CN109581444B - 一种gps轨迹分段及语义标注方法 - Google Patents

一种gps轨迹分段及语义标注方法 Download PDF

Info

Publication number
CN109581444B
CN109581444B CN201811294524.0A CN201811294524A CN109581444B CN 109581444 B CN109581444 B CN 109581444B CN 201811294524 A CN201811294524 A CN 201811294524A CN 109581444 B CN109581444 B CN 109581444B
Authority
CN
China
Prior art keywords
track
point
matrix
gps
semantic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811294524.0A
Other languages
English (en)
Other versions
CN109581444A (zh
Inventor
王欣
黄龙飞
高原
冯筠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN201811294524.0A priority Critical patent/CN109581444B/zh
Publication of CN109581444A publication Critical patent/CN109581444A/zh
Application granted granted Critical
Publication of CN109581444B publication Critical patent/CN109581444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种GPS轨迹分段及语义标注方法,该方法包括两个部分,即为语义轨迹分段和基于本体模型的语义标注。首先,应用自顶向下的方法将原始GPS轨迹分割为若干关于用户移动条件一致的连续子轨迹;然后执行自底向上的推理和注释过程来创建层次化的语义片段或现实生活情景。将自顶向下完成轨迹分段和自底向上实现语义推理相结合的SEMANTIC‑SEG框架不仅提高了语义分段任务效率,同时具有高度的灵活性。

Description

一种GPS轨迹分段及语义标注方法
技术领域
本发明涉及轨迹分段及标注方法,具体涉及一种GPS轨迹分段及语义标注方法。
背景技术
全球定位系统技术的发展和移动互联设备的广泛使用,产生了大量记载人类移动信息的GPS轨迹数据。如何从GPS轨迹大数据中分析和理解用户的移动信息,成为大数据分析领域研究的热点。
轨迹分段是轨迹数据处理的基本问题,该技术将一条记载用户移动信息的长轨迹分割为短的子轨迹片段,从而便于进一步实现轨迹查询、轨迹分类和轨迹分析。近年来,随着数据分析领域技术的发展和应用领域需求的变化,轨迹分段的任务已经从以数据精简为目的的简单分割,转变为以语义分析为导向的分段,即研究:如何将连续GPS点组成的原始轨迹分割为能够解释用户出行的有意义的语义片段的研究。
根据轨迹语义分段的目标,原始GPS的语义分段任务可以分解为两个子问题,即:轨迹分段和轨迹语义丰富。
轨迹分段是将原始轨迹划分为连续多个且各自同质的子轨迹段。现有的方法通常采用基于阈值的分割技术实现。包括:(1)通过预先设定的速度、距离、时间间隔等指标的阈值,定义用户的运动状态,识别出的停留位置,从而实现轨迹分割;(2)根据用户出行的交通方式,使用多种不同轨迹时空标准(如轨迹速度、密度、角度和采样率等),定义用户乘坐多种交通工具时所处的状态,识别出交通换乘点等语义信息,并依此作为分段依据。
轨迹分段方法虽然已经取得了一定的进展,但是上述方法均需要预先定义阈值。如果随机选取阈值,则导致算法主观性强,缺乏合理解释。因此,一些研究尝试通过学习给出适应性的阈值范围,但是,学习的方法需要预先给定合理的学习样本,然而,实际应用中,很难得到一个有标签的数据集用于监督性学习得到阈值,并且,不同数据集上使用时需要重新学习参数,因此,基于阈值的算法缺乏通用性。
轨迹的语义推理和信息标注是借助丰富的外部信息推理实现原始轨迹中蕴含的用户行为解释过程。该技术需要集成不同种类的数据源(时空,轨迹,地理,领域知识等),对原始轨迹进行分析推理得出富含语义的信息结果。为了更好的使用外部数据挖掘原始轨迹中蕴含的语义信息,一些研究开始借助基于本体的轨迹语义分析模型,但现有的本体模型结构和推理机制过于简单,且多数研究限于特定的领域,缺乏技术框架的系统性和完备性,缺乏通用性和缺少知识系统支撑的轨迹语义解析和推理。
综上所述,轨迹语义分段目前在如下两个方面有待深入研究:
1、自动识别轨迹中蕴含的运动模式特征变化点的位置,实现原始轨迹分段;
2、构建通用的轨迹语义本体模型,实现分段轨迹的语义标注。
发明内容
本发明的目的在于提供一种GPS轨迹分段及语义标注方法,用以解决现有技术中的原始GPS轨迹语义分段时需要进行分段参数的阈值学习,导致分段效率低等问题。
为了实现上述任务,本发明采用以下技术方案:
一种GPS轨迹分段方法,用于对用户GPS轨迹进行分段,所述的GPS轨迹由多个轨迹点组成,所述的轨迹点由位置坐标信息以及该轨迹点产生的时间表示,所述的方法按照以下步骤进行:
步骤1、提取所述用户GPS轨迹中每个轨迹点的特征向量;
步骤2、根据所述的每个轨迹点的特征向量,提取所述每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵;
所述的每个轨迹点当前运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量、该轨迹点的特征向量以及该轨迹点产生时间之后的多个轨迹点的特征向量组成;
所述每个轨迹点历史运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量和该轨迹点的特征向量组成;
步骤3、计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离后进行汇总,获得所述用户轨迹的当前运动模式矩阵与历史运动模式矩阵之间的距离集合;
步骤4、将所述的距离集合转换成图像形式,获得距离曲线;
步骤5、在所述的距离曲线中找到至少一个运动模式变化点;
所述的运动模式变化点是指在所述的距离曲线中该轨迹点的求导值为0,且与该轨迹点相邻左侧的轨迹点的求导值小于0,与该轨迹点相邻右侧的轨迹点的求导值大于0;
步骤6、以所述的运动模式变化点为分割点,对所述用户GPS轨迹进行分段,得到多段用户GPS子轨迹。
进一步地,所述的步骤3中计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离,按照以下步骤进行:
步骤31、对每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵分别进行奇异值分解后提取主成分,获得每个轨迹点历史运动模式矩阵的第一主成分矩阵,获得每个轨迹点当前运动模式矩阵的第二主成分矩阵;
步骤32、计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离,获得每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离。
进一步地,所述的步骤32中计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离时,按照以下步骤执行:
步骤321、获得每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的格拉姆矩阵;
步骤322、计算每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的格拉姆矩阵的最大奇异值σmax
步骤323、采用式II获得所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离Dist。
Figure BDA0001850817570000041
进一步地,所述的步骤1中提取所述用户GPS轨迹中每个轨迹点的特征向量时,所述的特征向量包括平均速度特征向量以及平均采样率特征向量。
进一步地,在所述的步骤4将所述的距离集合转换成图像形式之前,先将所述的距离集合归一化至0到1之间。
一种GPS轨迹语义标注方法,利用所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的多段GPS子轨迹,采用语义本体模型标注的方式对每段所述的GPS子轨迹进行合并后再进行语义标注。
进一步地,所述的采用语义本体模型标注的方式对每个所述的GPS子轨迹进行合并后再进行语义标注时,按照以下步骤执行:
Step1、构建本体模型,所述的本体模型包括地理本体模型,轨迹本体模型,空间本体模型,时间本体模型以及应用领域本体模型;
Step2、将所述的本体模型存储至数据库中;
Step3、将所述用户的多段GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询;
对于第r段子轨迹的终点,若查询结果为不包含兴趣点,则将第r段子轨迹与第r+1段子轨迹进行合并后继续查询,直至查询结果为包含兴趣点,则合并后的多段子轨迹形成一条真实语义轨迹;若查询结果为包含兴趣点,则将第r段子轨迹作为一条真实语义轨迹,1≤r≤R,R≥2,r与R均为正整数,R为利用所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的GPS子轨迹的总段数;
获得多条真实语义轨迹;
Step4、将所述每条真实语义轨迹的起点与终点输入至所述数据库的本体模型中进行查询,获得每条真实语义轨迹的起点、终点以及轨迹行为的语义标注。
所述的Step3中将所述用户的多个GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询时,查询所述本体模型中的地理本体模型和应用领域本体模型。
本发明与现有技术相比具有以下技术效果:
1、本发明提供一种用于原始GPS轨迹的语义轨迹建模的SEMANTIC-SEG框架。该框架分两阶段完成,即为语义轨迹分段和基于本体模型的语义标注;首先,应用自顶向下的方法将原始GPS轨迹分割为若干关于用户移动条件一致的连续子轨迹;然后执行自底向上的推理和注释过程来创建层次化的语义片段或现实生活情景。将自顶向下完成轨迹分段和自底向上实现语义推理相结合的SEMANTIC-SEG框架不仅提高了语义分段任务效率,同时具有高度的灵活性;
2、本发明提供的GPS轨迹分段及语义标注方法自动识别轨迹移动模式发生变化的轨迹点位置,不需其他先验知识或预先设定阈值;
3、本发明提供的GPS轨迹分段及语义标注方法实现轨迹分段和轨迹语义标注自动化过程,输出层次化的轨迹语义信息,满足不同应用的需求。
附图说明
图1为本发明提供的GPS轨迹分段方法流程图;
图2为本发明的一个实施例中提供的原始轨迹示意图;
图3为本发明的一个实施例中提供的经过轨迹分段后的轨迹示意图;
图4为本发明的一个实施例中提供的经过合并后的真实语义轨迹示意图;
图5为本发明的一个实施例中提供的语义标注示意图。
具体实施方式
以下是发明人提供的具体实施例,以对本发明的技术方案作进一步解释说明。
实施例一
一种GPS轨迹分段方法,用于对用户GPS轨迹进行分段,所述的GPS轨迹由多个轨迹点组成,所述的轨迹点由位置坐标信息以及该轨迹点产生的时间表示。
在本实施例中,轨迹数据中蕴含移动模式变化点,根据运动模式变化点就可以将用户原始GPS轨迹数据进行分段,具体地,将原始GPS轨迹数据作为输入,在本实施例中提出了一种非监督算法MPCD实现原始轨迹运动模式变化点检测的方法。
所述的方法按照以下步骤进行:
步骤1、提取所述用户GPS轨迹中每个轨迹点的特征向量;
在本步骤中,首先获取用户GPS轨迹,用户移动产生的GPS轨迹数据中的每一个原始轨迹点γ,可以用一个三元组表示为:γ=(x,y,t),其中t表示产生GPS轨迹点的时间,(x,y)表示用户在t时刻的位置坐标信息。
一条GPS轨迹是由连续轨迹点组成的序列,其长度为n,表示为:T={γ12,…,γn}。对于原始轨迹T,从任意点k开始,可以形成长度为l的子轨迹,表示为T={γkk+1,…,γk+l-1},其中,1≤k≤k+l-1≤n。这里,子轨迹的长度l需等于或小于原始轨迹的长度n。
GPS点的轨迹特征定义为从该点所代表的,长度为l的子轨迹中计算和提取的移动特征,其中,子轨迹的速度平均值、速度的最大值、最小值、子轨迹中GPS点之间的最大时间间隔等,均可定义为代表性的轨迹移动特征。
在本实施例中,实现数据库中存储的用户日常出行轨迹的语义分割,需根据交通模式变化点或用户进入建筑物等兴趣点(POI:Point of Interest)所产生的轨迹点移动速度变化及采样率变化进行用户移动模式变化点的识别和判断。
因此,作为一种优选的实施方式,所述的步骤1中提取所述用户GPS轨迹中每个轨迹点的特征向量时,所述的特征向量包括平均速度特征向量f1以及平均采样率特征向量f2
在本实施例中,依次扫描原始轨迹T,提取每一个GPS点的轨迹特征,构成轨迹特征向量,其中第ti时刻的轨迹点的特征向量为:
Figure BDA0001850817570000081
其中,
Figure BDA0001850817570000082
是ti时刻所代表的轨迹点上的提取的第一项特征向量,
Figure BDA0001850817570000083
是ti时刻所代表的轨迹点上的提取的第二项特征向量,
Figure BDA0001850817570000084
是ti时刻所代表的轨迹点上的提取的第s项特征向量,s表示的特征向量的个数,s≥1。
本发明构建的轨迹特征向量中提取了二维特征:平均速度f1和平均采样率f2,因此s=2。
步骤2、根据所述的每个轨迹点的特征向量,提取所述每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵;
所述的每个轨迹点当前运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量、该轨迹点的特征向量以及该轨迹点产生时间之后的多个轨迹点的特征向量组成;
所述每个轨迹点历史运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量和该轨迹点的特征向量组成;
在本步骤中,首先定义了轨迹点当前运动模式矩阵以及历史运动模式矩阵的形式,其中第ti时刻的轨迹点当前运动模式矩阵为:
Pcur(ti)=P(ti-k+r→ti+r)=[F(ti-k+r),…,F(ti),…,F(ti+r-1),F(ti+r)]
其中,F(ti-k+r)为第ti-k+r时刻轨迹点的特征向量,F(ti)为第ti时刻轨迹点的特征向量,F(ti+r-1)为第ti+r-1时刻轨迹点的特征向量,F(ti+r)为第ti+r时刻轨迹点的特征向量。
第ti时刻的轨迹点历史运动模式矩阵为:
Ppast(ti)=P(ti-k→ti)=[F(ti-k),F(ti-k+1),…,F(ti-1),F(ti)]
其中,F(ti-k)为第ti-k时刻轨迹点的特征向量,F(ti-k+1)为第ti-k+1时刻轨迹点的特征向量,F(ti-1)为第ti-1时刻轨迹点的特征向量,F(ti)为第ti时刻轨迹点的特征向量。
经过步骤2,获得用户轨迹中每个时刻获得的轨迹点的当前运动模式矩阵和历史运动模式矩阵。
步骤3、计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离后进行汇总,获得所述用户轨迹的当前运动模式矩阵与历史运动模式矩阵之间的距离集合;
在本步骤中,计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离时,从原始轨迹上的第一个点开始,依次对每个时刻所产生的轨迹点,计算当前运动模式矩阵和历史运动模式矩阵之间的距离Dist。
在本实施例中,计算每个时刻的轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离时,可以利用矩阵距离的方法进行计算,即直接计算当前运动模式矩阵与历史运动矩阵之间的距离,在本实施例中,为了提高算法的效率,按照以下步骤计算当前运动模式矩阵和历史运动模式矩阵之间的距离Dist:
步骤31、对每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵分别进行奇异值分解后提取主成分,获得每个轨迹点历史运动模式矩阵的第一主成分矩阵,获得每个轨迹点当前运动模式矩阵的第二主成分矩阵;
在本步骤中,以第ti时刻轨迹点的当前运动模式矩阵Pcur(ti)和历史运动模式矩阵Ppast(ti)为例:
首先,对第ti时刻轨迹点当前模式运动模式矩阵Pcur(ti)和历史运动模式矩阵Ppast(ti)分别采取奇异值分解,计算运动模式中最强的主成分,获得第ti时刻轨迹点当前模式运动模式矩阵Pcur(ti)的h1个奇异值,获得第ti时刻轨迹点历史模式运动模式矩阵Ppast(ti)的h2个奇异值。
之后,将第ti时刻轨迹点当前模式运动模式矩阵Pcur(ti)的h1个奇异值对应的左奇异向量组成第一主成分矩阵,该第一主成分矩阵是一个大小为s×h1的矩阵
Figure BDA0001850817570000111
同理,获得第二主成分矩阵,该第二主成分矩阵是一个s×h2的矩阵
Figure BDA0001850817570000112
因此,第一主成分矩阵以及第二主成分矩阵作为当前模式运动模式矩阵Pcur(ti)以及历史模式运动模式矩阵Ppast(ti)的代表子空间,作为代表运动模式矩阵。
因此对于所有轨迹点组成了整个轨迹的第一主成分矩阵
Figure BDA0001850817570000113
以及第二主成分矩阵
Figure BDA0001850817570000114
步骤32、计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离。
在本实施例中,计算第一主成分矩阵与第二主成分矩阵的方法可以是直接矩阵距离计算的方法,但是在本实施例中,采用格拉姆矩阵计算第一主成分矩阵与第二主成分矩阵之间的距离。
可选地,所述的步骤32中计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离时,按照以下步骤执行:
步骤321、获得每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的格拉姆矩阵K,其中
Figure BDA0001850817570000115
u(i)为第一主成分矩阵的第i个列向量,v(j)为第二主成分矩阵的第j个列向量;
在本步骤中,以对第ti时刻轨迹点为例,根据第一主成分矩阵
Figure BDA0001850817570000121
和第二主成分矩阵
Figure BDA0001850817570000122
中列向量,得到格拉姆矩阵
Figure BDA0001850817570000123
其中
Figure BDA0001850817570000124
其中u(i)和v(j)分别是第一主成分矩阵
Figure BDA0001850817570000125
和第二主成分矩阵
Figure BDA0001850817570000126
的列向量。
步骤322、计算所述格拉姆矩阵K的最大奇异值σmax
在本步骤中,采用式I获得格拉姆矩阵K的最大奇异值σmax
Figure BDA0001850817570000127
其中,l为子轨迹的长度。
步骤323、采用式II获得所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离Dist。
Figure BDA0001850817570000128
在本步骤的最后,从原始轨迹上的第一个点开始,依次计算每个时刻轨迹点的当前运动模式矩阵和历史运动模式矩阵之间的距离Dist,将所有的轨迹点的距离Dist形成一个距离集合。
步骤4、将所述的距离集合转换成图像形式,获得距离曲线;
可选地,在所述的步骤4将所述的距离集合转换成图像形式之前,先将所述的距离集合归一化至0到1之间。
在本步骤中,首先对距离集合进行正则化,将距离集合的取值范围归一到[0,1]之内。对距离值集合进行曲线拟合,形成一条变化的距离曲线,记为FitDist(t)。
距离曲线FitDist(t)表明原始轨迹中每个GPS轨迹点的移动模式变化的程度,该曲线中的极大值表明该位置上的GPS轨迹点相较于前后的轨迹点的时空特征变换最为明显,是轨迹移动模式特征变化点。
步骤5、在所述的距离曲线中找到至少一个极大值点,所述的极大值点为运动模式变化点,获得至少一个运动模式变化点;
所述的极大值点是指在所述的距离曲线中该轨迹点的求导值为0,且与该轨迹点相邻左侧的轨迹点的求导值小于0,与该轨迹点相邻右侧的轨迹点的求导值大于0;
在本步骤中,为了求得模式距离变化曲线FitDist(t)中的极大值集合,沿曲线上的点依次进行求导计算,并根据下述条件一,实现极大值的选取,即:在距离变化曲线上,如果第ti时刻轨迹点求导值为0,同时第ti-1时刻轨迹点求导值大于0且第ti+1时刻轨迹点求导值小于0,则第ti时刻轨迹点是极大值点。
将距离曲线上位于极大值的轨迹点的即作为用户轨迹分段依据的移动模式变化点。
步骤6、以所述的运动模式变化点为分割点,对所述用户GPS轨迹进行分段,得到多段用户GPS子轨迹。
根据移动模式变化点,对原始轨迹进行分段,将用户原有的GPS轨迹分割成不相交的若干子轨迹,这些子轨迹的起始节点与结束节点均由模式变化点决定,子轨迹的内部运动模式保持一致性,从而形成子轨迹。
在本实施例中明一种移动模式变化检测方法(MPCD:Moving Pattern ChangeDetection)。MPCD方法实现运动模式中的特征提取,并采用奇异值分解实现运动模式中轨迹时空特征的变化点检测。有别于传统的根据特征描述或先验知识设置全局阈值来划分原始轨迹的方法,MPCD方法通过依次扫描原始GPS轨迹数据,对每一个数据点提取该点当前和过去时间段的运动模式,并计算运动模式之间的变化程度。当变化程度满足理论条件时,即可以确定该轨迹点所代表的当前时空特征有别于过去的时空特征,即判断该点是一个模式变化点,然后依此产生一个轨迹分割点。运用MPCD方法检测得出的轨迹的分割点,将原始GPS轨迹分割成若干原子语义子轨迹(ASeS:Atomic Semantic Segment)。
实施例二
一种GPS轨迹语义标注方法,利用如实施例一所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的多段GPS子轨迹,采用语义本体模型标注的方式对每段所述的GPS子轨迹进行合并后再进行语义标注。
可选地,所述的采用语义本体模型标注的方式对每段所述的GPS子轨迹进行语义标注时,按照以下步骤执行:
Step1、构建本体模型,所述的本体模型包括地理本体模型,轨迹本体模型,空间本体模型,时间本体模型以及应用领域本体模型;
首先设计用于轨迹分割的通用本体。在本实施例中设计的本体由五个子本体构成,分别为:地理本体、轨迹本体、空间本体、时间本体和应用领域本体。
其中,地理本体是指地理空间信息,类似于地图的路网信息等;
轨迹本体是指针对于所要标注的轨迹,该轨迹的停留信息,起点、终点以及时间信息;
空间本体是指空间中物体与物体之间的相邻或相交的关系;
时间本体是指时间的概念,年-季度-月-日-小时的概念;
应用领域本体是根据产生轨迹的对象获得的,例如对于研究人的轨迹行为,应用领域本体可以是交通等;对于研究其他生物的迁徙轨迹行为,应用领域本体可以是迁徙路线等其他特征。
使用protégé软件实现本体模型的构建(在此并不局限于本体构建的软件平台,采用其他本体构建的软件也可以实现)。protégé软件中通过创建“类(class)”来表示模型中的概念,通过父类与子类之间的逻辑关系表达概念之间的层次关系。通过类与类之间的包含逻辑关系,表达概念之间的包含与被包含关系。
Step2、将所述的本体模型存储至数据库中;
在本实施例中,在现有的数据库安装完后首先建立一个protégé的数据库,接下来还需要下载JDBC驱动程序,它的作用是将protégé和数据库连接起来。然后在protégé中,选择以OWL Database形式转换项目。将本体模型以数据形式和现有数据同时存储在数据库中,即可以在给定条件下进行查询。
Step3、将所述用户的多段GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询;
对于第r段子轨迹的终点,若查询结果为不包含兴趣点,则将第r段子轨迹与第r+1段子轨迹进行合并后继续查询直至查询结果为包含兴趣点,则合并后的多段子轨迹形成一条真实语义轨迹;若查询结果为包含兴趣点,则将第r段子轨迹作为一条真实语义轨迹,1≤r≤R,R≥2,r与R均为正整数,R为利用所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的GPS子轨迹的总段数;
获得多条真实语义轨迹;
可选地,所述的Step3中将所述用户的多段GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询时,查询所述本体模型中的地理本体模型和应用领域本体模型。
在本实施例中,从第一段子轨迹(原始语义轨迹ASeS)开始,依次对每一段子轨迹ASeS的终止节点,在地理本体和应用领域本体中进行检索,如果子轨迹ASeS的终止节点不包含兴趣点POI或兴趣区域ROI,则将该条子轨迹ASeS与下一段子轨迹ASeS进行合并,合并后的原始语义轨迹形成真实语义轨迹集合。
Step4、将所述每条真实语义轨迹的起点与终点输入至所述数据库的本体模型中进行查询,获得每条真实语义轨迹的起点、终点以及轨迹行为的语义标注。
在本实施例中,构建了一个自底向上的基于本体模型的轨迹语义推理和丰富框架。首先设计实现用于轨迹语义分段的通用本体,该本体融合了地理,环境,应用和领域的概念和层次关系。然后,基于构建的本体模型推理出隐含在原子轨迹中的语义信息。语义丰富的推理过程结合了语义修正和信息标注两个功能。最后,将子轨迹转化为的层次化的语义信息或易理解的现实生活场景。
实施例三
在本实施例中,采用来自微软亚洲研究院公开的轨迹数据集Geolife的GPS轨迹。该数据集中收集了69位用户日常活动所产生的10902条GPS轨迹。
在本实施例中以数据库中179号轨迹为例,描述如何采用本发明提出的方法实现轨迹分段及语义标注。179号轨迹在地图中进行可视化结果如图2所示。
采用发明提出的MPCD轨迹分割方法,对179号原始轨迹进行分割形成原子语义轨迹段(ASeS),分割产生52段ASeS,结果可视化如图3所示。其中,红色的点为采用MPCD算法产生的原始语义分割点。这里因为地图显示的尺寸有限,语义分割点可视化时有部分重叠。
接下来采用实施例二中的step3,对ASeS中的每一条轨迹的终点进行语义查询和合并,形成真实语义轨迹。本例中共产生16条真实语义轨迹,每一段真实语义轨迹代表用户一种持续性的运动状态。本案例从用户起始点轨迹到终止点轨迹,对真实语义轨迹进行1到16的标号,可视化结果如图4所示。
将16条真实语义轨迹依次输入至所述数据库的通用本体模型中进行查询,获得层次化的语义信息,描述用户移动过程产生的生活场景。图5为179号轨迹实施本方案中的语义解析及标注后的生活场景示意图。图4描述了用户的移动模式,其中,用户移动的交通方式如图4中L1所描述:用户在早晨9:14-10:15期间,交通方式为乘坐公交车,一共经过了包含起始站点和结束站点的7个公交车站。从L2,L3的交通换乘和行为可解读,该用户早晨8:58分出发,采用不同的交通方式(乘坐公交车,步行)移动,经过多个POI,在上午10:02分到达休闲区域,步行前往餐馆POI,期间停留2小时55分钟后,前往地铁站,继续产生移动行为,并经过多种交通方式(乘坐地铁,乘坐公交车,步行),最终于下午14:03分到达学校POI。

Claims (7)

1.一种GPS轨迹分段方法,用于对用户GPS轨迹进行分段,所述的GPS轨迹由多个轨迹点组成,所述的轨迹点由位置坐标信息以及该轨迹点产生的时间表示,其特征在于,所述的方法按照以下步骤进行:
步骤1、提取所述用户GPS轨迹中每个轨迹点的特征向量;
步骤2、根据所述的每个轨迹点的特征向量,提取所述每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵;
所述的每个轨迹点当前运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量、该轨迹点的特征向量以及该轨迹点产生时间之后的多个轨迹点的特征向量组成;
所述每个轨迹点历史运动模式矩阵由该轨迹点产生时间之前的多个轨迹点的特征向量和该轨迹点的特征向量组成;
步骤3、计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离后进行汇总,获得所述用户GPS轨迹的当前运动模式矩阵与历史运动模式矩阵之间的距离集合;
步骤4、将所述的距离集合转换成图像形式,获得距离曲线;
步骤5、在所述的距离曲线中找到至少一个运动模式变化点;
所述的运动模式变化点是指在所述的距离曲线中该轨迹点的求导值为0,且与该轨迹点相邻左侧的轨迹点的求导值小于0,与该轨迹点相邻右侧的轨迹点的求导值大于0;
步骤6、以所述的运动模式变化点为分割点,对所述用户GPS轨迹进行分段,得到多段用户GPS子轨迹。
2.如权利要求1所述的GPS轨迹分段方法,其特征在于,所述的步骤3中计算每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离,按照以下步骤进行:
步骤31、对每个轨迹点的当前运动模式矩阵以及历史运动模式矩阵分别进行奇异值分解后提取主成分,获得每个轨迹点历史运动模式矩阵的第一主成分矩阵,获得每个轨迹点当前运动模式矩阵的第二主成分矩阵;
步骤32、计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离,获得每个轨迹点的当前运动模式矩阵与历史运动模式矩阵之间的距离。
3.如权利要求2所述的GPS轨迹分段方法,其特征在于,所述的步骤32中计算所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离时,按照以下步骤执行:
步骤321、获得每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的格拉姆矩阵;
步骤322、计算每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的格拉姆矩阵的最大奇异值σmax
步骤323、采用式II获得所述每个轨迹点的第一主成分矩阵与第二主成分矩阵之间的距离Dist。
Figure FDA0003819452400000021
4.如权利要求1所述的GPS轨迹分段方法,其特征在于,所述的步骤1中提取所述用户GPS轨迹中每个轨迹点的特征向量时,所述的特征向量包括平均速度特征向量以及平均采样率特征向量。
5.如权利要求1所述的GPS轨迹分段方法,其特征在于,在所述的步骤4将所述的距离集合转换成图像形式之前,先将所述的距离集合归一化至0到1之间。
6.一种GPS轨迹语义标注方法,其特征在于,利用如权利要求1-5任一项权利要求所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的多段GPS子轨迹,采用语义本体模型标注的方式对每段所述的GPS子轨迹进行合并后再进行语义标注;
按照以下步骤执行:
Step1、构建本体模型,所述的本体模型包括地理本体模型,轨迹本体模型,空间本体模型,时间本体模型以及应用领域本体模型;
Step2、将所述的本体模型存储至数据库中;
Step3、将所述用户的多段GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询;
对于第r段子轨迹的终点,若查询结果为不包含兴趣点,则将第r段子轨迹与第r+1段子轨迹进行合并后继续查询,直至查询结果为包含兴趣点,则合并后的多段子轨迹形成一条真实语义轨迹;若查询结果为包含兴趣点,则将第r段轨迹作为一条真实语义轨迹,1≤r≤R,R≥2,r与R均为正整数,R为利用如权利要求1-5任一项权利要求所述的GPS轨迹分段方法对用户的GPS轨迹进行分段后,获得用户的GPS子轨迹的总段数;
获得多条真实语义轨迹;
Step4、将所述每条真实语义轨迹的起点与终点输入至所述数据库的本体模型中进行查询,获得每条真实语义轨迹的起点、终点以及轨迹行为的语义标注。
7.如权利要求6所述的GPS轨迹语义标注方法,其特征在于,所述的Step3中将所述用户的多段GPS子轨迹的终点按照轨迹顺序依次输入至所述数据库的本体模型中进行查询时,查询所述本体模型中的地理本体模型和应用领域本体模型。
CN201811294524.0A 2018-11-01 2018-11-01 一种gps轨迹分段及语义标注方法 Active CN109581444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811294524.0A CN109581444B (zh) 2018-11-01 2018-11-01 一种gps轨迹分段及语义标注方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811294524.0A CN109581444B (zh) 2018-11-01 2018-11-01 一种gps轨迹分段及语义标注方法

Publications (2)

Publication Number Publication Date
CN109581444A CN109581444A (zh) 2019-04-05
CN109581444B true CN109581444B (zh) 2023-01-13

Family

ID=65921175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811294524.0A Active CN109581444B (zh) 2018-11-01 2018-11-01 一种gps轨迹分段及语义标注方法

Country Status (1)

Country Link
CN (1) CN109581444B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190891B (zh) * 2019-12-27 2023-07-25 武汉长江通信产业集团股份有限公司 一种多语义轨迹数据分段存储方法
CN111307164B (zh) * 2020-02-25 2022-12-02 西北大学 一种低采样率轨迹地图匹配方法
CN112511982B (zh) * 2020-11-19 2021-11-09 同济大学 一种出行语义自动标注的地铁乘客轨迹实时追溯还原方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975955A (zh) * 2010-09-29 2011-02-16 北京航空航天大学 一种gnss模拟器中的通用三维载体运动轨迹生成方法
CN104504099A (zh) * 2014-12-29 2015-04-08 北京交通大学 基于位置轨迹的交通出行状态切分方法
CN106383868A (zh) * 2016-09-05 2017-02-08 电子科技大学 一种基于道路网络的时空轨迹聚类方法
CN106951903A (zh) * 2016-10-31 2017-07-14 浙江大学 一种人群移动规律的可视化方法
CN107577725A (zh) * 2017-08-22 2018-01-12 长安大学 一种城市出租车乘客出行特征可视化分析方法
CN108647618A (zh) * 2018-05-02 2018-10-12 深圳市唯特视科技有限公司 一种基于动态行人代理混合模型的轨迹语义分割方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8078394B2 (en) * 2008-02-26 2011-12-13 Microsoft Corp. Indexing large-scale GPS tracks
US10176244B2 (en) * 2012-07-12 2019-01-08 Massachusetts Institute Of Technology Text characterization of trajectories
US9251277B2 (en) * 2012-12-07 2016-02-02 International Business Machines Corporation Mining trajectory for spatial temporal analytics
CN107193995A (zh) * 2017-06-08 2017-09-22 网帅科技(北京)有限公司 一种位置分类规则库管理系统及其编码方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975955A (zh) * 2010-09-29 2011-02-16 北京航空航天大学 一种gnss模拟器中的通用三维载体运动轨迹生成方法
CN104504099A (zh) * 2014-12-29 2015-04-08 北京交通大学 基于位置轨迹的交通出行状态切分方法
CN106383868A (zh) * 2016-09-05 2017-02-08 电子科技大学 一种基于道路网络的时空轨迹聚类方法
CN106951903A (zh) * 2016-10-31 2017-07-14 浙江大学 一种人群移动规律的可视化方法
CN107577725A (zh) * 2017-08-22 2018-01-12 长安大学 一种城市出租车乘客出行特征可视化分析方法
CN108647618A (zh) * 2018-05-02 2018-10-12 深圳市唯特视科技有限公司 一种基于动态行人代理混合模型的轨迹语义分割方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"SeTra: A Smart Framework for GPSTrajectories" Segmentation";Walter Balzano 等;《2014 International Conference on Intelligent Networking and Collaborative Systems》;20150312;第362-368页 *
"基于本体框架的交通出行语义轨迹建模、标记及数据库研究";陈雯;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20111015;全文 *
"用于交通出行调查的GPS时空轨迹数据简化与语义增强研究";张波;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20110915;全文 *

Also Published As

Publication number Publication date
CN109581444A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN104462190B (zh) 一种基于海量空间轨迹挖掘的在线的位置预测方法
Xu et al. Segment as points for efficient online multi-object tracking and segmentation
Fan et al. Multi-level contextual rnns with attention model for scene labeling
Deng et al. Generating urban road intersection models from low-frequency GPS trajectory data
CN109739926B (zh) 一种基于卷积神经网络的移动对象目的地预测方法
CN109581444B (zh) 一种gps轨迹分段及语义标注方法
Wang et al. Detecting transportation modes based on LightGBM classifier from GPS trajectory data
Chen et al. Learning-based spatio-temporal vehicle tracking and indexing for transportation multimedia database systems
Ding et al. Network-matched trajectory-based moving-object database: Models and applications
CN106408124B (zh) 一种面向数据稀疏环境下的移动路径混合预测方法
CN113378891B (zh) 基于轨迹分布表示的城市区域关系可视分析方法
CN111444243A (zh) 一种基于轨迹信息的用户行为预测画像方法及系统
Zaffar et al. Memorable maps: A framework for re-defining places in visual place recognition
CN107689052A (zh) 基于多模型融合和结构化深度特征的视觉目标跟踪方法
Chen et al. Rntrajrec: Road network enhanced trajectory recovery with spatial-temporal transformer
Singh et al. Graph Neural Network with RNNs based trajectory prediction of dynamic agents for autonomous vehicle
Dong et al. A novel loop closure detection method using line features
Yin et al. Pse-match: A viewpoint-free place recognition method with parallel semantic embedding
Radwan Leveraging sparse and dense features for reliable state estimation in urban environments
Xia et al. A lightweight and detector-free 3d single object tracker on point clouds
Yao et al. Goal-lbp: Goal-based local behavior guided trajectory prediction for autonomous driving
CN110716925A (zh) 一种基于轨迹分析的跨境行为识别方法
Chu et al. Simulating human mobility with a trajectory generation framework based on diffusion model
Xia et al. DuARUS: Automatic Geo-object Change Detection with Street-view Imagery for Updating Road Database at Baidu Maps
Li et al. VIS-MM: a novel map-matching algorithm with semantic fusion from vehicle-borne images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant