截少颗粒有机物,颗粒有机物最终经由生物接触氧化分解。同时原污水中的溶解有机物被附着在渗滤层的滤料表面的微生物膜吸附并分解;NH4 +主要被带负电荷的矿物吸附,并通过硝化作用去除;磷则通过吸附和形成磷酸盐去除。来不及渗滤的污水当遇到穿透渗滤层的垂直碳源防堵管时,则从垂直碳源防堵管的导流孔进入水平碳源分布管网,最终直接进入生物滤池单元反应区为反硝化反应提供碳源。
在向下渗滤的过程中溶解有机物最终被微生物分解利用,有机氮则经由氨化作用转化为氨氮。新生成的和原生的氨氮被滤料吸附拦截,经硝化作用转化成硝氮和少部分亚硝氮。在落干期间对地下渗滤单元进行适量微动力送气,以保障氧气供应,形成好氧区,去除COD、BOD、NH4 +和分解污泥。原污水经渗滤层和精滤层处理后,除了主要以硝氮形态存在的氮和经过长时间运行后未能被吸附和沉淀的磷外,其它污染物大部分已被去除。
在本发明一实施例中,为提高供氧的均匀性,为使得气体能够在经各散水层同时在水平面上及垂直于水平面的方向上均匀布置,例如可以在每个散水层内铺设有平面状的管网,管网的布设例如呈格栅状或螺旋状或枝状(保护主管和若干一端连接在主管上的支管,主管上还连接若干毛细管等,类似树的枝干结构)中至少一种结构,管道上在平面所在的方向上布设若干孔,相邻的管道上在彼此靠近的方向上开设孔,孔的位置彼此错开,进气时能在散水层内部形成紊流,一方面减少散水层内部死角,使得散水层内部布气更加均匀,以提高气体与散水层的好氧生物处理效率。
相邻两散水层内部的管网布设位置在水平面上的投影重合,即管道在水平面上的投影重合,上下两根位置对应的管道在彼此靠近的方向上开设孔,孔的位置彼此错开,管道内进气时能在两散水层之间的渗滤层内部形成紊流,格栅状布置的管网能在渗滤层内部形成纵横交叉的若干垂直面上形成紊流,螺旋状布置的管网能在渗滤层内部形成呈螺旋状(又称为环状,环绕的形状可与散水层的具体形状相适配,例如方形的散水层可将管道设置呈方形环绕的形状,圆形的散水层可将管道设置呈圆形环绕的形状)绕设的垂直面上形成紊流,垂直面贯穿渗滤层的厚度,减少渗滤层内部死角,使得渗滤层布气更加均匀,以提高气体与渗滤层内部原污水的好氧生物处理效率;另一方面,相对于单向进气,延长了新鲜空气在渗水层内部的停留时间,使得好氧生物处理更充分;此外,双向进气能够提高气体穿透渗滤层的能力,提高新鲜空气中的氧气与渗滤层内部滤料的接触面积,进而加速氧气与渗透在滤料上有机物的好氧生物处理。
在本发明一优选实施例上,构成管网的管道向左、右两侧分别布设开孔,相邻两管道之间的气流方向相反且彼此交错,在水平面上均匀布气,散水层内形成紊流;同时相邻两层管道在朝向彼此的方向上分别布设开孔,相邻两管道之间的气流方向相反且彼此交错,在垂直面上均匀布气,渗滤层内形成紊流,为了保证气流整体上向下移动,位于最下层的管道还设置有向下的开孔,以使气流和水向最下层渗滤层流动。优选地,为保证三层布气的均匀性,在最上层管道上还布设向上的开孔,数量和大小与向下的开口相同,并与向下开孔的位置错开。在水流压力足够大的情况下,第一散水层303也可能存在向上布水的情况。
相对于现有的污水处理设备,本方案提出了一种在地下渗滤层内部形成紊流供气的具体设备,针对渗滤层内部填料颗粒较细,对气流运行造成的阻力较大的使用状况,提出多孔交错布气,通过人为干涉气流方向使得气流在流经渗滤层内部时能够形成紊流,通过气流之间以及气流与填料介质之间的彼此作用使得气流经过填料介质的绝大部分空隙,提高气体与填料介质的接触面积,进而实现气体与填料介质的充分接触,实现均匀布气,提高反应效率,并且切实可行。
本方案采用的机械式多层供氧,原污水进水完成待各散水层的污水落干后,经各层所述散水层分别从不同高度同时在水平面方向及垂直于水平面向下的方向多点均匀布风,气流穿过渗滤层和精滤层,废气从位于最底层的精滤层底部的排气孔排出;且在气温低时,对空气进行加温,确保微生物能正常有效地降解污染物。具有处理污水负荷高、占用场地面积小、不受气候条件限制的特点。此外本方案采用间歇运行,供氧利用效率高。
优选地,为了加速均匀布水布气,所述管道纵横交错呈格栅状布置,且在朝向渗滤层的方向(具体可向上、向下、向左右两侧四个方向)布设若干喷射孔。
且相邻两所述散水层之间的气流方向相反且彼此交错,在位于相邻两所述散水层之间的渗滤层内部形成紊流。参见图3,第一散水层303与第二散水层305之间以及第二散水层305与第三散水层307之间的气流方向相反,在气流压力较大时,分别从上下两个方向进入渗滤层内,会在第一渗滤层304、第二渗滤层306内部均形成紊流,渗滤层内部的滤料正面和背面均能接触空气,进而增加滤料与氧气的接触面积,使得渗滤层内部填料之间能够充分与氧气接触,从而加速渗滤层内部的氧化反应;提高下渗处理效率,从而提高污水处理效率。当气流压力较小时,渗滤层远离气源的一侧很难接触到空气,通过两个方向进气能够减小渗滤层内部进气不均匀的现象,相邻两所述散水层之间的气流方向相反且彼此交错,在位于相邻两所述散水层之间的渗滤层内部形成紊流,消除背气面(正对气流的面叫迎气面,背对气流的面叫背气面)供氧不足道问题,从而提高污水处理质量;第三渗滤层308及精滤层309的氧气通过第一渗滤层304、第二渗滤层306及第三层内的布水-布气管向下的气流叠加提供,废气经位于精滤层309底部两侧的排气管312排出。
优选地,参见图3,原污水经埋设于各所述散水层的管网呈多点状均匀地向渗滤层喷射;气流经埋设于各所述散水层的管网呈多点状均匀地向渗滤层喷射。优选地,所述管网呈格栅状布置,且在朝向渗滤层的方向布设若干喷射孔。优选地,包括至少三层散水层,各所述散水层的管网按照1:1:1的比例布水布气(可以根据实际情况进行比例调节)。运行模式为通过调节分配池由潜污泵间歇性进水,一天进水6~8次,由第一、第二和第三布水-布气层按1:1:1的比例分配,每层每次进水在4~5cm之间。在进水结束后30~60分钟、排气管以上的精滤层的滤料落干后,将第一、第二和第三布水-布气层管用作通气管,按1:1:1的比例分配,新鲜空气经由通气管均匀的进入第一、第二和第三布水-布气层后新鲜气体除进行横向运移外,第一层和第三层的空气主要为向下层滤料和填料中运移,第二层除了向下层滤料和填料移动外,还向上层滤料和填料中运移;同时将滤料和填料中含氧量降低的空气从地下渗滤单元下部的两个排气管最终排出,由此完成对滤料和填料的供氧。
参见图3,每一层所述散水层内的管网在水平面上的投影重合;所述管网上设有与所述进水管相连的进水口和与所述进气管相连的进气口,所述进水口和所述进气口设置在所述管网所在平面的中间位置。原污水分别自外向内流经各散水层;在散水层面积较大时,可采用经多个进水口自散水层边缘向其中心位置流动,提高污水下渗流速和下渗处理效率;具体可以在散水层内部的管网上设多个进水口,分别从管网的外缘处不同的方向进水,增加进水和布水的均匀性;
优选地,为了确保布水和布气的均匀性,所述喷射孔均匀布设在所述管道的顶部、底部及两侧位置。从各散水层分别向上、向下、向两侧渗入与各散水层间隔布置的渗滤层进行多次渗滤;
水流方向参见图3中的箭头方向;第一散水层303内部的管网各管道上开设的喷射孔分别朝向两侧及向上、向下,各方向的喷射孔用于水在第一散水层所在的平面内流动,并同时向第一渗滤层渗滤;第二散水层305内部的管网各管道上开设的喷射孔分别朝向两侧、向上及向下,各方向的喷射孔用于水在第二散水层所在的平面内流动,并同时向第二渗滤层渗滤;第三散水层307内部的管网各管道上开设的喷射孔分别朝向两侧、向上及向下,各方向的喷射孔用于水在第三散水层所在的平面内流动,并同时向第三渗滤层及精滤层渗滤;经最后一次渗滤后进入精滤层进行精滤。大部分污染物在下渗过程中被去除。
优选地,为提高地下渗滤过程中微生物活性,所述送气设备为鼓气机,所述进气管靠近送气设备的一端设置有加热器,所述送气设备在污水输送设备不工作的时间段内向进气管输送外界空气。
首先检测送气设备315-1的环境温度,启动温控设备315-2根据所述送气设备环境温度对送入各散水层的气的温度进行调控;根据送气设备的环境温度以及维持微生物所需要的温度环境(预设值)能够计算出来送气所需的温度,进而将送气设备的环境温度调节到送气所需的温度;调控到预设温度的气经送气设备间歇式送入各散水层;在落干期间适量通气,以保障对地下渗滤单元的氧气供应,并且在低温条件下对通入的空气适当加温,以保持微生物的活性。通常在进水完成后待各散水层内的污水落干后,启动送气设备;通常在进水结束后30~60分钟、排气管以上的精滤层的滤料落干后启动送气设备;
在布气过程中,气流分别自外向内流经各散水层;
参见图4,在散水层面积较大时,可采用经多个进气口自散水层边缘向其中心位置流动,提高供气流速和下渗处理效率;具体可以在散水层内部的管网上设多个进气口与送气设备连接,分别从管网的外缘处不同的方向进气,具体参见图5,气流经进水口的连接管道进入各散水层内部的布水-布气管网(格栅状)时,分别从长度方向上的两个管道中点P、Q处进入布水-布气管网,两个方向同时进气,增加进水和布水的均匀性增加进气和布气的均匀性;
气流方向参见图4中的箭头方向,气流从各散水层分别向上、向下、向两侧流经与各散水层间隔布置的渗滤层。第一散水层303内部的管网各管道上开设的喷射孔分别朝向两侧及向下,两侧的喷射孔用于气在第一散水层所在的平面内流动,向下的喷射孔用于气向第一渗滤层304流动,向上的喷射孔用于气在第一散水层向上流动,受到阻根-密封层的阻挡后反向向下流动;第二散水层305内部的管网各管道上开设的喷射孔分别朝向两侧、向上及向下,两侧的喷射孔用于气在第二散水层所在的平面内流动,向上的喷射孔用于气向第一渗滤层304流动(由于水流压力较小,难于克服重力向上流动,而气压相对较大,且重力较小,能够克服重力向上流动),向下的喷射孔用于气向第二渗滤层306流动;第三散水层307内部的管网各管道上开设的喷射孔分别朝向两侧、向上及向下,两侧的喷射孔用于气在第三散水层所在的平面内流动,向上的喷射孔用于气向第二渗滤层306流动(由于水流压力较小,难于克服重力向上流动,而气压相对较大,且重力较小,能够克服重力向上流动),向下的喷射孔用于气向第三渗滤层308及精滤层流动;
通过调节分配池由潜污泵间歇性进水,一天进水6~8次,由第一、第二和第三布水-布气层按1:1:1的比例分配,每层每次进水在4~5cm之间。在进水结束后30~60分钟、排气管以上的精滤层的滤料落干后,将第一、第二和第三布水-布气层管用作通气管,按1:1:1的比例分配,新鲜空气经由通气管均匀的进入第一、第二和第三布水-布气层后新鲜气体除进行横向运移外,主要为向下层滤料和填料中运移,同时将滤料和填料中含氧量降低的空气从地下渗滤单元下部的两个排气管312最终排出,由此完成对滤料和填料的供氧。
精滤后的污水与经碳源管网均匀步入碳源层401的原污水混合;
经碳源管引入的原污水为反硝化反应提供碳源。在地下渗滤单元三个的渗滤层中设置垂直碳源防堵管305-2,碳源管网埋设于碳源层401内,呈格栅状,能够向水平方向的同时向下渗透碳源层401并进入反应区403的脱氮除磷层,不仅为反硝化反应提供碳源,而且还确保了系统的湿/干比稳定性,有效防止地滤单元发生堵塞;在生物滤池单元碳源层设置水平碳源分布管402,保证了系统良好的脱氮能力;实现系统的长期稳定高效运行,从而保证了系统出水各项指标能够长期稳定达到或优于GB18918-2002一级A类排放标准。
向下进入反应区403进行反硝化脱氮反应;富含硝氮的水与由垂直碳源管305-2引入的原污水经水平碳源管402在生物滤池的碳源层401混合后一起向下渗滤进入好氧厌氧交替区,此时,此区浸润线会相应增高10cm左右,在这种好氧和厌氧状态下,原污水中的有机物主要被用于反硝化反应,而不是被好氧微生物分解;
位于所述碳源层401上方的水经回流管314回流进入污水调节分配池200。未被利用的有机物在好氧条件下分解转化,不会因为积累而造成堵塞。通过垂直碳源防堵管进入水平碳源分布管的污水,直接进入生物滤池单元。随着系统在较高的负荷条件下长期运行,地滤单元中各渗滤层的渗透性将缓慢降低,通过垂直碳源防堵管进入生物滤池的水量将逐渐增大,从而对地滤单元所承受的污水负荷进行自动反馈调节,使地滤单元的湿/干比保持基本稳定,保障系统的长期稳定运行,抗冲击负荷的能力也更强。此外,富含硝氮的水经回流管自流进入调节分配池,由于经过好氧地下渗滤处理的废水中含少量溶解氧和大量硝酸盐,这些硝酸盐是由前一次进水时吸附的氨氮氧化而成,致使调节分配池内优势菌种为异养反硝化菌,在异养反硝化菌的作用下,以Ν03 —Ν作电子受体,以废水中的有机碳作电子供体,将Ν03 —Ν还原成N2,同时还降低调节分配池废水的COD,将有机碳氧化成CO2,在实现反硝化脱氮的同时,进一步去除废水中的残留有机物,污水穿过好氧厌氧交替区后将进入完全饱水带,厌氧区为厌氧细菌、兼氧细菌提供了绝佳的生存环境,从而保证了反硝化反应进一步的进行。
脱氮后的水完成净化经集水排水层404排出;集水排水层404内埋设沟槽状集水管405-1,最后经排水管405在水压作用下经排水出口405-2排出;生物滤池装填由粒径为5~10mm的硅质、铁质碎石构成的主填料,此外还包括体积比为5%~10%的主要由植物枝叶、谷皮、钙质组成的附加填料,这些混合填料被水淹没(饱和),氧气供应受限,从而形成兼性厌氧环境。富含硝氮的水经硝化作用形成的NO3 (少量NO2 )可以在深度处理的兼性厌氧环境下通过反硝化作用转化成N2,达到脱氮的目的。
反硝化反应所需有机碳源部分来自地滤单元的碳源管原污水、植物枝叶和谷皮,此外填料中的生物活性组分(植物枝叶、谷皮等)是微生物寄生场所,也为促进反硝化作用补充有机碳源。生物滤池反应区装填有含钙和含铁较高的材料与砾石的混合物,够进一步将进入反应区的残留PO4 则通过吸附、表面反应和沉淀作用形成磷酸盐进一步去除。综上所述,本发明通过将地下渗滤好氧处理与生物滤池处理兼性厌氧处理有机结合,实现了地下渗滤单元与生物滤池处理单元之间的耦合协同作用。
经检测符合排放标准后进行消毒以供城市杂用水。污水处理系统系统占地面积50m2,系统水力负荷为100cm/d,每天进水8次。试验污水为长沙铜官窑研究中心的生活污水,经第三方检测机构检测分析,处理后出水中的COD、BOD、氨氮、总氮和总磷的浓度范围分别为13.2mg/L、3.6mg/L、1.43mg/L、3.29mg/L和0.04mg/L,处理出水满足国家城镇污水处理厂污染物排放标准(GB18918-2002)中一级A类排放标准。尤其适用于城市小区、小城镇及农村地区等小规模生活污水的处理,建设成本低、日常无需专门的维护、运行成本低,吨污水处理成本低于0.1元,经处理的污水加氯消毒后完全满足城市杂用水水质标准。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

1.一种高负荷生态地滤污水处理系统,至少包括地滤池和位于所述地滤池内部的地下渗滤单元;其特征在于:
所述地下渗滤单元自上而下包括:横向布置的多层散水层、与所述散水层交错布置的渗滤层以及位于底部的精滤层;其中:
每个所述散水层内均埋设有用于布水布气的管网,所述管网由若干管道连接而成,所述管道在长度方向上间隔开设有若干喷射孔;
所述管网通过进水管和污水输送设备连接,以将污水池内的污水输入散水层,所述管网通过进气管与送气设备连接;
所述精滤层底部设置有至少一个排气管。
2.如权利要求1所述的高负荷生态地滤污水处理系统,其特征在于,所述管道纵横交错呈格栅状布置,且在向上、向下、向两侧的方向布设若干喷射孔。
3.如权利要求1所述的高负荷生态地滤污水处理系统,其特征在于,相邻两所述散水层内部的管网之间的喷射孔方向相反且彼此交错布置。
4.如权利要求3所述的高负荷生态地滤污水处理系统,其特征在于,所述所述喷射孔均匀布设在所述管道的顶部、底部及两侧位置。
5.如权利要求1所述的高负荷生态地滤污水处理系统,其特征在于,所述散水层和所述渗滤层分别包括三层;各所述散水层的管网按照1:1:1的比例布水布气。
6.如权利要求5所述的高负荷生态地滤污水处理系统,其特征在于,每一层所述散水层内的管网在水平面上的投影重合;
所述管网上设有与所述进水管相连的进水口和与所述进气管相连的进气口,所述进水口和所述进气口设置在所述管网所在平面的中间位置。
7.如权利要求6所述的高负荷生态地滤污水处理系统,其特征在于,所述进水管的进水端与设置在污水预处理池内的污水输送设备出水口连接,所述污水输送设备间歇的向进水管供应待处理的污水。
8.根据权利要求6所述的高负荷生态地滤污水处理系统,其特征在于,所述送气设备为鼓气机,所述进气管靠近送气设备的一端设置有加热器,所述送气设备在污水输送设备不工作的时间段内向进气管输送外界空气。
9.根据权利要求1~8任一项所述的高负荷生态地滤污水处理系统,其特征在于,最上层的所述散水层的上方设有用于防止污水和空气泄露的阻根密封层,所述阻根密封层的上方设有覆盖层。
10.根据权利要求9所述的高负荷生态地滤污水处理系统,其特征在于,所述精滤层的侧壁底部与回流管连接,所述回流管的另一端与污水预处理池连接。
CN201910057015.4A 2019-01-22 2019-01-22 一种高负荷生态地滤污水处理系统 Pending CN109592783A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910057015.4A CN109592783A (zh) 2019-01-22 2019-01-22 一种高负荷生态地滤污水处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910057015.4A CN109592783A (zh) 2019-01-22 2019-01-22 一种高负荷生态地滤污水处理系统

Publications (1)

Publication Number Publication Date
CN109592783A true CN109592783A (zh) 2019-04-09

Family

ID=65966462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910057015.4A Pending CN109592783A (zh) 2019-01-22 2019-01-22 一种高负荷生态地滤污水处理系统

Country Status (1)

Country Link
CN (1) CN109592783A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075547A (en) * 1980-05-02 1981-11-18 Mckeown Jarvie Apparatus for cultivating micro organisms
CN101759280A (zh) * 2010-01-27 2010-06-30 山东省农业科学院土壤肥料研究所 一种微动力污水处理系统及方法
CN102432105A (zh) * 2011-11-09 2012-05-02 中国科学院广州地球化学研究所 一种高效脱氮除磷地下渗滤污水处理方法及装置
CN103641270A (zh) * 2013-11-20 2014-03-19 广州中科院地球化学研究科技开发有限公司 一种高负荷地下渗滤污水处理复合系统
CN204752314U (zh) * 2015-05-14 2015-11-11 中国电建集团贵阳勘测设计研究院有限公司 一种侧向曝气生物滤池结构
CN106006962A (zh) * 2016-05-18 2016-10-12 上海立泉环境科技有限公司 一种曝气生物滤池装置
CN205740678U (zh) * 2016-06-21 2016-11-30 江西省永安建设有限公司 高效经济型多介质地下渗滤分散生活类污水处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2075547A (en) * 1980-05-02 1981-11-18 Mckeown Jarvie Apparatus for cultivating micro organisms
CN101759280A (zh) * 2010-01-27 2010-06-30 山东省农业科学院土壤肥料研究所 一种微动力污水处理系统及方法
CN102432105A (zh) * 2011-11-09 2012-05-02 中国科学院广州地球化学研究所 一种高效脱氮除磷地下渗滤污水处理方法及装置
CN103641270A (zh) * 2013-11-20 2014-03-19 广州中科院地球化学研究科技开发有限公司 一种高负荷地下渗滤污水处理复合系统
CN204752314U (zh) * 2015-05-14 2015-11-11 中国电建集团贵阳勘测设计研究院有限公司 一种侧向曝气生物滤池结构
CN106006962A (zh) * 2016-05-18 2016-10-12 上海立泉环境科技有限公司 一种曝气生物滤池装置
CN205740678U (zh) * 2016-06-21 2016-11-30 江西省永安建设有限公司 高效经济型多介质地下渗滤分散生活类污水处理装置

Similar Documents

Publication Publication Date Title
CN102432105B (zh) 一种高效脱氮除磷地下渗滤污水处理方法及装置
CN105236671B (zh) 一种生态绿地污水处理系统及其方法
CN100482601C (zh) 一种通气折流式人工湿地模拟装置
CN103641270B (zh) 一种高负荷地下渗滤污水处理复合系统
CN104556378B (zh) 一种农村生活污水的一体化处理系统及其工艺
CN110171906A (zh) 一种流域性稀土矿山尾水处理系统及处理工艺
CN109384315B (zh) 一种强化脱氮除磷高负荷人工湿地系统
CN208292826U (zh) 多过程耦合多级人工湿地系统
CN105859039A (zh) 一种无动力高负荷地下渗滤污水处理复合系统及方法
CN100569670C (zh) 复合垂直下行流人工湿地处理污水的方法及其处理系统
CN104828946A (zh) 一种强化反硝化的生物催化填料地下渗滤系统
CN202379844U (zh) 一种高效脱氮除磷地下渗滤污水处理装置
CN109592788A (zh) 一种高效脱氮生态地滤污水处理系统
CN110127959B (zh) 一种人工湿地水质净化方法
CN205368030U (zh) 一种氨氮与总氮强化去除的垂直潜流人工湿地系统
CN111704241A (zh) 一种分区循环式土壤渗滤系统
CN109437393A (zh) 一种高负荷生态地滤污水处理方法
CN109592787A (zh) 一种高效脱氮生态地滤污水处理方法
CN206051786U (zh) 多级生态组合的污水深度处理系统
CN204874019U (zh) 生态沟净水系统
CN104098230B (zh) 一种组装式固定化微生物人工湿地系统
CN109592783A (zh) 一种高负荷生态地滤污水处理系统
CN112408705B (zh) 一种具有潮汐流渗滤系统的生活污水处理系统及处理工艺
CN104085999B (zh) 一种可组装式人工湿地系统
CN107529525A (zh) 一种农村生活污水处理方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190409