CN109557917A - The method of the autonomous line walking of underwater robot and monitor surface - Google Patents

The method of the autonomous line walking of underwater robot and monitor surface Download PDF

Info

Publication number
CN109557917A
CN109557917A CN201811472498.6A CN201811472498A CN109557917A CN 109557917 A CN109557917 A CN 109557917A CN 201811472498 A CN201811472498 A CN 201811472498A CN 109557917 A CN109557917 A CN 109557917A
Authority
CN
China
Prior art keywords
underwater robot
coordinate system
underwater
robot
autonomous line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811472498.6A
Other languages
Chinese (zh)
Inventor
程冬喜
李晓飞
龚建荣
吴聪
柴磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201811472498.6A priority Critical patent/CN109557917A/en
Publication of CN109557917A publication Critical patent/CN109557917A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开水下机器人自主巡线及水面监控的方法,包括以下步骤:S1.预设水下机器人的运动路径并建模;S2.建立水下机器人自主巡线控制系统;S3.水下机器人航行至指定位置后,绘制水下机器人动态显示自身信息的SVG格式图片;S4.启动传感器,对水下机器的周围环境信息及水下机器人的自身数据进行采集;S5.利用SOCKET网络通信技术,将步骤S4中采集到的传感器数据发送到上位机监控软件;S6.在上位机软件中对接收到的数据进行校验和拆包处理,并将校验正确的数据动态显示在SVG控件中。本发明能够实现水下机器人的自主巡线且能够动态显示监控数据,克服了现有数据显示的不足,且自主巡线大大提高水下机器人的巡线效率和精度。

The invention discloses a method for autonomous line patrolling and water surface monitoring of an underwater robot, comprising the following steps: S1. Presetting the motion path of the underwater robot and modeling; S2. Establishing an autonomous line patrolling control system for the underwater robot; S3. Underwater robot After sailing to the designated position, draw the SVG format picture of the underwater robot dynamically displaying its own information; S4. Start the sensor to collect the surrounding environment information of the underwater vehicle and the underwater robot's own data; S5. Use SOCKET network communication technology, Send the sensor data collected in step S4 to the host computer monitoring software; S6. Verify and unpack the received data in the host computer software, and dynamically display the correctly verified data in the SVG control. The invention can realize the autonomous line patrol of the underwater robot and can dynamically display the monitoring data, overcome the shortcomings of the existing data display, and the autonomous line patrol greatly improves the line patrol efficiency and accuracy of the underwater robot.

Description

水下机器人自主巡线及水面监控的方法The method of autonomous line patrol and water surface monitoring of underwater robot

技术领域technical field

本发明属于水下机器人的数据动态显示和控制领域,具体涉及水下机器人自主巡线及水面监控的方法。The invention belongs to the field of data dynamic display and control of an underwater robot, and particularly relates to a method for autonomous line inspection and water surface monitoring of an underwater robot.

背景技术Background technique

在当今社会,陆地资源的开发与利用己经日趋成熟与完善,人类开始开发和利用海洋资源。海洋作为一个自然体,拥有着广袤的面积和非常丰富的自然资源,它包括丰富的生物资源、海底矿产资源、海水资源、海洋能与海洋空间资源,因此在海洋国土的开发中,越早的开发利用海详资源就能获得更长久的发展。发展至今,有80%的动物仍然生活在海洋环境中。In today's society, the development and utilization of terrestrial resources have become increasingly mature and perfect, and human beings have begun to develop and utilize marine resources. As a natural body, the ocean has a vast area and very rich natural resources, including rich biological resources, seabed mineral resources, seawater resources, ocean energy and ocean space resources. Therefore, in the development of marine land, the earlier the development is Longer-term development can be achieved by using sea-detailed resources. Up to now, 80% of animals still live in the marine environment.

海洋开发是指人类为了一定的目的,对海洋及其自然资源和环境条件所进行的科学研究及开发利用。无论是海底资源还是海洋能与海洋空间资源的开发利用,都涉及海洋设施状态的检测与维修。水下机器人已经成为海洋设施检测的重要工具,因为水下机器人方便灵活、动力充足且便于搭载不同类型的传感器,适用于多种水下作业环境。因此,对于水下机器人的研制和开发具有重大的战略意义。Ocean development refers to the scientific research and development and utilization of the ocean and its natural resources and environmental conditions by human beings for certain purposes. Whether it is the development and utilization of seabed resources or marine energy and marine space resources, it involves the detection and maintenance of the state of marine facilities. Underwater robots have become an important tool for the detection of marine facilities, because underwater robots are convenient and flexible, have sufficient power, and are easy to carry different types of sensors, and are suitable for a variety of underwater operating environments. Therefore, it has great strategic significance for the research and development of underwater robots.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对现有技术存在的问题,提供水下机器人自主巡线及水面监控的方法,能够实现水下机器人的自主巡线且能够动态显示监控数据,克服了现有数据显示的不足,且自主巡线大大提高水下机器人的巡线效率和精度。The purpose of the present invention is to provide a method for autonomous line patrol and water surface monitoring of underwater robots, which can realize autonomous line patrol of underwater robots and dynamically display monitoring data, and overcome the shortcomings of existing data display. , and the autonomous line inspection greatly improves the line inspection efficiency and accuracy of the underwater robot.

为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:

水下机器人自主巡线及水面监控的方法,包括以下步骤:The method for autonomous line inspection and water surface monitoring of an underwater robot includes the following steps:

S1.预设水下机器人的运动路径并对水下机器人进行运动建模;S1. Preset the motion path of the underwater robot and model the motion of the underwater robot;

S2.建立水下机器人自主巡线控制系统以实现机器人水下自主巡线功能;S2. Establish an autonomous line patrol control system for an underwater robot to realize the autonomous line patrol function of the robot;

S3.水下机器人航行至指定位置后,绘制水下机器人动态显示自身信息的SVG格式图片;S3. After the underwater robot navigates to the designated position, draw an SVG image in which the underwater robot dynamically displays its own information;

S4.启动传感器,对水下机器人的周围环境信息及水下机器人的自身数据进行采集;S4. Start the sensor to collect the surrounding environment information of the underwater robot and the data of the underwater robot;

S5.利用SOCKET网络通信技术,将步骤S4中采集到的传感器数据发送到上位机监控软件;S5. Using the SOCKET network communication technology, the sensor data collected in step S4 is sent to the host computer monitoring software;

S6.在上位机软件中对接收到的数据进行校验和拆包处理,并将校验正确的数据动态显示在SVG控件中。S6. Verify and unpack the received data in the host computer software, and dynamically display the correct verified data in the SVG control.

步骤S1中建立水下机器人的运动模型,方便对水下机器人的运动状态(如前行速度、前行方向等)进行控制;步骤S5中,水下机器人和上位机进行数据通信,水下机器人将采集到的数据通过SOCKET网络通信发送给上位机软件;步骤S6中,上位机接收到水下机器人发过来的数据后,会先校验数据是否正确,如果数据错误就将数据丢失,如果数据正确则就将数据包进行拆包处理,将一包数据拆分成单独的数据单元,最后将拆分的数据单元动态的显示在SVG控制软件中。In step S1, a motion model of the underwater robot is established to facilitate the control of the motion state of the underwater robot (such as forward speed, forward direction, etc.); in step S5, the underwater robot and the host computer perform data communication, and the underwater robot Send the collected data to the host computer software through SOCKET network communication; in step S6, after the host computer receives the data sent by the underwater robot, it will first verify whether the data is correct, if the data is wrong, the data will be lost. If it is correct, the data packet is unpacked, a packet of data is split into separate data units, and finally the split data units are dynamically displayed in the SVG control software.

优选地,所述步骤S1具体为:设置表征水下机器人自身位置的绝对坐标系XOY,绝对坐标系XOY是以水上母船相对于地面的位置建立的,其中XOY坐标系的O点是水上母船的中心点;则水下机器人的运动模型如下所示:Preferably, the step S1 is specifically: setting an absolute coordinate system XOY representing the position of the underwater robot, the absolute coordinate system XOY is established based on the position of the floating mother ship relative to the ground, wherein the O point of the XOY coordinate system is the floating mother ship. The center point; the motion model of the underwater robot is as follows:

Vx=VcosθVx=Vcosθ

Vy=VsinθVy=Vsinθ

其中,V是水下机器人的线速度,θ为水下机器人的线速度V与坐标轴X的夹角,w为水下机器人的角速度,θ0为水下机器人的线速度V与坐标轴X的夹角的初始值,t为水下机器人的运动时间;Vx为水下机器人相对于坐标轴X轴的速度,Vy为水下机器人相对于坐标轴Y轴的速度。Among them, V is the linear velocity of the underwater robot, θ is the angle between the linear velocity V of the underwater robot and the coordinate axis X, w is the angular velocity of the underwater robot, and θ 0 is the linear velocity V of the underwater robot and the coordinate axis X The initial value of the included angle, t is the movement time of the underwater robot; Vx is the speed of the underwater robot relative to the X axis of the coordinate axis, and Vy is the speed of the underwater robot relative to the Y axis of the coordinate axis.

本发明所述的水下机器人的动力由水下多自由度的水下推进器提供,它具有自动定深和自动定高的功能,当机器人的深度或高度一定的时候,它的运动我们可以看做是在同一平面上的运动分析,这时候多自由度便可看做只有前后两自由度。所以我们只需考虑机器人前后推进器产生的两个推力来建立机器人的前后运动模型,可知当前后两个推进器推力相等时,机器人便做直线运动,当前后两个推进器推力大小不相等时,机器人便会转弯运动。因此水下机器人的运动模型被简化为了:The power of the underwater robot described in the present invention is provided by the underwater multi-degree-of-freedom underwater propeller, which has the functions of automatic depth and height determination. When the depth or height of the robot is certain, its motion can be It is regarded as a motion analysis on the same plane. At this time, multiple degrees of freedom can be regarded as only two degrees of freedom before and after. Therefore, we only need to consider the two thrusts generated by the front and rear thrusters of the robot to establish the forward and backward motion model of the robot. It can be seen that when the thrusts of the front and rear thrusters are equal, the robot moves in a straight line, and when the thrusts of the front and rear thrusters are not equal , the robot will turn. Therefore, the motion model of the underwater robot is simplified as:

Vx=VcosθVx=Vcosθ

Vy=VsinθVy=Vsinθ

由此运动模型我们可以知道,当前后两推进器产生的推力相等的时候,水下机器人将向前运动,此时V>0,w=0,机器人将做直线运动;当前后两推进器产生的推力不相等时,水下机器人将做转弯运动;当左侧的推进器的推力大于右侧推进器的推力的时候,机器人将做顺时针转弯运动,此时w>0;当左侧的推进器的推力小于右侧推进器的推力的时候,机器人将做逆时针转弯运动,此时w<0;当前后两个自由度推进器停止转动时,机器人在水平面上停止运动,此时V=0。From this motion model, we can know that when the thrusts generated by the front and rear thrusters are equal, the underwater robot will move forward. At this time, V>0, w=0, the robot will move in a straight line; When the thrusts of the left and right thrusters are not equal, the underwater robot will turn; when the thrust of the left thruster is greater than that of the right thruster, the robot will perform a clockwise turn, at this time w>0; when the thrust of the left thruster is greater than that of the right thruster When the thrust of the thruster is less than the thrust of the right thruster, the robot will turn counterclockwise, at this time w<0; when the thrusters of the first and last two degrees of freedom stop rotating, the robot stops moving on the horizontal plane, at this time V =0.

更优选地,通过建立相对坐标系xoy将水下机器人在水下的相对运动信息转换为相对大地的绝对运动信息;设置表征水下机器人自身位置的、以水下机器人为中心点的相对坐标系xoy,且相对坐标系xoy与绝对坐标系XOY之间能够相互转换,具体的转换步骤为:More preferably, by establishing the relative coordinate system xoy, the relative motion information of the underwater robot under water is converted into the absolute motion information of the relative earth; the relative coordinate system with the underwater robot as the center point is set to characterize the position of the underwater robot itself. xoy, and the relative coordinate system xoy and the absolute coordinate system XOY can be converted to each other. The specific conversion steps are:

设定P为水下机器人的预设运动路径;Set P as the preset motion path of the underwater robot;

设定在XOY坐标系中,O(Xo,Yo)表示水下机器人在t时刻的中心点坐标,P(Xp,Yp)表示路径P上任一点的坐标;Set in the XOY coordinate system, O(Xo, Yo) represents the coordinates of the center point of the underwater robot at time t, and P(Xp, Yp) represents the coordinates of any point on the path P;

设定在xoy坐标系中,0(xo,yo)表示水下机器人在t时刻的中心点坐标,p(xp,yp)表示路径P上任一点映射到xoy坐标系中的坐标;Set in the xoy coordinate system, 0(x o , y o ) represents the coordinates of the center point of the underwater robot at time t, and p(x p , y p ) represents the coordinates of any point on the path P mapped to the xoy coordinate system;

公式1:ΔX=Xp-Xo Formula 1: ΔX=X p -X o

ΔY=Yp-Yo ΔY=Y p -Y o

公式2:xp=ΔXcosθ-ΔYsinθEquation 2: x p = ΔXcosθ-ΔYsinθ

yp=ΔXsinθ-ΔYsinθy p =ΔXsinθ-ΔYsinθ

其中,xo=0,yo=0where x o =0, y o =0

根据公式1和公式2实现水下机器人的绝对坐标系与相对坐标系之间的转换;According to formula 1 and formula 2, the conversion between the absolute coordinate system and the relative coordinate system of the underwater robot is realized;

公式3:Xp=xpcosθ+ypsinθ+Xo Equation 3: X p = x p cosθ+y p sinθ+X o

Yp=-xpsinθ+ypcosθ+Yo Y p = -x p sinθ+y p cosθ+Y o

根据公式3实现水下机器人的相对坐标系与绝对坐标系之间的转换。According to formula 3, the transformation between the relative coordinate system and the absolute coordinate system of the underwater robot is realized.

水下机器人在水下运动的信息是用相对坐标来表示的,但是在对机器人进行其他计算和表征的时候,则需要将这些信息转换为相对于大地的数据,即将表征水下机器人的相对坐标和绝对坐标之间进行转换。The information of the underwater movement of the underwater robot is represented by relative coordinates, but when performing other calculations and characterizations on the robot, it is necessary to convert this information into data relative to the ground, that is, to characterize the relative coordinates of the underwater robot. Convert between absolute coordinates.

更优选地,所述水下机器人的预设运动路径设置为直线、曲线、折线或圆。More preferably, the preset motion path of the underwater robot is set as a straight line, a curve, a polyline or a circle.

进一步优选地,所述水下机器人的预设运动路径设置为折线。路径设置为折线,主要是考虑了水下机器人的实际应用场景。Further preferably, the preset movement path of the underwater robot is set as a polyline. The path is set as a polyline, mainly considering the practical application scenarios of underwater robots.

优选地,所述步骤S2中,所述自主巡线控制系统包括前行速度和角速度两个变量,前行速度和角速度分别用于控制水下机器人前进的快慢和方向。通过对水下机器人前进的快慢和方向的不断调整,完成水下机器人的自主巡线过程。Preferably, in the step S2, the autonomous line-following control system includes two variables, a forward speed and an angular speed, and the forward speed and the angular speed are respectively used to control the speed and direction of the advance of the underwater robot. Through the continuous adjustment of the speed and direction of the underwater robot, the autonomous line inspection process of the underwater robot is completed.

更优选地,通过如下公式对水下机器人的前行速度进行连续调整:More preferably, the forward speed of the underwater robot is continuously adjusted by the following formula:

V=(180°-β)/180*VmaxV=(180°-β)/180*Vmax

其中,β表示水下机器人当前的朝向和预设运动路径之间的夹角,即角度偏差;Vmax表示水下机器人满速时的速度,工业上一般是1m/s~2m/s。Among them, β represents the angle between the current orientation of the underwater robot and the preset motion path, that is, the angle deviation; Vmax represents the speed of the underwater robot at full speed, which is generally 1m/s to 2m/s in industry.

水下机器人在自主巡线过程中,前行速度的控制是基于专家驾驶经验规则控制,在实际巡线过程中要根据路径的情况和已经完成巡线的质量来控制前行速度。其中,巡线路径的情况和已经完成巡线的质量可以用两个控制量进行描述,即预设运动路径的位置偏差和角度偏差。In the process of autonomous line patrol, the control of the forward speed of the underwater robot is based on expert driving experience rules. In the actual line patrol process, the forward speed should be controlled according to the path conditions and the quality of the completed line. Among them, the condition of the line tracking path and the quality of the line tracking that has been completed can be described by two control quantities, namely the position deviation and the angle deviation of the preset motion path.

选取当前时刻水下机器人的朝向和预设运动路径的夹角,即角度偏差来进行评估,当角度偏差小的时候,表明水下机器人巡线基本正确,可以以较大速度前进,相反,当角度偏差较大时,表明机器人方向不对,机器人需要调整其运动方向,此时可以以较小的速度前行,我们设置让水下机器人的速度连续变化,通过公式V=(180°-β)/180*Vmax实现水下机器人前行速度的连续调整。Select the angle between the orientation of the underwater robot at the current moment and the preset motion path, that is, the angle deviation for evaluation. When the angle deviation is small, it means that the underwater robot is basically correct in line inspection and can move forward at a higher speed. On the contrary, when the angle deviation is small When the angle deviation is large, it indicates that the direction of the robot is wrong, and the robot needs to adjust its movement direction. At this time, it can move forward at a small speed. We set the speed of the underwater robot to change continuously, through the formula V=(180°-β) /180*Vmax realizes the continuous adjustment of the forward speed of the underwater robot.

更优选地,利用自适应PID控制算法控制水下机器人在前行过程中的角速度,通过如下公式对水下机器人的前行角速度进行调整:More preferably, use the adaptive PID control algorithm to control the angular velocity of the underwater robot in the forward process, and adjust the forward angular velocity of the underwater robot by the following formula:

w(n)=k1xp+k2θp+k3w(n-1)+k4w(n-2)w(n)=k 1 x p +k 2 θ p +k 3 w(n-1)+k 4 w(n-2)

其中,xp表示第n时刻水下机器人相对于规划路径的位置偏差;θp表示第n时刻水下机器人相对于规划路径的角度偏差;w(n)表示第n时刻水下机器人的角速度;w(n-1)表示第n-1时刻水下机器人的角速度;w(n-2)表示第n-2时刻水下机器人的角速度;k1表示第n时刻水下机器人的位置偏差系数;k2表示第n时刻水下机器人的角度偏差系数;k3表示历史参考数据,一般选取0.33;k4表示历史参考数据,一般选取0.33;根据水下机器人当前的行驶状态确定k1和k2,实现水下机器人的角速度调整。Among them, x p represents the position deviation of the underwater robot relative to the planned path at the nth time; θp represents the angular deviation of the underwater robot relative to the planned path at the nth time; w(n) represents the angular velocity of the underwater robot at the nth time; w (n-1) represents the angular velocity of the underwater robot at the n-1th time; w(n-2) represents the angular velocity of the underwater robot at the n-2th time; k 1 represents the position deviation coefficient of the underwater robot at the nth time; k 2 represents the angle deviation coefficient of the underwater robot at the nth moment; k 3 represents historical reference data, generally selected as 0.33; k 4 represents historical reference data, generally selected as 0.33; k 1 and k 2 are determined according to the current driving state of the underwater robot, Realize the angular velocity adjustment of the underwater robot.

PID控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。其中,比例(P)部分的数学表达式为:A PID controller (proportional-integral-derivative controller) is a feedback loop component common in industrial control applications, consisting of a proportional unit P, an integral unit I and a derivative unit D. Among them, the mathematical expression of the proportion (P) part is:

u(t)=Kpe(t)u(t)=K p e(t)

比例控制器的主要作用是为了对系统出现的偏差信号能够及时的成比例的做出反应,只要系统偏差信号一出现,调节器就会以最快的速度产生相应的控制作用,从而使得控制系统的输出量朝着误差减小的方向变化,它的控制作用的强弱主要是由比例系数Kp来决定的,当Kp的值增大时,系统的响应速度增加,相应的系统误差就会减小,但是不合理的比例系数Kp可能会导致系统出现超调、震荡、甚至不稳定,但是如果Kp过小则又会使得系统的响应速度变慢,进而导致系统控制时间过长,精度变差,从而使得系统的动态特性变差。只有选择合适的比例系数Kp,才能使被控系统的控制效果快速的达到最佳。The main function of the proportional controller is to respond to the deviation signal in the system in a timely and proportional manner. As long as the system deviation signal appears, the regulator will produce the corresponding control effect at the fastest speed, so that the control system can be controlled. The output quantity of the α changes in the direction of decreasing error, and the strength of its control effect is mainly determined by the proportional coefficient Kp. When the value of Kp increases, the response speed of the system increases, and the corresponding system error will decrease. Small, but unreasonable proportional coefficient Kp may cause the system to overshoot, oscillate, or even become unstable, but if Kp is too small, the response speed of the system will be slowed down, which will lead to long system control time and poor accuracy. , which makes the dynamic characteristics of the system worse. Only by selecting the appropriate proportional coefficient Kp, can the control effect of the controlled system be achieved quickly and optimally.

积分(I)部分的数学表达式为:The mathematical expression for the integral (I) part is:

在控制器中引入积分的目的是为了消除被控系统的静态误差,从而保证被控对象在系统处于稳态的时候能够实现无静态差跟踪。只要e(t)不为0输出结果u(t)就不会为0,通过积分控制的累积作用对被控量进行调节,进而减小系统偏差,直到偏差减到0为止。积分系数Ti过大,则积分效果就会较弱,被控系统消除静态误差所需时间较长,但是不会产生震荡反应;积分系数Ti过小,被控系统消除静态误差所需时间较短,易产生震荡。The purpose of introducing integral in the controller is to eliminate the static error of the controlled system, so as to ensure that the controlled object can achieve no static error tracking when the system is in a steady state. As long as e(t) is not 0, the output result u(t) will not be 0. The controlled quantity is adjusted through the cumulative effect of integral control, thereby reducing the system deviation until the deviation is reduced to 0. If the integral coefficient Ti is too large, the integral effect will be weak, and it will take a long time for the controlled system to eliminate the static error, but no oscillation reaction will occur; if the integral coefficient Ti is too small, the controlled system needs a shorter time to eliminate the static error. , prone to vibration.

微分(D)部分的数学表达式为:The mathematical expression for the differential (D) part is:

在控制器中引入微分的目的是为了加快控制过程,当系统偏差出现的时候,被控系统就会按偏差变化的方向进行提前快速调节,将系统偏差提前消灭掉。微分作用的强弱是由微分系数Td来决定,当Td越大时,微分控制效果就会越明显,当Td越小时,微分控制效果就会越弱;微分的作用是能够减少被控系统出现超调现象,使系统能够很快趋于稳定状态。The purpose of introducing differential in the controller is to speed up the control process. When the system deviation occurs, the controlled system will quickly adjust in advance according to the direction of deviation change, and eliminate the system deviation in advance. The strength of the differential action is determined by the differential coefficient Td. When Td is larger, the differential control effect will be more obvious. When Td is smaller, the differential control effect will be weaker; Overshoot phenomenon, so that the system can quickly tend to a stable state.

我们比较常用的获取PID的参数方法有两种:一种是根据被控对象预先建立精确的数学模型,进而我们可以很方便的计算出被控对象的控制参数。另一种方法是用试验的方法进行测试,通过对试验数据的分析我们获取被控对象的参数。在传统经典PID控制系统中,PID的参数在控制过程之前就已经设定,被控过程中途不能更改,若被控对象模型在控制过程发生改变,则此参数已经无效,进而不能很好的控制被控对象,实际上本控制对象由于所处的水下环境是变化的,所以被控对象在不同阶段需要不同的控制参数,为了使被控对象有更好的控制效果,我们在经典的PID控制算法上提出了自适应的PID控制算法,能够根据不同的外部环境为我们选择不同的控制参数。There are two commonly used methods to obtain PID parameters: one is to establish an accurate mathematical model in advance according to the controlled object, and then we can easily calculate the control parameters of the controlled object. Another method is to use the experimental method to test, and we obtain the parameters of the controlled object through the analysis of the experimental data. In the traditional classical PID control system, the PID parameters have been set before the control process, and cannot be changed in the middle of the controlled process. If the controlled object model changes during the control process, the parameters are invalid and cannot be well controlled. The controlled object, in fact, the controlled object needs different control parameters at different stages due to the changing underwater environment. On the control algorithm, an adaptive PID control algorithm is proposed, which can choose different control parameters for us according to different external environments.

经典PID控制表达式表示为:The classical PID control expression is expressed as:

u(n)=Kp{e(n)+T/Ti[e(n)-e(n-1)]}+u0=up(n)+ui(n)+ud(n)+u0 u(n)=Kp{e(n)+T/Ti[e(n)-e(n-1)]}+u 0 = up (n)+u i (n)+u d (n) +u 0

在上述公式中,我们称up(n)=Kpe(n)为比例项,为微分项,ud(n)=KpTd/T[e(n)-e(n-1)]为积分项。In the above formula, we call u p (n)=K p e(n) the proportional term, is the differential term, and ud (n)=KpTd/T[e(n)-e(n-1)] is the integral term.

对步骤S1水下机器人运动模型分析之后,可以得知,机器人的方向控制是由控制它的角速度w来控制的,在实际运行中,机器人的运动环境是一直变化的,它的运动方向是在不断变化的,因此角速度w是由位置偏差xp和方向偏差θp共同决定的,在上述经典PID算法的基础上设计出本发明所述的适合水下机器人角速度控制的自适应PID控制算法:After analyzing the motion model of the underwater robot in step S1, it can be known that the direction control of the robot is controlled by controlling its angular velocity w. In actual operation, the motion environment of the robot changes all the time, and its motion direction is in the Constantly changing, so the angular velocity w is jointly determined by the position deviation x p and the direction deviation θp. On the basis of the above-mentioned classical PID algorithm, an adaptive PID control algorithm suitable for the angular velocity control of the underwater robot according to the present invention is designed:

w(n)=k1xp+k2θp+k3w(n-1)+k4w(n-2)。w(n)=k 1 x p +k 2 θ p +k 3 w(n-1)+k 4 w(n-2).

此外,根据公式dθ=wdt→Δθ=∫wdt,我们很容易的得到机器人角速度的变化量,进而得到水下机器人的运动方向变化,而机器人不断变化的运动方向在某种程度上决定了水下机器人的运动轨迹,让它运动轨迹与规划路径尽可能的重合,从而可以达到控制要求。In addition, according to the formula dθ=wdt→Δθ=∫wdt, we can easily obtain the variation of the angular velocity of the robot, and then obtain the movement direction of the underwater robot, and the changing movement direction of the robot determines the underwater robot to some extent. The motion trajectory of the robot is to make its motion trajectory coincide with the planned path as much as possible, so that the control requirements can be met.

优选地,所述步骤S3具体包括以下步骤:Preferably, the step S3 specifically includes the following steps:

S301.在绘图软件中按照拟采用的图形化展示形式绘制SVG格式图片;S301. Draw pictures in SVG format in the drawing software according to the graphic display form to be used;

S302.利用已经绘制好的SVG图形计算各个控件的坐标与属性;S302. Use the drawn SVG graphics to calculate the coordinates and attributes of each control;

S303.利用DOM接口访问生成的SVG图片文档,在SVG文档中根据图片大小新建画布;S303. Use the DOM interface to access the generated SVG image document, and create a new canvas in the SVG document according to the image size;

S304.将SVG画布的更改应用到SVG文档,刷新界面显示,从而实现水下机器人自身信息的动态显示。S304. Apply the changes of the SVG canvas to the SVG document, and refresh the interface display, thereby realizing the dynamic display of the underwater robot's own information.

所述绘图软件包括Adobe illustrator(简称“AI”)、Method Draw、Graphviz;SVG图是由一系列的控件组成,这些控件包括:圆、三角形、正方形、弧形等等;通过已绘制好的SVG图,将各个控件相对于原点的坐标计算出来,其中原点被定义为整张SVG图中最左上的点;计算各个控件的属性则是通过判断每个控件的ID来判断控件的类型,如控件是圆,还是正方形,还是三角形等等。The drawing software includes Adobe illustrator ("AI" for short), Method Draw, and Graphviz; the SVG diagram is composed of a series of controls, including: circle, triangle, square, arc, etc.; through the drawn SVG Figure, calculate the coordinates of each control relative to the origin, where the origin is defined as the upper left point of the entire SVG image; calculating the properties of each control is to determine the type of the control by judging the ID of each control, such as the control A circle, a square, a triangle, etc.

更优选地,所述图形化展示形式包括文字、指示灯、进度条、数字、曲线图。More preferably, the graphical display form includes text, indicator lights, progress bars, numbers, and graphs.

优选地,所述步骤S3具体包括以下步骤:Preferably, the step S3 specifically includes the following steps:

S301.在绘图软件中按照拟采用的图形化展示形式绘制SVG格式图片;S301. Draw pictures in SVG format in the drawing software according to the graphic display form to be used;

S302.利用已经绘制好的SVG图形计算各个控件的坐标与属性;S302. Use the drawn SVG graphics to calculate the coordinates and attributes of each control;

S303.利用DOM接口访问生成的SVG图片文档,在SVG文档中根据图片大小新建画布;S303. Use the DOM interface to access the generated SVG image document, and create a new canvas in the SVG document according to the image size;

S304.将SVG画布的更改应用到SVG文档,刷新界面显示,从而实现水下机器人自身信息的动态显示。S304. Apply the changes of the SVG canvas to the SVG document, and refresh the interface display, thereby realizing the dynamic display of the underwater robot's own information.

更优选地,所述图形化展示形式包括文字、指示灯、进度条、数字、曲线图。More preferably, the graphical display form includes text, indicator lights, progress bars, numbers, and graphs.

与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

1、本发明采用自主巡线技术,采用改进后的自适应PID算法应用于水下机器人运动控制中,实现了机器人前行速度的连续调节以及角速度的自适应PID调节,这样使得机器人的操作时间能够缩短,作业效率提高;与此同时,利用自适应PID算法,在线更改PID的三个参数,可以使得被控系统更加的稳定,在海底这种时变的应用场景中能够达到很好的控制效果;1. The present invention adopts the autonomous line inspection technology, and the improved self-adaptive PID algorithm is applied to the motion control of the underwater robot, which realizes the continuous adjustment of the forward speed of the robot and the self-adaptive PID adjustment of the angular speed, so that the operation time of the robot is reduced. At the same time, using the adaptive PID algorithm to change the three parameters of the PID online can make the controlled system more stable, and can achieve good control in the time-varying application scenario of the seabed Effect;

2、本发明采用动态显示,相较于传统的直接将数据显示在静态控件中,本发明采用自定义图形在SVG中动态显示数据的方法,充分利用了SVG格式图片可编程的特点,开发了可以动态显示数据的动态界面。2. The present invention adopts dynamic display. Compared with the traditional method of directly displaying data in static controls, the present invention adopts the method of dynamically displaying data in SVG by using custom graphics, making full use of the programmable features of SVG format pictures, and developing a A dynamic interface that can dynamically display data.

附图说明Description of drawings

图1为本发明实施例1~实施例5所述水下机器人工作流程图;Fig. 1 is the working flow chart of the underwater robot according to Embodiment 1 to Embodiment 5 of the present invention;

图2为本发明实施例1~实施例5所述经典PID控制系统原理图;FIG. 2 is a schematic diagram of the classic PID control system described in Embodiments 1 to 5 of the present invention;

图3为本发明实施例1~实施例5所述水下机器人的自主巡线控制系统的过程图;3 is a process diagram of the autonomous line patrol control system of the underwater robot according to Embodiments 1 to 5 of the present invention;

图4为本发明实施例1所述水下机器人在某一时刻纵倾与横倾的角度变化示意图;4 is a schematic diagram of the angle change of pitch and heel of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图5为本发明实施例1所述水下机器人在某一时刻首向显示的示意图;5 is a schematic diagram of the underwater robot according to Embodiment 1 of the present invention showing the heading at a certain moment;

图6为本发明实施例1所述水下机器人在某一时刻垂向深度或高度显示的示意图;FIG. 6 is a schematic diagram of vertical depth or height display of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图7为本发明实施例1所述水下机器人在某一时刻水平推力显示的示意图;7 is a schematic diagram of the horizontal thrust display of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图8为本发明实施例1所述水下机器人在某一时刻垂向推力显示的示意图;8 is a schematic diagram of the vertical thrust display of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图9为本发明实施例1所述水下机器人在某一时刻垂向操纵推力显示的示意图;FIG. 9 is a schematic diagram of the vertical manipulation thrust display of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图10为本发明实施例1所述水下机器人在某一时刻能量管理显示的示意图;10 is a schematic diagram of the energy management display of the underwater robot according to Embodiment 1 of the present invention at a certain moment;

图11为本发明实施例1水下机器人的自主巡线的效果图;11 is an effect diagram of the autonomous line patrol of the underwater robot in Embodiment 1 of the present invention;

图12为本发明实施例2水下机器人的自主巡线的效果图;12 is an effect diagram of the autonomous line patrol of the underwater robot in Embodiment 2 of the present invention;

图13为本发明实施例3水下机器人的自主巡线的效果图;13 is an effect diagram of the autonomous line patrol of the underwater robot in Embodiment 3 of the present invention;

图14为本发明实施例4水下机器人的自主巡线的效果图;14 is an effect diagram of the autonomous line patrol of the underwater robot in Embodiment 4 of the present invention;

图15为本发明实施例5水下机器人的自主巡线的效果图;15 is an effect diagram of the autonomous line patrol of the underwater robot in Embodiment 5 of the present invention;

具体实施方式Detailed ways

下面将结合本发明中的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动条件下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

实施例1Example 1

水下机器人自主巡线及水面监控的方法,结合图1进行说明,包括以下步骤:The method for autonomous line inspection and water surface monitoring of an underwater robot is described with reference to Figure 1, including the following steps:

S1.预设水下机器人的运动路径并对水下机器人进行运动建模:设置表征水下机器人自身位置的绝对坐标系XOY,绝对坐标系XOY是以水上母船相对于地面的位置建立的,其中XOY坐标系的O点是水上母船的中心点;则水下机器人的运动模型如下所示:S1. Preset the motion path of the underwater robot and model the motion of the underwater robot: set the absolute coordinate system XOY representing the position of the underwater robot itself. The absolute coordinate system XOY is established based on the position of the floating mother ship relative to the ground, wherein The O point of the XOY coordinate system is the center point of the water mother ship; the motion model of the underwater robot is as follows:

Vx=VcosθVx=Vcosθ

Vy=VsinθVy=Vsinθ

其中,V是水下机器人的线速度,θ为水下机器人的线速度V与坐标轴X的夹角,w为水下机器人的角速度,θ0为水下机器人的线速度V与坐标轴X的夹角的初始值,t为水下机器人的运动时间;Vx为水下机器人相对于坐标轴X轴的速度,Vy为水下机器人相对于坐标轴Y轴的速度。Among them, V is the linear velocity of the underwater robot, θ is the angle between the linear velocity V of the underwater robot and the coordinate axis X, w is the angular velocity of the underwater robot, and θ 0 is the linear velocity V of the underwater robot and the coordinate axis X The initial value of the included angle, t is the movement time of the underwater robot; Vx is the speed of the underwater robot relative to the X axis of the coordinate axis, and Vy is the speed of the underwater robot relative to the Y axis of the coordinate axis.

通过建立相对坐标系xoy将水下机器人在水下的相对运动信息转换为相对大地的绝对运动信息;设置表征水下机器人自身位置的、以水下机器人为中心点的相对坐标系xoy,且相对坐标系xoy与绝对坐标系XOY之间能够相互转换,具体的转换步骤为:By establishing the relative coordinate system xoy, the relative motion information of the underwater robot under water is converted into the absolute motion information relative to the earth; the relative coordinate system xoy with the underwater robot as the center point is set to represent the position of the underwater robot itself, and the relative The coordinate system xoy and the absolute coordinate system XOY can be converted to each other. The specific conversion steps are:

设定P为水下机器人的预设运动路径,设置为折线;Set P as the preset motion path of the underwater robot, and set it as a polyline;

设定在XOY坐标系中,O(Xo,Yo)表示水下机器人在t时刻的中心点坐标,P(Xp,Yp)表示路径P上任一点的坐标;Set in the XOY coordinate system, O(Xo, Yo) represents the coordinates of the center point of the underwater robot at time t, and P(Xp, Yp) represents the coordinates of any point on the path P;

设定在xoy坐标系中,0(xo,yo)表示水下机器人在t时刻的中心点坐标,p(xp,yp)表示路径P上任一点映射到xoy坐标系中的坐标Set in the xoy coordinate system, 0(x o , y o ) represents the coordinates of the center point of the underwater robot at time t, and p(x p , y p ) represents the coordinates of any point on the path P mapped to the xoy coordinate system

公式1:ΔX=Xp-Xo Formula 1: ΔX=X p -X o

ΔY=Yp-Yo ΔY=Y p -Y o

公式2:xp=ΔXcosθ-ΔYsinθEquation 2: x p = ΔXcosθ-ΔYsinθ

yp=ΔXsinθ-ΔYsinθy p =ΔXsinθ-ΔYsinθ

其中,xo=0,yo=0where x o =0, y o =0

根据公式1和公式2实现水下机器人的绝对坐标系与相对坐标系之间的转换;According to formula 1 and formula 2, the conversion between the absolute coordinate system and the relative coordinate system of the underwater robot is realized;

公式3:Xp=xpcosθ+ypsinθ+Xo Equation 3: X p = x p cosθ+y p sinθ+X o

Yp=-xpsinθ+ypcosθ+Yo Y p = -x p sinθ+y p cosθ+Y o

根据公式3实现水下机器人的相对坐标系与绝对坐标系之间的转换。According to formula 3, the transformation between the relative coordinate system and the absolute coordinate system of the underwater robot is realized.

S2.建立水下机器人自主巡线控制系统以实现机器人水下自主巡线功能:所述自主巡线控制系统包括前行速度和角速度两个变量,前行速度和角速度分别用于控制水下机器人前进的快慢和方向。自主巡线控制过程如图3所示。S2. Establish an underwater robot autonomous line inspection control system to realize the robot underwater autonomous line inspection function: the autonomous line inspection control system includes two variables: forward speed and angular speed, and the forward speed and angular speed are respectively used to control the underwater robot The speed and direction of progress. The autonomous line patrol control process is shown in Figure 3.

通过如下公式对水下机器人的前行速度进行连续调整:The forward speed of the underwater robot is continuously adjusted by the following formula:

V=(180°-β)/180*VmaxV=(180°-β)/180*Vmax

其中,β表示水下机器人当前的朝向和预设运动路径之间的夹角,即角度偏差;Vmax表示水下机器人满速时的速度。Among them, β represents the angle between the current orientation of the underwater robot and the preset motion path, that is, the angle deviation; Vmax represents the speed of the underwater robot at full speed.

对水下机器人运动模型分析之后,可以得知,机器人的方向控制是由控制它的角速度w来控制的,在实际运行中,机器人的运动环境是一直变化的,它的运动方向是在不断变化的,因此角速度w是由位置偏差xp和方向偏差θp共同决定的,因此在经典PID算法(如图2所示)的基础上提出利用自适应PID控制算法控制水下机器人在前行过程中的角速度,通过如下公式对水下机器人的前行角速度进行调整:After analyzing the motion model of the underwater robot, it can be known that the direction control of the robot is controlled by its angular velocity w. In actual operation, the motion environment of the robot is constantly changing, and its motion direction is constantly changing. Therefore, the angular velocity w is determined by the position deviation x p and the direction deviation θp. Therefore, on the basis of the classical PID algorithm (as shown in Figure 2), it is proposed to use the adaptive PID control algorithm to control the underwater robot in the forward process. The angular velocity of the underwater robot is adjusted by the following formula:

w(n)=k1xp+k2θp+k3w(n-1)+k4w(n-2)w(n)=k 1 x p +k 2 θ p +k 3 w(n-1)+k 4 w(n-2)

其中,xp表示第n时刻水下机器人相对于规划路径的位置偏差;θp表示第n时刻水下机器人相对于规划路径的角度偏差;w(n)表示第n时刻水下机器人的角速度;w(n-1)表示第n-1时刻水下机器人的角速度;w(n-2)表示第n-2时刻水下机器人的角速度;k1表示第n时刻水下机器人的位置偏差系数;k2表示第n时刻水下机器人的角度偏差系数;k3表示历史参考数据,一般选取0.33;k4表示历史参考数据,一般选取0.33;根据水下机器人当前的行驶状态确定k1和k2,实现水下机器人的角速度调整。Among them, x p represents the position deviation of the underwater robot relative to the planned path at the nth time; θp represents the angular deviation of the underwater robot relative to the planned path at the nth time; w(n) represents the angular velocity of the underwater robot at the nth time; w (n-1) represents the angular velocity of the underwater robot at the n-1th time; w(n-2) represents the angular velocity of the underwater robot at the n-2th time; k 1 represents the position deviation coefficient of the underwater robot at the nth time; k 2 represents the angle deviation coefficient of the underwater robot at the nth moment; k 3 represents historical reference data, generally selected as 0.33; k 4 represents historical reference data, generally selected as 0.33; k 1 and k 2 are determined according to the current driving state of the underwater robot, Realize the angular velocity adjustment of the underwater robot.

S3.水下机器人航行至指定位置后,绘制水下机器人动态显示自身信息的SVG格式图片;S3. After the underwater robot navigates to the designated position, draw an SVG image in which the underwater robot dynamically displays its own information;

S301.在Adobe illustrator中按照曲线图的展示形式绘制SVG格式图片;S301. Draw pictures in SVG format in Adobe illustrator according to the display form of curve graphs;

S302.利用已经绘制好的SVG图形计算各个控件的坐标与属性;S302. Use the drawn SVG graphics to calculate the coordinates and attributes of each control;

S303.利用DOM接口访问生成的SVG图片文档,在SVG文档中根据图片大小新建画布;S303. Use the DOM interface to access the generated SVG image document, and create a new canvas in the SVG document according to the image size;

S304.将SVG画布的更改应用到SVG文档,刷新界面显示,从而实现水下机器人自身信息的动态显示。S304. Apply the changes of the SVG canvas to the SVG document, and refresh the interface display, thereby realizing the dynamic display of the underwater robot's own information.

S4.启动传感器,对水下机器的周围环境信息及水下机器人的自身数据进行采集;S4. Start the sensor to collect the information of the surrounding environment of the underwater vehicle and the data of the underwater vehicle;

S5.利用SOCKET网络通信技术,将步骤S6中采集到的传感器数据发送到上位机监控软件;S5. Using SOCKET network communication technology, the sensor data collected in step S6 is sent to the host computer monitoring software;

S6.在上位机软件中对接收到的数据进行校验和拆包处理,并将校验正确的数据动态显示在SVG控件中。S6. Verify and unpack the received data in the host computer software, and dynamically display the correct verified data in the SVG control.

图4为本发明所述水下机器人在某一时刻纵倾与横倾的角度变化示意图,以第一人称视角的图形方式显示纵倾和横倾的角度变化,以及数据的有效性。图4中两种颜色交界线旋转表达横倾变化,交界线上下移动表达纵倾变化。4 is a schematic diagram of the angle change of pitch and heel of the underwater robot according to the present invention at a certain moment, and the angle change of pitch and heel and the validity of the data are displayed graphically in a first-person perspective. In Figure 4, the rotation of the boundary line of the two colors represents the change of heel, and the movement of the boundary line up and down represents the change of trim.

图5为本发明所述水下机器人在某一时刻首向显示的示意图,以圆盘指针的图形方式显示首向与目标首向的角度,以及数据的有效性。图5中,中间大的箭头和中间的数字表示首向,小的箭头和上面的数字表示目标首向;当数据无效时,数字部分显示“???”,图形部分不显示箭头。FIG. 5 is a schematic diagram of the underwater robot of the present invention displaying the heading at a certain moment, and the angle between the heading and the target heading and the validity of the data are displayed graphically by a disc pointer. In Figure 5, the big arrow in the middle and the number in the middle represent the heading, the small arrow and the number above represent the target heading; when the data is invalid, the number part displays "???", and the graph part does not display the arrow.

图6为本发明所述水下机器人在某一时刻垂向深度或高度显示的示意图,以垂向的图形方式显示深度或高度与目标值的偏差,以及数据的有效性。图6中,上方的数字表示水下机器人当前的深度或高度,当中的数字显示目标值,左边的箭头和数字显示传感器值;当数据无效时,清除为背景色。Fig. 6 is a schematic diagram of vertical depth or height display of the underwater robot according to the present invention at a certain moment, and the deviation of the depth or height from the target value and the validity of the data are displayed in a vertical graphic manner. In Figure 6, the upper number represents the current depth or height of the underwater robot, the number in the middle shows the target value, and the arrow and number on the left show the sensor value; when the data is invalid, it is cleared to the background color.

图7为本发明所述水下机器人在某一时刻水平推力显示的示意图,以图形方式显示水平面合成推力指令和推进器推力指令,以及数据的有效性。外圈四个为推进器推力,显示百分比、箭头方向表示正负,正值指向中间,负值指向上下外面。中间三个为合成推力指令,推力指令上的指示线的移动表示前后、左右、旋转指令。当数据无效时,数字部分显示“???”,图形部分清除为背景色。FIG. 7 is a schematic diagram of the horizontal thrust display of the underwater robot according to the present invention at a certain moment, which graphically displays the horizontal plane synthetic thrust command and the thruster thrust command, and the validity of the data. The four on the outer ring are the thrust of the propeller, showing the percentage, the direction of the arrow indicates positive and negative, the positive value points to the middle, and the negative value points to the upper and lower outer sides. The middle three are synthetic thrust commands, and the movement of the instruction line on the thrust command indicates front and rear, left and right, and rotation commands. When the data is invalid, the numerical part displays "???" and the graph part clears to the background color.

图8为本发明所述水下机器人在某一时刻垂向推力显示的示意图,以图形方式显示垂向合成推力指令和推进器推力指令,以及数据的有效性。外圈三个为推进器推力,表示推进器推力的指示线移动方向表示正负,正值向上,负值向下。中间三个为合成推力指令,合成推力指令上的指示线移动表示升沉、纵倾、横倾指令。当数据无效时,数字部分显示“???”,图形部分清除为背景色。FIG. 8 is a schematic diagram of the vertical thrust display of the underwater robot according to the present invention at a certain moment, which graphically displays the vertical composite thrust command and the thruster thrust command, as well as the validity of the data. The three outer circles are the thrust of the thruster, and the direction of movement of the indicator line indicating the thrust of the thruster indicates positive and negative, positive values are upward, and negative values are downward. The middle three are composite thrust commands, and the movement of the indicator lines on the composite thrust command indicates heave, pitch, and heel commands. When the data is invalid, the numerical part displays "???" and the graph part clears to the background color.

图9为本发明所述水下机器人在某一时刻垂向操纵推力显示的示意图,以图形方式显示垂向操纵推力指令,垂向操纵推力指令上的指示线移动表示升沉、纵倾、横倾指令。数据范围:-100至+100。9 is a schematic diagram of the vertical steering thrust display of the underwater robot according to the present invention at a certain moment, the vertical steering thrust command is displayed graphically, and the movement of the indicator line on the vertical steering thrust command indicates heave, pitch, lateral dump command. Data range: -100 to +100.

图10为本发明所述水下机器人在某一时刻能量管理显示的示意图,以图形方式显示能量管理限制比例,分别水平面、垂向、工具能量限制比例。数据范围:0至100。Fig. 10 is a schematic diagram of the energy management display of the underwater robot according to the present invention at a certain time, showing the energy management limit ratios in a graphic form, which are the horizontal, vertical, and tool energy limit ratios respectively. Data range: 0 to 100.

在机器人自主巡线开始前,机器人的起始路径与预设路径设置为存在一定偏差,待开启自主巡线功能后,机器人的运动路径与预设路径之间的偏差会越来越小,最后水下机器人的实际运动路径会与预设路径趋于基本一致。本实施例自主巡线的效果图如图11所示,从图11可以看出,采用本发明所述的自主巡线方法,水下机器人的实际运动路径与预设路径基本一致。Before the autonomous line patrol of the robot starts, there is a certain deviation between the robot's initial path and the preset path. After the autonomous line patrol function is enabled, the deviation between the robot's motion path and the preset path will become smaller and smaller. The actual motion path of the underwater robot will tend to be basically the same as the preset path. The effect diagram of the autonomous line patrol in this embodiment is shown in FIG. 11 . It can be seen from FIG. 11 that, by using the autonomous line patrol method of the present invention, the actual motion path of the underwater robot is basically the same as the preset path.

实施例2Example 2

本实施例与实施例1基本相同,不同之处在于,水下机器人的预设运动路径设置为直线。This embodiment is basically the same as Embodiment 1, except that the preset motion path of the underwater robot is set as a straight line.

本实施例自主巡线的效果图如图12所示,从图12可以看出,采用本发明所述的自主巡线方法,水下机器人的实际运动路径与预设路径基本一致。The effect diagram of the autonomous line patrol in this embodiment is shown in FIG. 12 . It can be seen from FIG. 12 that, using the autonomous line patrol method of the present invention, the actual motion path of the underwater robot is basically the same as the preset path.

实施例3Example 3

本实施例与实施例1基本相同,不同之处在于,水下机器人的预设运动路径设置为圆。This embodiment is basically the same as Embodiment 1, except that the preset motion path of the underwater robot is set as a circle.

本实施例自主巡线的效果图如图13所示,从图13可以看出,采用本发明所述的自主巡线方法,水下机器人的实际运动路径与预设路径基本一致。The effect diagram of the autonomous line patrol in this embodiment is shown in FIG. 13 . It can be seen from FIG. 13 that using the autonomous line patrol method of the present invention, the actual motion path of the underwater robot is basically the same as the preset path.

实施例4Example 4

本实施例与实施例1基本相同,不同之处在于,水下机器人的预设运动路径设置为椭圆。This embodiment is basically the same as Embodiment 1, except that the preset motion path of the underwater robot is set as an ellipse.

本实施例自主巡线的效果图如图14所示,从图14以看出,采用本发明所述的自主巡线方法,水下机器人的实际运动路径与预设路径基本一致。The effect diagram of the autonomous line patrol in this embodiment is shown in FIG. 14 . It can be seen from FIG. 14 that the actual motion path of the underwater robot is basically the same as the preset path by using the autonomous line patrol method of the present invention.

实施例5Example 5

本实施例与实施例1基本相同,不同之处在于,水下机器人的预设运动路径设置为任意路径。This embodiment is basically the same as Embodiment 1, except that the preset motion path of the underwater robot is set to any path.

本实施例自主巡线的效果图如图15所示,从图15以看出,采用本发明所述的自主巡线方法,水下机器人的实际运动路径与预设路径基本一致。The effect diagram of the autonomous line patrol in this embodiment is shown in FIG. 15 . It can be seen from FIG. 15 that the actual motion path of the underwater robot is basically the same as the preset path by using the autonomous line patrol method of the present invention.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.

Claims (10)

1.水下机器人自主巡线及水面监控的方法,其特征在于,包括以下步骤:1. the method for autonomous line patrol and water surface monitoring of underwater robot, is characterized in that, comprises the following steps: S1.预设水下机器人的运动路径并对水下机器人进行运动建模;S1. Preset the motion path of the underwater robot and model the motion of the underwater robot; S2.建立水下机器人自主巡线控制系统以实现机器人水下自主巡线功能;S2. Establish an autonomous line patrol control system for an underwater robot to realize the autonomous line patrol function of the robot; S3.水下机器人航行至指定位置后,绘制水下机器人动态显示自身信息的SVG格式图片;S3. After the underwater robot navigates to the designated position, draw an SVG image in which the underwater robot dynamically displays its own information; S4.启动传感器,对水下机器人的周围环境信息及水下机器人的自身数据进行采集;S4. Start the sensor to collect the surrounding environment information of the underwater robot and the data of the underwater robot; S5.利用SOCKET网络通信技术,将步骤S4中采集到的传感器数据发送到上位机监控软件;S5. Using the SOCKET network communication technology, the sensor data collected in step S4 is sent to the host computer monitoring software; S6.在上位机软件中对接收到的数据进行校验和拆包处理,并将校验正确的数据动态显示在SVG控件中。S6. Verify and unpack the received data in the host computer software, and dynamically display the correct verified data in the SVG control. 2.根据权利要求1所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述步骤S1具体为:设置表征水下机器人自身位置的绝对坐标系XOY,绝对坐标系XOY是以水上母船相对于地面的位置建立的,其中XOY坐标系的O点是水上母船的中心点;则水下机器人的运动模型如下所示:2. the method for autonomous line inspection and water surface monitoring of underwater robot according to claim 1, is characterized in that, described step S1 is specifically: set the absolute coordinate system XOY that characterizes the position of underwater robot itself, and the absolute coordinate system XOY is Based on the position of the floating mother ship relative to the ground, the O point of the XOY coordinate system is the center point of the floating mother ship; the motion model of the underwater robot is as follows: Vx=VcosθVx=Vcosθ Vy=VsinθVy=Vsinθ 其中,V是水下机器人的线速度,θ为水下机器人的线速度V与坐标轴X的夹角,w为水下机器人的角速度,θ0为水下机器人的线速度V与坐标轴X的夹角的初始值,t为水下机器人的运动时间;Vx为水下机器人相对于坐标轴X轴的速度,Vy为水下机器人相对于坐标轴Y轴的速度。Among them, V is the linear velocity of the underwater robot, θ is the angle between the linear velocity V of the underwater robot and the coordinate axis X, w is the angular velocity of the underwater robot, and θ 0 is the linear velocity V of the underwater robot and the coordinate axis X The initial value of the included angle, t is the movement time of the underwater robot; Vx is the speed of the underwater robot relative to the X axis of the coordinate axis, and Vy is the speed of the underwater robot relative to the Y axis of the coordinate axis. 3.根据权利要求2所述的水下机器人自主巡线及水面监控的方法,其特征在于,通过建立相对坐标系xoy将水下机器人在水下的相对运动信息转换为相对大地的绝对运动信息;设置表征水下机器人自身位置的、以水下机器人为中心点的相对坐标系xoy,且相对坐标系xoy与绝对坐标系XOY之间能够相互转换,具体的转换步骤为:3. the method for autonomous line inspection and water surface monitoring of underwater robot according to claim 2, is characterized in that, by setting up relative coordinate system xoy, the relative motion information of underwater robot under water is converted into the absolute motion information of relative earth ; Set up the relative coordinate system xoy with the underwater robot as the center point that represents the position of the underwater robot, and the relative coordinate system xoy and the absolute coordinate system XOY can be converted to each other, and the specific conversion steps are: 设定P为水下机器人的预设运动路径;Set P as the preset motion path of the underwater robot; 设定在XOY坐标系中,O(Xo,Yo)表示水下机器人在t时刻的中心点坐标,P(Xp,Yp)表示路径P上任一点的坐标;Set in the XOY coordinate system, O(Xo, Yo) represents the coordinates of the center point of the underwater robot at time t, and P(Xp, Yp) represents the coordinates of any point on the path P; 设定在xoy坐标系中,0(xo,yo)表示水下机器人在t时刻的中心点坐标,p(xp,yp)表示路径P上任一点映射到xoy坐标系中的坐标;Set in the xoy coordinate system, 0(x o , y o ) represents the coordinates of the center point of the underwater robot at time t, and p(x p , y p ) represents the coordinates of any point on the path P mapped to the xoy coordinate system; 公式1:ΔX=Xp-Xo Formula 1: ΔX=X p -X o ΔY=Yp-Yo ΔY=Y p -Y o 公式2:xp=ΔXcosθ-ΔYsinθEquation 2: x p = ΔXcosθ-ΔYsinθ yp=ΔXsinθ-ΔYsinθy p =ΔXsinθ-ΔYsinθ 其中,xo=0,yo=0where x o =0, y o =0 根据公式1和公式2实现水下机器人的绝对坐标系与相对坐标系之间的转换;According to formula 1 and formula 2, the conversion between the absolute coordinate system and the relative coordinate system of the underwater robot is realized; 公式3:Xp=xpcosθ+ypsinθ+Xo Equation 3: X p = x p cosθ+y p sinθ+X o Yp=-xpsinθ+ypcosθ+Yo Y p = -x p sinθ+y p cosθ+Y o 根据公式3实现水下机器人的相对坐标系与绝对坐标系之间的转换。According to formula 3, the transformation between the relative coordinate system and the absolute coordinate system of the underwater robot is realized. 4.根据权利要求3所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述水下机器人的预设运动路径设置为直线、曲线、折线或圆。4 . The method for autonomous line patrol and water surface monitoring of an underwater robot according to claim 3 , wherein the preset motion path of the underwater robot is set as a straight line, a curve, a polyline or a circle. 5 . 5.根据权利要求4所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述水下机器人的预设运动路径设置为折线。5 . The method for autonomous line patrol and water surface monitoring of an underwater robot according to claim 4 , wherein the preset motion path of the underwater robot is set as a broken line. 6 . 6.根据权利要求1所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述步骤S2中,所述自主巡线控制系统包括前行速度和角速度两个变量,前行速度和角速度分别用于控制水下机器人前进的快慢和方向。6. The method for autonomous line patrol and water surface monitoring of an underwater robot according to claim 1, characterized in that, in the step S2, the autonomous line patrol control system comprises two variables of forward speed and angular velocity, and the forward line Speed and angular velocity are used to control the speed and direction of the underwater robot, respectively. 7.根据权利要求6所述的水下机器人自主巡线及水面监控的方法,其特征在于,通过如下公式对水下机器人的前行速度进行连续调整:7. the method for autonomous line patrolling and water surface monitoring of underwater robot according to claim 6, is characterized in that, the forward speed of underwater robot is continuously adjusted by following formula: V=(180°-β)/180*VmaxV=(180°-β)/180*Vmax 其中,β表示水下机器人当前的朝向和预设运动路径之间的夹角,即角度偏差;Vmax表示水下机器人满速时的速度。Among them, β represents the angle between the current orientation of the underwater robot and the preset motion path, that is, the angle deviation; Vmax represents the speed of the underwater robot at full speed. 8.根据权利要求6所述的水下机器人自主巡线及水面监控的方法,其特征在于,利用自适应PID控制算法控制水下机器人在前行过程中的角速度,通过如下公式对水下机器人的前行角速度进行调整:8. the method for autonomous line inspection and water surface monitoring of underwater robot according to claim 6, is characterized in that, utilizes adaptive PID control algorithm to control the angular velocity of underwater robot in the forward process, by following formula to underwater robot to adjust the forward angular velocity: w(n)=k1xp+k2θp+k3w(n-1)+k4w(n-2)w(n)=k 1 x p +k 2 θ p +k 3 w(n-1)+k 4 w(n-2) 其中,xp表示第n时刻水下机器人相对于规划路径的位置偏差;θp表示第n时刻水下机器人相对于规划路径的角度偏差;w(n)表示第n时刻水下机器人的角速度;w(n-1)表示第n-1时刻水下机器人的角速度;w(n-2)表示第n-2时刻水下机器人的角速度;k1表示第n时刻水下机器人的位置偏差系数;k2表示第n时刻水下机器人的角度偏差系数;k3表示历史参考数据,一般选取0.33;k4表示历史参考数据,一般选取0.33;根据水下机器人当前的行驶状态确定k1和k2,实现水下机器人的角速度调整。Among them, x p represents the position deviation of the underwater robot relative to the planned path at the nth time; θp represents the angular deviation of the underwater robot relative to the planned path at the nth time; w(n) represents the angular velocity of the underwater robot at the nth time; w (n-1) represents the angular velocity of the underwater robot at the n-1th time; w(n-2) represents the angular velocity of the underwater robot at the n-2th time; k 1 represents the position deviation coefficient of the underwater robot at the nth time; k 2 represents the angle deviation coefficient of the underwater robot at the nth moment; k 3 represents historical reference data, generally selected as 0.33; k 4 represents historical reference data, generally selected as 0.33; k 1 and k 2 are determined according to the current driving state of the underwater robot, Realize the angular velocity adjustment of the underwater robot. 9.根据权利要求1所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述步骤S3具体包括以下步骤:9. The method for autonomous line patrolling and water surface monitoring of an underwater robot according to claim 1, wherein the step S3 specifically comprises the following steps: S301.在绘图软件中按照拟采用的图形化展示形式绘制SVG格式图片;S301. Draw pictures in SVG format in the drawing software according to the graphic display form to be used; S302.利用已经绘制好的SVG图形计算各个控件的坐标与属性;S302. Use the drawn SVG graphics to calculate the coordinates and attributes of each control; S303.利用DOM接口访问生成的SVG图片文档,在SVG文档中根据图片大小新建画布;S303. Use the DOM interface to access the generated SVG image document, and create a new canvas in the SVG document according to the image size; S304.将SVG画布的更改应用到SVG文档,刷新界面显示,从而实现水下机器人自身信息的动态显示。S304. Apply the changes of the SVG canvas to the SVG document, and refresh the interface display, thereby realizing the dynamic display of the underwater robot's own information. 10.根据权利要求9所述的水下机器人自主巡线及水面监控的方法,其特征在于,所述图形化展示形式包括文字、指示灯、进度条、数字、曲线图。10 . The method for autonomous line patrol and water surface monitoring of an underwater robot according to claim 9 , wherein the graphical display form includes text, indicator lights, progress bars, numbers, and graphs. 11 .
CN201811472498.6A 2018-12-04 2018-12-04 The method of the autonomous line walking of underwater robot and monitor surface Pending CN109557917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811472498.6A CN109557917A (en) 2018-12-04 2018-12-04 The method of the autonomous line walking of underwater robot and monitor surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811472498.6A CN109557917A (en) 2018-12-04 2018-12-04 The method of the autonomous line walking of underwater robot and monitor surface

Publications (1)

Publication Number Publication Date
CN109557917A true CN109557917A (en) 2019-04-02

Family

ID=65868724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811472498.6A Pending CN109557917A (en) 2018-12-04 2018-12-04 The method of the autonomous line walking of underwater robot and monitor surface

Country Status (1)

Country Link
CN (1) CN109557917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082774A (en) * 2019-05-18 2019-08-02 上海木木聚枞机器人科技有限公司 A kind of automatic aligning method and system
CN111552309A (en) * 2020-05-21 2020-08-18 上海海洋大学 Ship patrolling control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052473A (en) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Operation control method, apparatus, program and recording medium for underwater robot
CN106895841A (en) * 2017-04-13 2017-06-27 杭州申昊科技股份有限公司 A kind of Vector Electronic Map creation method for being applied to transformer station
CN108045530A (en) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 A kind of submarine cable detection underwater robot and operational method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052473A (en) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Operation control method, apparatus, program and recording medium for underwater robot
CN106895841A (en) * 2017-04-13 2017-06-27 杭州申昊科技股份有限公司 A kind of Vector Electronic Map creation method for being applied to transformer station
CN108045530A (en) * 2017-12-04 2018-05-18 国网山东省电力公司电力科学研究院 A kind of submarine cable detection underwater robot and operational method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘振川: "海底管道检测机器人自主巡线控制系统研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082774A (en) * 2019-05-18 2019-08-02 上海木木聚枞机器人科技有限公司 A kind of automatic aligning method and system
CN111552309A (en) * 2020-05-21 2020-08-18 上海海洋大学 Ship patrolling control method
CN111552309B (en) * 2020-05-21 2021-04-20 上海海洋大学 Ship patrolling control method

Similar Documents

Publication Publication Date Title
CN109784201B (en) AUV dynamic obstacle avoidance method based on four-dimensional risk assessment
CN112147899B (en) An autonomous obstacle avoidance control method for underwater robots based on fuzzy sliding mode algorithm
CN110333739A (en) A Reinforcement Learning-Based AUV Behavior Planning and Action Control Method
CN109656143B (en) Self-adaptive tracking control method and system for sea surface full-drive ship
US20210162589A1 (en) Systems and methods for learning agile locomotion for multiped robots
CN103941685B (en) Control system and control method for deep-sea work type ROV
TW202125463A (en) Autonomous vessel simulation system and operating method thereof
CN111522351B (en) Three-dimensional formation and obstacle avoidance method of underwater robot
CN114879671A (en) Unmanned ship trajectory tracking control method based on reinforcement learning MPC
CN115113524B (en) ASV multiport event trigger path tracking control method based on intervention LVS guidance
CN109557917A (en) The method of the autonomous line walking of underwater robot and monitor surface
CN111830832B (en) Plane path tracking method and system for bionic gliding robot dolphin
CN111618861A (en) Double-follow-up intelligent arm control method based on four-axis structure
CN107015485A (en) A kind of dynamic positioning system semi-physical emulation platform and method based on semi-submerged ship
Bi et al. A waypoint-tracking controller for a bionic autonomous underwater vehicle with two pectoral fins
CN105223955A (en) A kind of track laying air cushion vehicle is to control method and control system
CN116820101A (en) An underactuated unmanned boat formation control method under the lack of distance information
CN112180915A (en) ROS-based double-thrust unmanned ship motion control system and control method
CN118068685A (en) ROV attitude control method and system based on fuzzy PID control
CN107894709A (en) Controlled based on Adaptive critic network redundancy Robot Visual Servoing
CN117034807A (en) Numerical simulation research method for model self-navigation of underwater vehicle
CN110703792B (en) Underwater robot attitude control method based on reinforcement learning
CN116483064A (en) Underwater robot and dynamic positioning method thereof
CN115903802A (en) H∞ heading control method based on nonlinear variable parameter unmanned ship model
Liu et al. Event-triggered predictive path following control of autonomous ships with an MMG model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190402