CN109583639A - 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法 - Google Patents

一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法 Download PDF

Info

Publication number
CN109583639A
CN109583639A CN201811398145.6A CN201811398145A CN109583639A CN 109583639 A CN109583639 A CN 109583639A CN 201811398145 A CN201811398145 A CN 201811398145A CN 109583639 A CN109583639 A CN 109583639A
Authority
CN
China
Prior art keywords
floating material
calculated
sea cave
hole
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811398145.6A
Other languages
English (en)
Other versions
CN109583639B (zh
Inventor
常方强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201811398145.6A priority Critical patent/CN109583639B/zh
Publication of CN109583639A publication Critical patent/CN109583639A/zh
Application granted granted Critical
Publication of CN109583639B publication Critical patent/CN109583639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法:(1)确定海蚀洞的洞高、洞宽和洞深;(2)确定海蚀洞洞周岩土体的不排水抗剪强度;(3)确定漂浮物的密度、等效长、等效宽和等效高;(4)确定强波浪的作用时间T0、周期和流速;(5)计算海蚀洞的等效半径;(6)计算海蚀洞掌子面面积和侧面面积,(7)计算漂浮物的质量;(8)计算漂浮物对海蚀洞洞周的冲击压力;(9)计算漂浮物一个最小侧面和中等侧壁分别对海蚀洞洞周的冲击应力(10)计算波浪总作用次数N;(11)计算漂浮物在掌子面上的冲击次数;(12)计算漂浮物在海蚀洞侧壁上的冲击次数;(12)计算波浪作用时间内漂浮物对掌子面的磨蚀量和对洞周侧壁的磨蚀量。

Description

一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法
技术领域
本发明涉及海岸带地质灾害领域,具体是指一种用于预测波浪携带漂浮物对海蚀洞磨蚀量的方法。
背景技术
海蚀洞是发育在海崖上常见的一种地貌现象,一般发育在海崖的软弱部位,包括软弱夹层、软弱岩脉和软弱风化带等。正常海况下海蚀洞的尺寸大小不会发生变化,而在极端海况,如强台风或风暴潮引起的强波浪作用下,海蚀洞的洞周不断受到侵蚀,海蚀洞规模越来越大。在我国,海岸带通常堆积有一些垃圾,如木材、泡沫和瓶子等,这些垃圾在极端海况下漂浮在水面,随着波浪的往复运动不断撞击、摩擦海蚀洞,对海蚀洞产生较强的磨蚀作用,这种磨蚀作用对海蚀洞的发育具有重要影响,而目前这种漂浮物对海蚀洞的磨蚀量究竟有多大,尚无理论方法进行预测分析,有鉴于此,本发明提出一种用于预测波浪携带漂浮物对海蚀洞磨蚀量的方法,具有使用方便和操作性较强的优点。
发明内容
本发明的目的在于提供一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法,具有使用方便和操作性较强的优点。
为实现上述目的,本发明提供了一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法,包括如下步骤:
(1)确定海蚀洞的初步几何尺寸,包括洞高H、洞宽D和洞深;
(2)确定海蚀洞洞周岩土体的不排水抗剪强度cu
(3)确定漂浮物的密度ρ、等效长L1、等效宽D1和等效高H1
(4)确定强波浪的作用时间T0、周期T和流速v;
(5)按下式计算海蚀洞的等效半径R,
(6)按下式计算海蚀洞掌子面面积A1和侧面面积A2
A2=(πR+2R)L (3)
(7)按下式计算漂浮物的质量m,
m=L1D1H1ρ (4)
(8)按下式计算漂浮物对海蚀洞洞周的冲击压力F,
(9)按下式计算漂浮物一个最小侧面和中等侧壁分别对海蚀洞洞周的冲击应力σ1、σ2
(10)按下式计算波浪总作用次数N,
其中,T0单位为h;
(11)按下式计算漂浮物在掌子面上的冲击次数,其中漂浮物最小侧面和中等侧面对掌子面的冲击次数N1、N2分别为,
(12)按下式计算漂浮物在海蚀洞侧壁上的冲击次数,其中漂浮物最小侧面和中等侧面对侧面的冲击次数N3、N4分别为,
(13)按下式计算波浪作用时间内漂浮物对掌子面的磨蚀量M1和对洞周侧壁的磨蚀量M2
式中,f为漂浮物与洞周的摩擦系数,λ为系数。
相较于现有技术,本发明的技术方案具备以下有益效果:
本发明的提供了一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法,具有使用方便和操作性较强的优点。
具体实施方式
下文通过具体实施例对本发明的技术方案作进一步说明。
一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法,包括如下步骤:
(1)确定海蚀洞的初步几何尺寸,包括洞高H、洞宽D和洞深;
(2)确定海蚀洞洞周岩土体的不排水抗剪强度cu
(3)确定漂浮物的密度ρ、等效长L1、等效宽D1和等效高H1
(4)确定强波浪的作用时间T0、周期T和流速v;
(5)按下式计算海蚀洞的等效半径R,
(6)按下式计算海蚀洞掌子面面积A1和侧面面积A2
A2=(πR+2R)L (3)
(7)按下式计算漂浮物的质量m,
m=L1D1H1ρ (4)
(8)按下式计算漂浮物对海蚀洞洞周的冲击压力F,
(9)按下式计算漂浮物一个最小侧面和中等侧壁分别对海蚀洞洞周的冲击应力σ1、σ2
(10)按下式计算波浪总作用次数N,
其中,T0单位为h;
(11)按下式计算漂浮物在掌子面上的冲击次数,其中漂浮物最小侧面和中等侧面对掌子面的冲击次数N1、N2分别为,
(12)按下式计算漂浮物在海蚀洞侧壁上的冲击次数,其中漂浮物最小侧面和中等侧面对侧面的冲击次数N3、N4分别为,
(13)按下式计算波浪作用时间内漂浮物对掌子面的磨蚀量M1和对洞周侧壁的磨蚀量M2
式中,f为漂浮物与洞周的摩擦系数,λ为系数。
某地岩质海崖,崖高主要位于11~15m之间,上部为厚度1m左右的花岗岩风化残积土,下部为不同风化程度的花岗岩,崖面陡立。岩体节理裂隙发育,海崖纵穿几条岩脉,风化程度较高,发育了几个海蚀洞。在海滩上散布有木板、原木、泡沫和塑料瓶等垃圾,在波浪作用下,这些垃圾容易进入海蚀洞内,对洞周进行模式,采用本发明的方法对本海崖某个海蚀洞的磨蚀量进行预测。
采用测量装备现场量测了某海蚀洞的洞高H=1.4m,洞宽D=2.1m,洞深L =1.5m;采用十字板剪切仪测得海蚀洞洞周岩土体的不排水抗剪强度cu=120kPa;漂浮物为一根木板,其密度ρ=800kg/m3,等效长L1=1.03m,等效宽D1=0.11m,等效高H1=0.01m;强波浪的作用时间T0=6h,周期T=5s,流速 v=1.0m/s。漂浮物与洞周的摩擦系数f=0.3,系数λ=1.6。采用本发明的预测方法,计算得到该海蚀洞在上述波浪作用时间内,木板对掌子面的磨蚀量为 78.2mm,对侧壁的磨蚀量为23.5mm。
上述海蚀洞几何条件、不排水抗剪强度及波浪条件不变,漂浮物为一塑料制品,其密度ρ=24kg/m3,等效长L1=0.50m,等效宽D1=0.11m,等效高H1=0.08m,漂浮物与洞周的摩擦系数f=0.2。采用本发明的预测方法,计算得到该海蚀洞在上述波浪作用时间内,塑料制品对掌子面的磨蚀量为9.1mm,对侧壁的磨蚀量为1.8mm。
以上仅为本发明的优选实施例,但本发明的范围不限于此,本领域的技术人员可以容易地想到本发明所公开的变化或技术范围。替代方案旨在涵盖在本发明的范围内。因此,本发明的保护范围应由权利要求的范围确定。

Claims (1)

1.一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法,其特征在于包括如下步骤:
(1)确定海蚀洞的初步几何尺寸,包括洞高H、洞宽D和洞深;
(2)确定海蚀洞洞周岩土体的不排水抗剪强度cu
(3)确定漂浮物的密度ρ、等效长L1、等效宽D1和等效高H1
(4)确定强波浪的作用时间T0、周期T和流速v;
(5)按下式计算海蚀洞的等效半径R,
(6)按下式计算海蚀洞掌子面面积A1和侧面面积A2
A2=(πR+2R)L (3)
(7)按下式计算漂浮物的质量m,
m=L1D1H1ρ (4)
(8)按下式计算漂浮物对海蚀洞洞周的冲击压力F,
(9)按下式计算漂浮物一个最小侧面和中等侧壁分别对海蚀洞洞周的冲击应力σ1、σ2
(10)按下式计算波浪总作用次数N,
其中,T0单位为h;
(11)按下式计算漂浮物在掌子面上的冲击次数,其中漂浮物最小侧面和中等侧面对掌子面的冲击次数N1、N2分别为,
(12)按下式计算漂浮物在海蚀洞侧壁上的冲击次数,其中漂浮物最小侧面和中等侧面对侧面的冲击次数N3、N4分别为,
(13)按下式计算波浪作用时间内漂浮物对掌子面的磨蚀量M1和对洞周侧壁的磨蚀量M2
式中,f为漂浮物与洞周的摩擦系数,λ为系数。
CN201811398145.6A 2018-11-22 2018-11-22 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法 Active CN109583639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811398145.6A CN109583639B (zh) 2018-11-22 2018-11-22 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811398145.6A CN109583639B (zh) 2018-11-22 2018-11-22 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法

Publications (2)

Publication Number Publication Date
CN109583639A true CN109583639A (zh) 2019-04-05
CN109583639B CN109583639B (zh) 2021-04-30

Family

ID=65923361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811398145.6A Active CN109583639B (zh) 2018-11-22 2018-11-22 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法

Country Status (1)

Country Link
CN (1) CN109583639B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697858A (zh) * 2013-12-16 2014-04-02 华侨大学 一种海崖蚀退尺度测量装置及其测量方法
CN104484710A (zh) * 2014-11-19 2015-04-01 华侨大学 一种波浪作用导致的软质海崖崖面侵蚀量预测方法
WO2017016895A1 (en) * 2015-07-30 2017-02-02 Schlumberger Technology Corporation Assignment of systems tracts
CN106759062A (zh) * 2016-11-25 2017-05-31 华侨大学 一种沙滩侵蚀量预测方法
CN108731621A (zh) * 2018-05-02 2018-11-02 华侨大学 在台风波浪作用下海蚀洞洞高发育实时测量装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697858A (zh) * 2013-12-16 2014-04-02 华侨大学 一种海崖蚀退尺度测量装置及其测量方法
CN104484710A (zh) * 2014-11-19 2015-04-01 华侨大学 一种波浪作用导致的软质海崖崖面侵蚀量预测方法
WO2017016895A1 (en) * 2015-07-30 2017-02-02 Schlumberger Technology Corporation Assignment of systems tracts
CN106759062A (zh) * 2016-11-25 2017-05-31 华侨大学 一种沙滩侵蚀量预测方法
CN108731621A (zh) * 2018-05-02 2018-11-02 华侨大学 在台风波浪作用下海蚀洞洞高发育实时测量装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.E.VONK ET AL: "Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia", 《NATURE》 *
常方强 等: "波浪作用下黄河口沉积物液化导致的灾害现象", 《海洋地质与第四纪地质》 *

Also Published As

Publication number Publication date
CN109583639B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Robinson Marine erosive processes at the cliff foot
Stephenson et al. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand: Part one: the role of waves
Trenhaile et al. The role of wave erosion on sloping and horizontal shore platforms in macro-and mesotidal environments
Budetta et al. A methodology for the study of the relation between coastal cliff erosion and the mechanical strength of soils and rock masses
Sunamura Rocky coast processes: with special reference to the recession of soft rock cliffs
Larson et al. Temporal and spatial scales of beach profile change, Duck, North Carolina
Bullock et al. Violent breaking wave impacts. Part 1: Results from large-scale regular wave tests on vertical and sloping walls
Porter et al. Shore platform downwearing in eastern Canada: Micro-tidal Gaspé, Québec
Dickson et al. The influence of rock resistance on coastal morphology around Lord Howe Island, southwest Pacific
Zanuttigh et al. Statistical characterisation of extreme overtopping wave volumes
Bonath et al. Morphology, internal structure and formation of ice ridges in the sea around Svalbard
Swenson et al. Bluff recession rates and wave impact along the Wisconsin coast of Lake Superior
Stark et al. Pebble and cobble transport on a steep, mega-tidal, mixed sand and gravel beach
Shih et al. Wave run-up and sea-cliff erosion
CN109583639A (zh) 一种波浪携带漂浮物对海蚀洞磨蚀量的预测方法
Bullock et al. Field and laboratory measurement of wave impacts
Li et al. Experimental study of the ice loads on multi-piled oil piers in Bohai Sea
Trenhaile Modeling shore platforms: present status and future developments
Lemee et al. Review of ridge failure against the confederation bridge
Poncet et al. In-situ measurements of energetic depth-limited wave loading
Davies et al. Controls of shore platform width: the role of rock resistance factors at selected sites in Japan and Wales, UK
Fissel et al. Automated detection of hazardous sea ice features from upward looking sonar data
Cheng et al. Experimental study on a new type floating breakwater
Fissel et al. Advances in marine ice profiling for oil and gas applications
Spyrou et al. Experimental and numerical simulation of cross-shore morphological processes in a nourished beach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant