CN109557529B - A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter - Google Patents

A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter Download PDF

Info

Publication number
CN109557529B
CN109557529B CN201811430187.3A CN201811430187A CN109557529B CN 109557529 B CN109557529 B CN 109557529B CN 201811430187 A CN201811430187 A CN 201811430187A CN 109557529 B CN109557529 B CN 109557529B
Authority
CN
China
Prior art keywords
particle
formula
target detection
parameter
clutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811430187.3A
Other languages
Chinese (zh)
Other versions
CN109557529A (en
Inventor
占荣辉
张军
胡杰民
卢大威
欧建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Daoyin Technology Co ltd
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201811430187.3A priority Critical patent/CN109557529B/en
Publication of CN109557529A publication Critical patent/CN109557529A/en
Application granted granted Critical
Publication of CN109557529B publication Critical patent/CN109557529B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/006Theoretical aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention discloses a radar target detection method based on generalized Pareto distribution clutter statistical modeling, and aims to improve radar target detection performance. The technical scheme is that the maximum likelihood estimation of the logarithm is combined with the particle swarm optimization algorithm, a cost function is designed through the maximum likelihood estimation of the logarithm, and the particle swarm optimization algorithm is utilized to minimize the cost function so as to obtain the optimal parameter estimation result; and determining a detection threshold by using the optimal parameter estimation result to complete radar target detection. The invention can ensure the optimality of the solution of the parameter to be estimated in the maximum likelihood sense, improve the precision and the robustness of parameter estimation, improve the accuracy of the detection threshold and ensure the reliability of the radar target detection result.

Description

一种基于广义Pareto分布杂波统计建模的雷达目标检测方法A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter

技术领域technical field

本发明属雷达目标检测领域,涉及一种利用粒子群优化算法对广义Pareto分布进行精确统计建模的雷达目标检测方法。The invention belongs to the field of radar target detection, and relates to a radar target detection method for precise statistical modeling of generalized Pareto distribution by using particle swarm optimization algorithm.

背景技术Background technique

杂波数据统计建模(即利用合适的分布或函数对杂波数据直方图进行精确拟合)是雷达目标检测领域面临的一个重要问题,选取合适的杂波数据拟合分布模型(或称拟合函数)并准确获取模型参数是目标检测算法设计(如检测门限、虚警概率、检测概率计算等)的重要基础。若模型参数估计存在较大的误差,就无法得到准确的检测门限,从而导致检测概率下降和虚警概率上升。Statistical modeling of clutter data (that is, accurate fitting of the histogram of clutter data using a suitable distribution or function) is an important problem in the field of radar target detection. Combined function) and accurate acquisition of model parameters is an important basis for target detection algorithm design (such as detection threshold, false alarm probability, detection probability calculation, etc.). If there is a large error in the model parameter estimation, the accurate detection threshold cannot be obtained, resulting in a decrease in the detection probability and an increase in the false alarm probability.

常用的杂波数据拟合分布模型有Rayleigh分布模型、Weibull分布模型,以及K分布模型、Gamma分布模型等。这些分布模型有其自身的适应范围,如Rayleigh分布模型常用于描述低分辨均匀杂波数据,K分布模型则常用于描述低入射余角条件下的高分辨海杂波数据。Commonly used clutter data fitting distribution models include Rayleigh distribution model, Weibull distribution model, K distribution model, Gamma distribution model, etc. These distribution models have their own scope of application. For example, the Rayleigh distribution model is often used to describe low-resolution uniform clutter data, and the K distribution model is often used to describe high-resolution sea clutter data under low grazing angle conditions.

广义Pareto分布模型是一种重要的统计分布模型,是根据意大利经济学家Vilfredo Pareto的名字命名的。该模型最初主要应用于经济学、物理学、水文学与地震学等领域,现已逐步应用于高分辨雷达杂波数据的统计建模,如文献1:G.V.Weinberg,“Assessing Pareto fit to high-resolution high-grazing-angle sea clutter”,Electronics Letters,2011,47(8):516-517(G.V.Weinberg于2011在《电子快报》第47卷第8期发表的论文,中文题目为“帕累托分布对高入射余角海杂波的拟合能力评估”)中的研究结果表明,广义Pareto分布模型对大入射余角条件下的高分辨、大拖尾海杂波数据具有良好的模型匹配和统计分布拟合能力。由此可见,广义Pareto分布模型参数估计是解决大入射余角特殊应用条件下、海杂波背景中目标检测问题涉及的一项重要技术。The generalized Pareto distribution model is an important statistical distribution model named after the Italian economist Vilfredo Pareto. The model was initially applied in the fields of economics, physics, hydrology and seismology, and has been gradually applied to the statistical modeling of high-resolution radar clutter data, such as literature 1: G.V. Weinberg, "Assessing Pareto fit to high- resolution high-grazing-angle sea clutter", Electronics Letters, 2011, 47(8): 516-517 (G.V.Weinberg published a paper in the 8th issue of Volume 47 of "Electronic Letters" in 2011, the Chinese title is "Pareto The evaluation of the fitting ability of distribution to sea clutter with high incidence angle") shows that the generalized Pareto distribution model has good model matching and Statistical distribution fitting capabilities. It can be seen that the parameter estimation of the generalized Pareto distribution model is an important technology involved in solving the problem of target detection in the background of sea clutter under the special application conditions of large incident angles.

广义Pareto分布模型可用下式表示为The generalized Pareto distribution model can be expressed as

式中,f(·)表示概率密度函数,z为自变量(代表杂波信号幅度,且其值大于零),k表示形状参数,σ(σ>0)表示尺度参数,exp(·)表示以自然常数e为底的指数函数,f(z|k,σ)表示包含未知分布参数(k和σ)的杂波信号幅度z的概率密度函数。In the formula, f(·) represents the probability density function, z is the independent variable (represents the amplitude of the clutter signal, and its value is greater than zero), k represents the shape parameter, σ(σ>0) represents the scale parameter, and exp(·) represents The exponential function with the natural constant e as the base, f(z|k,σ) represents the probability density function of the clutter signal amplitude z including unknown distribution parameters (k and σ).

显然,当k=0时,广义Pareto分布就退化为指数分布模型,参数σ的求解比较简单,不在本发明的讨论范围。Obviously, when k=0, the generalized Pareto distribution degenerates into an exponential distribution model, and the solution of the parameter σ is relatively simple, which is beyond the scope of the present invention.

在k<0的情况下,广义Pareto分布模型的参数(即k、σ)通常利用杂波信号幅度z(也称杂波数据样本)的r阶中心矩E(zr)(E(·)表示取数学期望,r≥1且为整数)进行估计,如目前常见的矩估计法(Method of Moments,MoM)、概率加权矩方法(ProbabilityWeighted Moments Method,PWMM)、似然矩方法(Likelihood Moment Method,LMM)等。文献2:P.de Zea Bermudez,Samuel Kotz,“Parameter estimation of the generalizedPareto distribution Parts I&II”,Stat.Plann.Inference 140,2010:1353-1388(P.deZea Bermudez等人于2010年在《统计规划与推理期刊》第140卷发表的论文,中文题目为“广义帕累托分布的模型参数估计”)中对若干种广义Pareto分布模型的参数估计方法进行了总结、分析与对比,并指出最大似然估计(Maximum Likelihood Estimation,MLE)是最有效的估计方法。In the case of k<0, the parameters of the generalized Pareto distribution model (namely k, σ) usually use the r-order central moment E(z r )(E(·) Indicates that the mathematical expectation is taken, r≥1 and is an integer) for estimation, such as the current common method of moment estimation (Method of Moments, MoM), probability weighted moment method (ProbabilityWeighted Moments Method, PWMM), likelihood moment method (Likelihood Moment Method , LMM) and so on. Document 2: P.de Zea Bermudez, Samuel Kotz, "Parameter estimation of the generalized Pareto distribution Parts I&II", Stat.Plann.Inference 140, 2010: 1353-1388 (P.deZea Bermudez et al. In the paper published in Volume 140 of Reasoning Journal, the Chinese title is "Model Parameter Estimation of Generalized Pareto Distribution"), which summarizes, analyzes and compares several parameter estimation methods of generalized Pareto distribution models, and points out that the maximum likelihood Estimation (Maximum Likelihood Estimation, MLE) is the most effective estimation method.

事实上,当雷达杂波呈现大拖尾分布时,其实测数据统计原点矩与相应阶数的杂波模型理论原点矩之间会出现一定的偏差,且该偏差随矩阶数(r)的增大和杂波数据样本数量的减小而增大,这将对基于统计矩的估计方法带来不利的影响。最大似然估计具有很高的估计精度,但是当雷达杂波分布模型(如广义Pareto分布模型,也即概率密度函数表达式)比较复杂时,该方法很难得到参数估计的解析表达式;在这种情况下,虽然可以通过如文献3:Tjalling J.Ypma,“Historical development of the Newton-Raphson method”,SIAM Review,1995,37(4):531-551(Tjalling J.Ypma于1995年在《美国工业与应用数学学会评论》期刊第37卷第4期发表的论文,中文题目为牛顿-拉夫森方法的历史发展)中的Newton-Raphson数值算法进行求解,但这种数值方法容易陷入局部极值而无法得到最优参数估计。In fact, when the radar clutter has a large tail distribution, there will be a certain deviation between the statistical origin moment of the measured data and the theoretical origin moment of the clutter model of the corresponding order, and the deviation varies with the moment order (r) increase and the decrease of the number of samples of clutter data will increase, which will have a negative impact on the estimation method based on statistical moments. Maximum likelihood estimation has high estimation accuracy, but when the radar clutter distribution model (such as the generalized Pareto distribution model, that is, the expression of the probability density function) is relatively complex, it is difficult to obtain the analytical expression of the parameter estimation by this method; in In this case, although it can be passed as document 3: Tjalling J.Ypma, "Historical development of the Newton-Raphson method", SIAM Review, 1995, 37(4): 531-551 (Tjalling J.Ypma in 1995 in The Newton-Raphson numerical algorithm in the journal "Review of the American Society for Industrial and Applied Mathematics" published in the fourth issue of volume 37, the Chinese title is the historical development of the Newton-Raphson method), but this numerical method is easy to fall into the local Extreme values cannot obtain optimal parameter estimates.

粒子群优化(Particle Swarm Optimization,PSO)是一种重要的智能优化算法,具有计算简单、收敛速度快、稳定性好等特点,且具有全局寻优能力。通过PSO算法,可望解决复杂模型的参数高精度估计问题,从而提高雷达目标检测性能,但目前尚未见到有公开文献涉及如何运用PSO算法进行Pareto杂波模型参数高精度估计和高性能目标检测。Particle Swarm Optimization (PSO) is an important intelligent optimization algorithm, which has the characteristics of simple calculation, fast convergence speed, good stability, etc., and has the ability of global optimization. Through the PSO algorithm, it is expected to solve the problem of high-precision estimation of the parameters of complex models, thereby improving the performance of radar target detection. However, there is no public literature on how to use the PSO algorithm for high-precision estimation of Pareto clutter model parameters and high-performance target detection. .

发明内容Contents of the invention

本发明要解决的技术问题是:提供一种基于广义Pareto分布杂波统计建模的雷达目标检测方法,提高雷达目标检测性能。The technical problem to be solved by the present invention is to provide a radar target detection method based on generalized Pareto distribution clutter statistical modeling to improve radar target detection performance.

技术方案是,将对数最大似然(Logarithmic Maximum Likelihood,LML)估计与粒子群优化(PSO)算法结合起来,通过对数最大似然估计准则来设计代价函数,并利用粒子群优化算法来最小化代价函数以获取最优的参数估计结果;利用最优的参数估计结果确定检测门限,完成雷达目标检测。The technical solution is to combine the logarithmic maximum likelihood (LML) estimation with the particle swarm optimization (PSO) algorithm, design the cost function through the logarithmic maximum likelihood estimation criterion, and use the particle swarm optimization algorithm to minimize The cost function is transformed to obtain the optimal parameter estimation result; the detection threshold is determined by using the optimal parameter estimation result to complete the radar target detection.

具体步骤如下:Specific steps are as follows:

第一步,定义并初始化粒子群。方法是:The first step is to define and initialize the particle swarm. the way is:

1.1定义粒子群G:1.1 Define particle swarm G:

粒子群为由一群粒子组成的集合,此处的粒子即为待估计参数,粒子群可定义为Particle swarm is a set composed of a group of particles, where the particles are the parameters to be estimated, particle swarm can be defined as

G={pi=(σi,ki),vi=(δσi,δki);i=1,2,…,I} (2)G={p i =(σ i ,k i ), v i =(δσ i ,δk i ); i=1,2,...,I} (2)

式中,I为G中的粒子个数,pi为G中第i个粒子的位置特征,σi为G中第i个粒子的尺度参数,ki表示G中第i个粒子的形状参数;vi为G中第i个粒子的速度特征,δσi为G中第i个粒子的尺度参数σi变化量,δki为G中第i个粒子的形状参数ki变化量。In the formula, I is the number of particles in G, p i is the position feature of the i-th particle in G, σ i is the scale parameter of the i-th particle in G, and k i is the shape parameter of the i-th particle in G ; v i is the velocity characteristic of the i-th particle in G, δσ i is the variation of the scale parameter σ i of the i-th particle in G, and δk i is the variation of the shape parameter ki of the i -th particle in G.

1.2初始化粒子位置特征:1.2 Initialize the particle position feature:

将从杂波区观测得到的N个杂波数据样本记为z1,...,zn,...,zN(1≤n≤N,n为整数),则N个杂波数据样本的均值和方差分别为在没有先验信息的条件下,可用分别表示参数σ和k的粗估计值,由此将第i个粒子0时刻位置特征初始化为Denote the N clutter data samples observed from the clutter area as z 1 ,...,z n ,...,z N (1≤n≤N, n is an integer), then the N clutter data The sample mean and variance are and In the absence of prior information, the available and Denote the rough estimated values of parameters σ and k respectively, so the position feature of the i-th particle at time 0 is initialized as

式中,I为正整数,I的大小由经验值给定,一般取200~500为宜;上标0表示参数的初始状态(即0时刻),为G中第i个粒子0时刻的位置特征,为G中第i个粒子0时刻的尺度参数,为G中第i个粒子0时刻的形状参数;表示均匀分布函数,区间下限为a,上限为b;表示从均匀分布函数中随机取数,即在区间[a,b]之间随机取一个数。表示是从均匀分布函数中随机取数(即在区间之间随机取一个数),为下限,为上限;表示是从均匀分布函数中随机取数,为下限,为上限。In the formula, I is a positive integer, and the size of I is given by experience, generally 200-500 is appropriate; the superscript 0 indicates the initial state of the parameter (that is, time 0), is the position feature of the i-th particle in G at time 0, is the scale parameter of the i-th particle in G at time 0, is the shape parameter of the i-th particle in G at time 0; Represents a uniform distribution function, the lower limit of the interval is a, and the upper limit is b; represents the function from the uniform distribution Randomly select a number, that is, randomly select a number between the interval [a,b]. express is from the uniform distribution function Take random numbers in the middle (that is, in the interval Randomly pick a number between), is the lower limit, is the upper limit; express is from the uniform distribution function random number in is the lower limit, is the upper limit.

1.3初始化粒子速度特征:1.3 Initialize particle velocity features:

为G中第i个粒子0时刻的速度特征,为G中第i个粒子0时刻的尺度参数变化量,为G中第i个粒子0时刻的形状参数变化量。表示是从均匀分布函数中取的数,表示是从均匀分布函数中取的数。 is the velocity characteristic of the i-th particle in G at time 0, is the scale parameter variation of the i-th particle in G at time 0, is the variation of the shape parameter of the i-th particle in G at time 0. express is from the uniform distribution function the number taken, express is from the uniform distribution function The number taken.

第二步,令迭代次数变量t=0。In the second step, let the iteration number variable t=0.

第三步,求取第t次迭代时粒子的代价函数。方法是:The third step is to obtain the cost function of the particle at the tth iteration. the way is:

3.1将广义Pareto分布模型的复杂指数分布(k<0时的情形)转化为公式(9)所示的对数形式的似然函数,即3.1 Transform the complex exponential distribution of the generalized Pareto distribution model (the situation when k<0) into the logarithmic likelihood function shown in formula (9), namely

式中,ln(·)表示以自然常数e为底的对数函数,L(z|k,σ)表示包含未知分布参数(k和σ)的杂波信号幅度z的似然函数。In the formula, ln( ) represents the logarithmic function based on the natural constant e, and L(z|k,σ) represents the likelihood function of the clutter signal amplitude z including unknown distribution parameters (k and σ).

由此可见,参数k和σ的最大似然估计可通过求解公式(9)的偏导数得到,此时有It can be seen that the maximum likelihood estimation of parameters k and σ can be obtained by solving the partial derivatives of formula (9), at this time,

很明显,通过公式(10)和公式(11)两式无法求得关于参数k和σ的显式表达式,也就是说,无法通过将公式(10)和公式(11)两式得到的偏导数结果置零求出参数k和σ的解,本发明转而通过粒子群优化算法来求数值解,需构建代价函数。Obviously, the explicit expressions about the parameters k and σ cannot be obtained by formula (10) and formula (11), that is, the partial The derivative result is set to zero to obtain the solution of the parameters k and σ, and the present invention uses the particle swarm optimization algorithm to obtain the numerical solution, and a cost function needs to be constructed.

3.2根据公式(10)和(11)构建公式(12)所示的代价函数3.2 Construct the cost function shown in formula (12) according to formulas (10) and (11)

式中,|·|为取绝对值符号,通过该代价函数的最小化可使T(σ,k)不断向0逼近,这一过程等效于使公式(10)和公式(11)的解达到最优。In the formula, |·| is the symbol of the absolute value. By minimizing the cost function, T(σ,k) can be continuously approached to 0. This process is equivalent to making the solutions of formula (10) and formula (11) reach the optimum.

3.3通过公式(12)求取G中I个粒子对应的适应性值,方法是3.3 Find the fitness value corresponding to the I particle in G through the formula (12), the method is

依次将第t次迭代中G中I个粒子的位置特征代入公式(12),得到I个粒子第t次迭代的代价函数值,作为I个粒子第t次迭代的适应性值。对于G中第i个粒子,具体做法是将其第t次迭代中的位置特征(即参数对)代入公式(12),计算并令第i个粒子第t次迭代的粒子适应性值 Substituting the position characteristics of the I particle in G in the t-th iteration in turn into the formula (12), the cost function value of the I particle in the t-th iteration is obtained as the fitness value of the I particle in the t-th iteration. For the i-th particle in G, the specific method is to use its position feature in the t-th iteration (which is Parameter pair) into formula (12), calculate And let the particle fitness value of the i-th particle in the t-th iteration be

I个粒子经第t次迭代得到的I个粒子第t组适应性值,表示为 The fitness value of the tth group of I particles obtained by the tth iteration of I particles is expressed as

第四步,计算第t次迭代中粒子群的个体极值pbestt与全局极值gbestt。方法是:The fourth step is to calculate the individual extremum pbest t and the global extremum gbest t of the particle swarm in the tth iteration. the way is:

4.1根据找到第t次迭代中与最小粒子适应性值对应的粒子,即4.1 According to Find the particle corresponding to the minimum particle fitness value in the t-th iteration, i.e.

式中,表示先找到中最小的值,并找到这个最小值对应的粒子(表示为参数对(σ′,k′))。(假设该最小值的序号为i,则找到的粒子为 In the formula, means to find first The smallest value in , and find the particle corresponding to this smallest value (expressed as a parameter pair (σ′,k′)). (assuming that the serial number of the minimum value is i, the particle found is which is

4.2根据找出0~t次所有迭代过程中使得适应值最小的粒子,作为前t次迭代全局极值gbestt,即4.2 According to Find the particle with the smallest fitness value in all iterations from 0 to t times, and use it as the global extremum gbest t of the first t iterations, that is,

式中,(σ*,k*)表示前t次迭代最小适应值对应的粒子。In the formula, (σ * , k * ) represents the particle corresponding to the minimum fitness value of the first t iterations.

第五步,令t=t+1。In the fifth step, let t=t+1.

第六步,根据获取的个体极值pbestt与全局极值gbestt,更新G中I个粒子的位置特征与速度特征,方法是:In the sixth step, according to the obtained individual extremum pbest t and global extremum gbest t , update the position and velocity characteristics of I particles in G, the method is:

6.1令i=1。6.1 Let i=1.

6.2第i个粒子的位置特征和速度特征按公式(15)和公式(16)进行更新:6.2 The position feature and velocity feature of the i-th particle are updated according to formula (15) and formula (16):

其中,wt-1=0.9-0.5·(t-1)/tmax,为t-1次时的惯性权因子,tmax为最大迭代次数(为正整数,通常取100~200);rand表示[0,1]之间的均匀分布随机数;c1与c2为学习因子(或加速常数),为正实数,通常均取为2。Among them, w t-1 =0.9-0.5·(t-1)/t max is the inertia weight factor for t-1 times, and t max is the maximum number of iterations (a positive integer, usually 100-200); rand Represents a uniformly distributed random number between [0,1]; c 1 and c 2 are learning factors (or acceleration constants), which are positive real numbers and are usually taken as 2.

6.3令i=i+1。6.3 Let i=i+1.

6.4判定i≤I是否成立,若成立,转6.2;否则,表示已更新完G中I个粒子的位置特征和速度特征,执行第七步。6.4 Determine whether i≤I is true, if true, go to 6.2; otherwise, it means that the position and velocity characteristics of I particles in G have been updated, and go to the seventh step.

第七步,判断t是否等于最大迭代次数tmax,若满足,则将全局极值gbestt,也即(σ*,k*)作为参数对(σ,k)的最终估计结果,执行第八步;否则,转第三步。The seventh step is to judge whether t is equal to the maximum number of iterations t max , and if so, take the global extremum gbest t , that is, (σ * , k * ) as the final estimation result of the parameter pair (σ, k), and execute the eighth step step; otherwise, go to step three.

第八步,利用(σ*,k*)进行雷达目标检测,方法是:The eighth step is to use (σ * , k * ) for radar target detection, the method is:

8.1利用(σ*,k*)重构与广义Pareto分布模型相对应的概率密度函数8.1 Use (σ * , k * ) to reconstruct the probability density function corresponding to the generalized Pareto distribution model which is

式中,表示由(σ*,k*)重构得到的关于自变量z的近似函数。In the formula, Represents the approximate function about the independent variable z obtained by (σ * , k * ) reconstruction.

8.2给定目标检测虚警率Pf(Pf通常取10-4~10-2),根据公式(18)求检测门限th8.2 Given the target detection false alarm rate P f (P f usually ranges from 10 -4 to 10 -2 ), calculate the detection threshold th according to formula (18)

式中,积分算式可通过牛顿-科茨(Newton-Cotes)数值积分公式来解算,具体解法可参考文献3:叶其孝,沈永欢等,“实用数学手册(第2版)”,科学出版社,2006年,719~720。In the formula, the integral formula can be solved by the Newton-Cotes (Newton-Cotes) numerical integral formula. For the specific solution, please refer to literature 3: Ye Qixiao, Shen Yonghuan, etc., "Handbook of Practical Mathematics (2nd Edition)", Science Press, In 2006, 719-720.

8.3目标检测,方法是:8.3 Target detection, the method is:

8.3.1通过雷达实时观测,获得J个观测数据,J≥1,令j=1;8.3.1 Obtain J observation data through real-time radar observation, J≥1, let j=1;

8.3.2判断雷达实际获取的第j个观测数据yj是否有目标,方法是:8.3.2 Judging whether the jth observation data y j actually acquired by the radar has a target, the method is:

若yj≥th,输出“第j个观测数据有目标”的结论;若yj<th,输出“第j个观测数据无目标”的结论;If y j ≥ th, output the conclusion of "the jth observation data has a target"; if y j < th, output the conclusion of "the jth observation data has no target";

8.3.3判定j是否小于J,若满足,令j=j+1,转8.3.2;否则,表示雷达实时观测数据处理结束,完成目标检测。8.3.3 Determine whether j is less than J, if it is satisfied, set j=j+1, and go to 8.3.2; otherwise, it means that the radar real-time observation data processing is completed and the target detection is completed.

本发明的有益效果:Beneficial effects of the present invention:

1.本发明第三步通过对数最大似然函数构建Pareto分布模型参数的估计式(公式(9)),确保待估计参数在最大似然意义下解的最优性;1. the 3rd step of the present invention constructs the estimating formula (formula (9)) of Pareto distribution model parameter by logarithm maximum likelihood function, guarantees that the optimality that parameter to be estimated is solved under maximum likelihood meaning;

2.本发明第四步利用粒子群优化算法具有全局寻优的能力,克服传统数值方法(如Newton-Raphson等)在解决模型参数估计问题时存在的对初值敏感、易于收敛于局部极值的缺陷,可提高参数估计的精度和鲁棒性,确保雷达目标检测结果的可靠性。2. The fourth step of the present invention utilizes the particle swarm optimization algorithm to have the ability of global optimization, overcomes the sensitivity to the initial value and is easy to converge on the local extremum when the traditional numerical method (such as Newton-Raphson, etc.) solves the model parameter estimation problem It can improve the accuracy and robustness of parameter estimation and ensure the reliability of radar target detection results.

3.本发明将PSO算法与广义Pareto分布模型参数的最大似然参数估计方法结合起来,提高了检测门限th的准确性,进而提高了雷达目标的检测性能。3. The present invention combines the PSO algorithm with the maximum likelihood parameter estimation method of the generalized Pareto distribution model parameters, improves the accuracy of the detection threshold th, and then improves the detection performance of the radar target.

附图说明Description of drawings

图1是本发明总体流程图。Fig. 1 is the overall flow chart of the present invention.

具体实施方式Detailed ways

下面结合附图和实验对本发明的实施方式进行说明。Embodiments of the present invention will be described below in conjunction with drawings and experiments.

图1给出了本发明总体流程图,下面首先以杂波样本数N=100为例来说明具体的实验过程。在此基础上,通过不同的实验条件设置(如改变杂波样本数N和模型形状参数k等),以考察本发明在不同实验条件下的检测性能。Fig. 1 shows the overall flow chart of the present invention, and the specific experimental process will be described below by taking the number of clutter samples N=100 as an example. On this basis, different experimental conditions are set (such as changing the number of clutter samples N and the model shape parameter k, etc.) to investigate the detection performance of the present invention under different experimental conditions.

第一步,定义并初始化粒子群。从杂波区得到N=100个杂波数据样本,设定粒子群大小I=500,粒子群定义为G={pi=(σi,ki),vi=(δσi,δki);i=1,2,…,I}粒子群的初始位置分量分别在区间随机取样,初始速度分量统一在之间随机取样,其中i=1,2,…,I;最大迭代次数为tmax=200。The first step is to define and initialize the particle swarm. Obtain N=100 clutter data samples from the clutter area, set the particle swarm size I=500, the particle swarm is defined as G={p i =(σ i ,k i ),v i =(δσ i ,δk i ); i=1,2,…,I} The initial position component of the particle swarm Respectively and Interval random sampling, initial velocity component unified in Random sampling among them, where i=1, 2, ..., I; the maximum number of iterations is t max =200.

第二步,令t=0。In the second step, let t=0.

第三步,计算第t(t≥0)次迭代中的粒子适应性值。根据公式(12)中的代价函数T(σ,k)求取G中I个粒子对应的适应性值,得到I个粒子第t次迭代中所有I个粒子的适应性值,其中第i个粒子的适应性值I个粒子经第t次迭代得到的I个粒子第t组适应性值,表示为 The third step is to calculate the particle fitness value in the tth (t≥0) iteration. According to the cost function T(σ,k) in the formula (12), the fitness value corresponding to the I particle in G is calculated, and the fitness value of all I particles in the t-th iteration of the I particle is obtained, and the i-th particle Particle fitness value The fitness value of the tth group of I particles obtained by the tth iteration of I particles is expressed as

第四步,分别利用公式(13)和公式(14)寻找t次迭代过程中粒子群的个体极值pbestt与全局极值gbestt,gbestt=(σ*,k*);The fourth step is to use formula (13) and formula (14) to find the individual extremum pbest t and the global extremum gbest t of the particle swarm during t iterations, gbest t = (σ * , k * );

第五步,令t=t+1。In the fifth step, let t=t+1.

第六步,按照公式(15)和公式(16)更新I个粒子的速度和位置分量。The sixth step is to update the velocity and position components of one particle according to formula (15) and formula (16).

第七步,判断t是否达到最大迭代次数tmax。若满足,将(σ*,k*)作为参数估计结果输出,并转第八步;否则返回第三步。The seventh step is to judge whether t reaches the maximum number of iterations t max . If it is satisfied, output (σ * , k * ) as the parameter estimation result, and go to the eighth step; otherwise, return to the third step.

第八步,雷达目标检测。首先根据公式(17)构建概率密度函数在此基础上,利用公式(18)确定检测门限th,最后通过雷达实时观测,获得J个观测数据(实验中J=500),对J个观测数据按步骤8.3.2~8.3.3进行有无目标的判断从而完成目标检测。The eighth step, radar target detection. First construct the probability density function according to formula (17) On this basis, use the formula (18) to determine the detection threshold th, and finally obtain J observation data (J = 500 in the experiment) through real-time radar observation, and carry out effective analysis of the J observation data according to steps 8.3.2 to 8.3.3. There is no target judgment to complete the target detection.

为说明本发明在不同形状参数、不同杂波样本数量条件下对广义Pareto分布模型参数的估计性能,实施例中选取了三个典型参数对(σ,k)(对应三组不同的实验)进行仿真验证。参数估计精度用平均误差(Mean Error,ME)与均方根误差(Root of Mean SquareError,RMSE)两个指标来评估,其表达式分别为:In order to illustrate the estimation performance of the present invention to the parameters of the generalized Pareto distribution model under different shape parameters and different clutter sample numbers, three typical parameter pairs (σ, k) (corresponding to three groups of different experiments) were selected in the embodiment. Simulation. The parameter estimation accuracy is evaluated by the mean error (Mean Error, ME) and the root mean square error (Root of Mean Square Error, RMSE), the expressions of which are:

式中,表示第m次仿真中得到的参数υ(υ代表尺度参数或形状参数)的估计,M表示Monte Carlo仿真次数。In the formula, Indicates the estimate of the parameter υ (υ stands for scale parameter or shape parameter) obtained in the mth simulation, and M indicates the number of Monte Carlo simulations.

考虑到尺度参数σ对估计结果的影响不大,而形状参数k对广义Pareto分布影响较大,且k值越小,广义Pareto分布拖尾越大。本发明重点分析评估所述方法对形状参数的估计效果,为此设定σ=1,k=-0.3,-0.2,-0.1(即分别将k的值取为-0.3,-0.2,-0.1,进行三组不同的实验),M=500,对本发明基于粒子群优化的广义Pareto杂波模型目标检测方法(LML-PSO)进行测试,并比较其与传统方法(如MoM、PWMM、LMM等)之间的性能差异。实验在通用计算机平台上进行,利用Matlab软件实现,所得参数(σ,k)在不同杂波数据样本数(N=25,50,100,500)、不同估计方法(MoM、PWMM、LMM和LML-PSO)条件下的仿真结果如表1~表3所示。其中,表1~表3分别对应k=-0.3、k=-0.2和k=-0.1条件下的平均误差(ME)和均方根误差(RMSE)。Considering that the scale parameter σ has little influence on the estimation results, but the shape parameter k has a greater influence on the generalized Pareto distribution, and the smaller the value of k, the larger the tail of the generalized Pareto distribution. The present invention mainly analyzes and evaluates the estimation effect of described method to shape parameter, sets σ=1 for this reason, and k=-0.3,-0.2,-0.1 (promptly the value of k is taken as-0.3 respectively,-0.2,-0.1 , carry out three groups of different experiments), M=500, the generalized Pareto clutter model target detection method (LML-PSO) based on particle swarm optimization of the present invention is tested, and compare it with traditional methods (such as MoM, PWMM, LMM etc. ) performance difference between. The experiment was carried out on a general-purpose computer platform and realized by using Matlab software. The obtained parameters (σ, k) were tested under the conditions of different clutter data samples (N=25, 50, 100, 500) and different estimation methods (MoM, PWMM, LMM and LML-PSO). The following simulation results are shown in Table 1-Table 3. Among them, Table 1 to Table 3 respectively correspond to the mean error (ME) and root mean square error (RMSE) under the conditions of k=-0.3, k=-0.2 and k=-0.1.

从表1~表3可看出,本发明LML-PSO的平均误差与均方根误差均明显小于另三种方法。It can be seen from Tables 1 to 3 that the average error and root mean square error of the LML-PSO of the present invention are significantly smaller than those of the other three methods.

表1Table 1

表2Table 2

表3table 3

为了进一步说明形状参数k估计结果对目标检测的影响,以k=-0.3为例,在虚警概率Pf=0.01的应用条件下,若不存在参数估计误差,通过公式(18)可解算出真实的目标检测门限为th=9.898。当存在不同程度的形状参数估计误差(即ME和RMSE均不为0)时,得到相应的目标检测门限如表4所示,表中误差大小范围为-0.12~0.12(误差间隔为0.002),即对应真实参数±40%(-0.3×40%~0.3×40%)的误差范围。当估计误差为-0.12时,目标检测门限为th=14.023;当估计误差为0.12时,目标检测门限为th=7.149。In order to further illustrate the influence of the estimation result of shape parameter k on target detection, taking k=-0.3 as an example, under the application condition of false alarm probability P f =0.01, if there is no parameter estimation error, formula (18) can be used to solve The real target detection threshold is th=9.898. When there are different degrees of shape parameter estimation errors (that is, both ME and RMSE are not 0), the corresponding target detection thresholds are shown in Table 4. The error range in the table is -0.12 to 0.12 (the error interval is 0.002), That is, it corresponds to an error range of ±40% (-0.3×40%~0.3×40%) of the real parameter. When the estimation error is -0.12, the target detection threshold is th=14.023; when the estimation error is 0.12, the target detection threshold is th=7.149.

估计误差estimation error -0.120-0.120 -0.118-0.118 -0.116-0.116 -0.114-0.114 -0.112-0.112 -0.110-0.110 -0.108-0.108 -0.106-0.106 -0.104-0.104 -0.102-0.102 -0.100-0.100 -0.098-0.098 检测门限detection threshold 14.02314.023 13.93913.939 13.85613.856 13.77413.774 13.69213.692 13.6113.61 13.52913.529 13.44913.449 13.36913.369 13.2913.29 13.21213.212 13.13413.134 估计误差estimation error -0.096-0.096 -0.094-0.094 -0.092-0.092 -0.090-0.090 -0.088-0.088 -0.086-0.086 -0.084-0.084 -0.082-0.082 -0.080-0.080 -0.078-0.078 -0.076-0.076 -0.074-0.074 检测门限detection threshold 13.05613.056 12.97912.979 12.90312.903 12.82712.827 12.75112.751 12.67612.676 12.60212.602 12.52812.528 12.45512.455 12.38212.382 12.3112.31 12.23812.238 估计误差estimation error -0.072-0.072 -0.070-0.070 -0.068-0.068 -0.066-0.066 -0.064-0.064 -0.062-0.062 -0.060-0.060 -0.058-0.058 -0.056-0.056 -0.054-0.054 -0.052-0.052 -0.050-0.050 检测门限detection threshold 12.16612.166 12.09612.096 12.02512.025 11.95511.955 11.88611.886 11.81711.817 11.74911.749 11.68111.681 11.61311.613 11.54611.546 11.47911.479 11.41311.413 估计误差estimation error -0.048-0.048 -0.046-0.046 -0.044-0.044 -0.042-0.042 -0.040-0.040 -0.038-0.038 -0.036-0.036 -0.034-0.034 -0.032-0.032 -0.030-0.030 -0.028-0.028 -0.026-0.026 检测门限detection threshold 11.34711.347 11.28211.282 11.21711.217 11.15311.153 11.08911.089 11.02611.026 10.96310.963 10.90010.900 10.83810.838 10.77610.776 10.71510.715 10.65410.654 估计误差estimation error -0.024-0.024 -0.022-0.022 -0.020-0.020 -0.018-0.018 -0.016-0.016 -0.014-0.014 -0.012-0.012 -0.010-0.010 -0.008-0.008 -0.006-0.006 -0.004-0.004 -0.002-0.002 检测门限detection threshold 10.59310.593 10.53310.533 10.47310.473 10.41410.414 10.35510.355 10.29610.296 10.23810.238 10.18110.181 10.12310.123 10.06610.066 10.0110.01 9.9549.954 估计误差estimation error 0.0020.002 0.0040.004 0.0060.006 0.0080.008 0.0100.010 0.0120.012 0.0140.014 0.0160.016 0.0180.018 0.0200.020 0.0220.022 0.0240.024 检测门限detection threshold 9.8429.842 9.7879.787 9.7339.733 9.6789.678 9.6249.624 9.5719.571 9.5189.518 9.4659.465 9.4129.412 9.3609.360 9.3089.308 9.2579.257 估计误差estimation error 0.0260.026 0.0280.028 0.0300.030 0.0320.032 0.0340.034 0.0360.036 0.0380.038 0.0400.040 0.0420.042 0.0440.044 0.0460.046 0.0480.048 检测门限detection threshold 9.2069.206 9.1559.155 9.1049.104 9.0549.054 9.0059.005 8.9558.955 8.9068.906 8.8578.857 8.8098.809 8.7618.761 8.7138.713 8.6658.665 估计误差estimation error 0.0500.050 0.0520.052 0.0540.054 0.0560.056 0.0580.058 0.0600.060 0.0620.062 0.0640.064 0.0660.066 0.0680.068 0.0700.070 0.0720.072 检测门限detection threshold 8.6188.618 8.5718.571 8.5258.525 8.4788.478 8.4338.433 8.3878.387 8.3428.342 8.2978.297 8.2528.252 8.2078.207 8.1638.163 8.1198.119 估计误差estimation error 0.0740.074 0.0760.076 0.0780.078 0.0800.080 0.0820.082 0.0840.084 0.0860.086 0.0880.088 0.0900.090 0.0920.092 0.0940.094 0.0960.096 检测门限detection threshold 8.0768.076 8.0338.033 7.9907.990 7.9477.947 7.9047.904 7.8627.862 7.8207.820 7.7797.779 7.7387.738 7.6967.696 7.6567.656 7.6157.615 估计误差estimation error 0.0980.098 0.1000.100 0.1020.102 0.1040.104 0.1060.106 0.1080.108 0.1100.110 0.1120.112 0.1140.114 0.1160.116 0.1180.118 0.1200.120 检测门限detection threshold 7.5757.575 7.5357.535 7.4957.495 7.4567.456 7.4177.417 7.3787.378 7.3397.339 7.3007.300 7.2627.262 7.2247.224 7.1877.187 7.1497.149

表4Table 4

从表中可以看出:As can be seen from the table:

1)总体上,各种方法的估计误差(或误差绝对值)随杂波数据样本数量(N)的增加而降低,说明杂波数据样本数量越大,参数估计的精度就越高,估计性能也就越好;1) Overall, the estimation errors (or absolute values of errors) of various methods decrease with the increase of the number of clutter data samples (N), indicating that the larger the number of clutter data samples, the higher the accuracy of parameter estimation, and the estimation performance the better;

2)三组不同的实验中,在杂波数据样本数相同的条件下,本发明所述方法与其它三种估计方法相比,都具有最小的平均误差与均方根误差,说明其具有一致较高的参数估计精度;2) In three groups of different experiments, under the same condition of the number of clutter data samples, the method of the present invention has the smallest average error and root mean square error compared with other three estimation methods, indicating that it has consistent Higher parameter estimation accuracy;

3)通过对比可知,即便在杂波数据样本数目较小(如N=50)的情况下,LML-PSO方法仍具有较高的估计精度,说明对小样本也有较好的适应性。3) Through comparison, it can be seen that even when the number of clutter data samples is small (such as N=50), the LML-PSO method still has a high estimation accuracy, which shows that it has good adaptability to small samples.

4)相比之下,LML-PSO方法具有最小的参数估计误差,说明由此计算得出的目标检测门限与检测门限的理论值最为接近,相应地检测性能也最佳。4) In contrast, the LML-PSO method has the smallest parameter estimation error, indicating that the calculated target detection threshold is the closest to the theoretical value of the detection threshold, and correspondingly the detection performance is also the best.

综上,与传统方法相比,本发明所述方法对广义Pareto分布模型参数估计具有明显的精度性能优势,且能很好地适应模型参数的变化,可有效提高长拖尾分布杂波背景中的雷达目标检测性能。In summary, compared with the traditional method, the method of the present invention has obvious advantages in accuracy and performance for parameter estimation of the generalized Pareto distribution model, and can well adapt to changes in model parameters, and can effectively improve the performance of long-tail distribution clutter background. Radar target detection performance.

虽然参照上述实施例详细描述了本发明,但是应该理解本发明并不限于所公开的实施例。对于本专业领域的技术人员来说,可以对其形式和细节进行各种改变。本发明涵盖了所附权利要求书的精神和范围内的各种变形。While the invention has been described in detail with reference to the foregoing embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. Various changes in form and details will occur to those skilled in the art. The invention encompasses modifications within the spirit and scope of the appended claims.

Claims (7)

1.一种基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于包括以下步骤:1. a radar target detection method based on generalized Pareto distribution clutter statistical modeling, is characterized in that comprising the following steps: 第一步,定义并初始化粒子群,方法是:The first step is to define and initialize the particle swarm by: 1.1定义粒子群G:1.1 Define particle swarm G: 粒子群为由一群粒子即待估计参数组成的集合,粒子群定义为Particle swarm is a set composed of a group of particles, that is, parameters to be estimated. Particle swarm is defined as G={pi=(σi,ki),vi=(δσi,δki);i=1,2,…,I} (2)G={p i =(σ i ,k i ), v i =(δσ i ,δk i ); i=1,2,...,I} (2) 式中,I为G中的粒子个数,pi为G中第i个粒子的位置特征,σi为G中第i个粒子的尺度参数,ki表示G中第i个粒子的形状参数;vi为G中第i个粒子的速度特征,δσi为G中第i个粒子的尺度参数σi变化量,δki为G中第i个粒子的形状参数ki变化量;In the formula, I is the number of particles in G, p i is the position feature of the i-th particle in G, σ i is the scale parameter of the i-th particle in G, and k i is the shape parameter of the i-th particle in G ; v i is the velocity characteristic of the i-th particle in G, δσ i is the variation of the scale parameter σ i of the i-th particle in G, and δk i is the variation of the shape parameter k i of the i-th particle in G; 1.2初始化粒子位置特征:1.2 Initialize the particle position feature: 将从杂波区观测得到的N个杂波数据样本记为z1,...,zn,...,zN,1≤n≤N,n为整数,则N个杂波数据样本的均值和方差分别为在没有先验信息的条件下,用分别表示参数σ和k的粗估计值,k表示形状参数,σ表示尺度参数,σ>0,将第i个粒子0时刻位置特征初始化为Denote the N clutter data samples observed from the clutter area as z 1 ,...,z n ,...,z N , 1≤n≤N, n is an integer, then the N clutter data samples The mean and variance of are respectively and In the absence of prior information, the and Represent the rough estimated values of the parameters σ and k, respectively, k represents the shape parameter, σ represents the scale parameter, σ>0, the position feature of the i-th particle at time 0 is initialized as 式中,I为正整数;上标0表示参数的初始状态即0时刻,为G中第i个粒子0时刻的位置特征,为G中第i个粒子0时刻的尺度参数,为G中第i个粒子0时刻的形状参数;表示均匀分布函数,区间下限为a,上限为b;“”表示从均匀分布函数中随机取数,即在区间[a,b]之间随机取一个数;表示是从均匀分布函数中随机取数,即在区间之间随机取一个数,为下限,为上限;表示是从均匀分布函数中随机取数,为下限,为上限;In the formula, I is a positive integer; the superscript 0 indicates the initial state of the parameter, that is, time 0, is the position feature of the i-th particle in G at time 0, is the scale parameter of the i-th particle in G at time 0, is the shape parameter of the i-th particle in G at time 0; Represents a uniform distribution function, the lower limit of the interval is a, and the upper limit is b; " ” means from the uniform distribution function Randomly select a number, that is, randomly select a number between the interval [a,b]; express is from the uniform distribution function random number in the interval, that is, in the interval Take a random number between is the lower limit, is the upper limit; express is from the uniform distribution function random number in is the lower limit, is the upper limit; 1.3初始化粒子速度特征:1.3 Initialize particle velocity features: 为G中第i个粒子0时刻的速度特征,为G中第i个粒子0时刻的尺度参数变化量,为G中第i个粒子0时刻的形状参数变化量,表示是从均匀分布函数中取的数,表示是从均匀分布函数中取的数; is the velocity characteristic of the i-th particle in G at time 0, is the scale parameter variation of the i-th particle in G at time 0, is the shape parameter variation of the i-th particle in G at time 0, express is from the uniform distribution function the number taken, express is from the uniform distribution function the number taken; 第二步,令迭代次数变量t=0;In the second step, let the iteration number variable t=0; 第三步,求取第t次迭代时粒子的代价函数,方法是:The third step is to obtain the cost function of the particle at the t-th iteration, the method is: 3.1将广义Pareto分布模型的复杂指数分布转化为公式(9)所示的对数形式的似然函数,k≠0,即3.1 Transform the complex exponential distribution of the generalized Pareto distribution model into the logarithmic likelihood function shown in formula (9), k≠0, that is 式中,ln(·)表示以自然常数e为底的对数函数,L(z|k,σ)表示包含未知分布参数k和σ的杂波信号幅度z的似然函数;In the formula, ln( ) represents the logarithmic function with the natural constant e as the base, and L(z|k,σ) represents the likelihood function of the clutter signal amplitude z including the unknown distribution parameters k and σ; 参数k和σ的最大似然估计通过求解公式(9)的偏导数得到,此时有The maximum likelihood estimation of parameters k and σ is obtained by solving the partial derivative of formula (9), at this time, we have 3.2根据公式(10)和(11)构建公式(12)所示的代价函数:3.2 Construct the cost function shown in formula (12) according to formulas (10) and (11): 式中,|·|为取绝对值符号,通过该代价函数的最小化使T(σ,k)不断向0逼近,这一过程等效于使公式(10)和公式(11)的解达到最优;In the formula, |·| is the sign of the absolute value. By minimizing the cost function, T(σ,k) is continuously approaching 0. This process is equivalent to making the solutions of formula (10) and formula (11) reach optimal; 3.3通过公式(12)求取G中I个粒子对应的适应性值,I个粒子经第t次迭代得到的I个粒子第t组适应性值,表示为 3.3 Calculate the fitness value corresponding to the I particle in G through the formula (12). The fitness value of the tth group of the I particle obtained by the t iteration of the I particle is expressed as 第四步,计算第t次迭代中粒子群的个体极值pbestt与全局极值gbestt,方法是:The fourth step is to calculate the individual extremum pbest t and the global extremum gbest t of the particle swarm in the t-th iteration, the method is: 4.1根据找到第t次迭代中与最小粒子适应性值对应的粒子,即4.1 According to Find the particle corresponding to the minimum particle fitness value in the t-th iteration, i.e. 式中,表示先找到中最小的值,并找到这个最小值对应的粒子,表示为参数对(σ′,k′);In the formula, means to find first The minimum value in , and find the particle corresponding to this minimum value, expressed as a parameter pair (σ′,k′); 4.2根据找出0~t次所有迭代过程中使得适应值最小的粒子,作为前t次迭代全局极值gbestt,即4.2 According to Find the particle with the smallest fitness value in all iterations from 0 to t times, and use it as the global extremum gbest t of the first t iterations, that is, *,k*)为前t次最小适应值对应的粒子;* , k * ) is the particle corresponding to the minimum fitness value of the previous t times; 第五步,令t=t+1;The fifth step, let t=t+1; 第六步,根据获取的个体极值pbestt与全局极值gbestt,更新G中I个粒子的位置特征与速度特征;In the sixth step, according to the obtained individual extremum pbest t and global extremum gbest t , update the position and velocity characteristics of I particles in G; 第七步,判断t是否等于最大迭代次数tmax,若满足,将全局极值gbestt,也即(σ*,k*)作为参数对(σ,k)的最终估计结果,执行第八步;否则,转第三步;The seventh step is to judge whether t is equal to the maximum number of iterations t max , if it is satisfied, take the global extremum gbest t , that is, (σ * , k * ) as the final estimation result of the parameter pair (σ, k), and execute the eighth step ; Otherwise, go to the third step; 第八步,利用(σ*,k*)进行雷达目标检测,方法是:The eighth step is to use (σ * , k * ) for radar target detection, the method is: 8.1利用(σ*,k*)重构与广义Pareto分布模型相对应的概率密度函数8.1 Use (σ * , k * ) to reconstruct the probability density function corresponding to the generalized Pareto distribution model which is 式中,表示由(σ*,k*)重构得到的关于自变量z的近似函数;In the formula, Represents the approximate function about the independent variable z obtained by (σ * , k * ) reconstruction; 8.2给定目标检测虚警率Pf,根据公式(18)求检测门限th8.2 Given the target detection false alarm rate P f , calculate the detection threshold th according to the formula (18) 8.3目标检测,方法是:8.3 Target detection, the method is: 8.3.1通过雷达实时观测,获得J个观测数据,J≥1,令j=1;8.3.1 Obtain J observation data through real-time radar observation, J≥1, let j=1; 8.3.2判断雷达实际获取的第j个观测数据yj是否有目标,方法是:8.3.2 Judging whether the jth observation data y j actually acquired by the radar has a target, the method is: 若yj≥th,输出“第j个观测数据有目标”的结论;若yj<th,输出“第j个观测数据无目标”的结论;If y j ≥ th, output the conclusion of "the jth observation data has a target"; if y j < th, output the conclusion of "the jth observation data has no target"; 8.3.3判定j是否小于J,若满足,令j=j+1,转8.3.2;否则,表示雷达实时观测数据处理结束,完成目标检测。8.3.3 Determine whether j is less than J, if it is satisfied, set j=j+1, and go to 8.3.2; otherwise, it means that the radar real-time observation data processing is completed and the target detection is completed. 2.如权利要求1所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于所述I取200~500。2. the radar target detection method based on generalized Pareto distribution clutter statistical modeling as claimed in claim 1, is characterized in that described I gets 200~500. 3.如权利要求1所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于3.3步所述求取G中I个粒子对应的适应性值的方法是:依次将第t次迭代中G中I个粒子的位置特征代入公式(12),得到I个粒子第t次迭代的代价函数值,作为I个粒子第t次迭代的适应性值;对于G中第i个粒子,具体做法是将其第t次迭代中的位置特征参数对代入公式(12),计算并令第i个粒子第t次迭代的粒子适应性值 3. the radar target detection method based on generalized Pareto distribution clutter statistical modeling as claimed in claim 1, it is characterized in that the method for asking for the adaptability value corresponding to I particle in G described in 3.3 steps is: sequentially the first In the t iteration, the position characteristics of the I particle in G are substituted into formula (12), and the cost function value of the I particle in the t iteration is obtained as the fitness value of the I particle in the t iteration; for the i particle in G Particles, the specific method is to feature its position in the tth iteration which is Substituting the parameter pairs into formula (12), calculate And let the particle fitness value of the i-th particle in the t-th iteration be 4.如权利要求1所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于第六步所述更新G中I个粒子的位置特征与速度特征的方法是:4. the radar target detection method based on generalized Pareto distribution clutter statistical modeling as claimed in claim 1, it is characterized in that the method for the position characteristic and the speed characteristic of I particle in the described update G of the 6th step is: 6.1令i=1;6.1 let i=1; 6.2第i个粒子的位置特征和速度特征按公式(15)和公式(16)进行更新:6.2 The position feature and velocity feature of the i-th particle are updated according to formula (15) and formula (16): 其中,wt-1=0.9-0.5·(t-1)/tmax,为t-1次时的惯性权因子,tmax为最大迭代次数,为正整数;rand表示[0,1]之间的均匀分布随机数;c1与c2为学习因子,为正整数;Among them, w t-1 =0.9-0.5·(t-1)/t max is the inertia weight factor for t-1 times, t max is the maximum number of iterations, which is a positive integer; rand represents the value between [0,1] Uniformly distributed random numbers between; c 1 and c 2 are learning factors, which are positive integers; 6.3令i=i+1;6.3 Let i=i+1; 6.4判定i≤I是否成立,若成立,转6.2;否则,表示已更新完G中I个粒子的位置特征和速度特征,结束。6.4 Determine whether i≤I is true, if it is true, go to 6.2; otherwise, it means that the position characteristics and velocity characteristics of I particles in G have been updated, and end. 5.如权利要求4所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于所述tmax取100~200;c1与c2均取为2。5. The radar target detection method based on generalized Pareto distribution clutter statistical modeling as claimed in claim 4, characterized in that said t max is 100-200; c 1 and c 2 are both 2. 6.如权利要求1所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于所述Pf取10-4~10-26 . The radar target detection method based on generalized Pareto distribution clutter statistical modeling according to claim 1 , wherein the P f is 10 −4 to 10 −2 . 7.如权利要求1所述的基于广义Pareto分布杂波统计建模的雷达目标检测方法,其特征在于所述对公式(18)求检测门限th通过牛顿-科茨即Newton-Cotes数值积分公式来解算。7. the radar target detection method based on generalized Pareto distribution clutter statistical modeling as claimed in claim 1, it is characterized in that described formula (18) asks detection threshold th by Newton-Cotes namely Newton-Cotes numerical integral formula to solve.
CN201811430187.3A 2018-11-28 2018-11-28 A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter Active CN109557529B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811430187.3A CN109557529B (en) 2018-11-28 2018-11-28 A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811430187.3A CN109557529B (en) 2018-11-28 2018-11-28 A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter

Publications (2)

Publication Number Publication Date
CN109557529A CN109557529A (en) 2019-04-02
CN109557529B true CN109557529B (en) 2019-08-30

Family

ID=65867446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811430187.3A Active CN109557529B (en) 2018-11-28 2018-11-28 A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter

Country Status (1)

Country Link
CN (1) CN109557529B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112308019B (en) * 2020-11-19 2021-08-17 中国人民解放军国防科技大学 SAR ship target detection method based on network pruning and knowledge distillation
CN116400318B (en) * 2023-06-08 2023-08-04 中国人民解放军国防科技大学 Multi-observation target position estimation method and device based on online particle swarm optimization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546781A (en) * 2017-09-06 2018-01-05 广西电网有限责任公司电力科学研究院 Micro-capacitance sensor multiple target running optimizatin method based on PSO innovatory algorithms
CN107590436A (en) * 2017-08-10 2018-01-16 云南财经大学 Radar emitter signal feature selection approach based on peplomer subgroup multi-objective Algorithm
CN108256696A (en) * 2018-03-16 2018-07-06 电子科技大学 A kind of bonding state prediction and the radar network antenna allocation method of particle group optimizing
CN108874990A (en) * 2018-06-12 2018-11-23 亓富军 A kind of method and system extracted based on power technology journal article unstructured data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053426B2 (en) * 2013-01-30 2015-06-09 Harris Corporation Distributed multi-layer particle swarm optimization based cognitive network
DE102017207544A1 (en) * 2017-05-04 2018-11-08 Volkswagen Aktiengesellschaft METHOD, DEVICES AND COMPUTER READABLE STORAGE MEDIUM WITH INSTRUCTIONS FOR LOCATING A DATE MENTIONED BY A MOTOR VEHICLE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590436A (en) * 2017-08-10 2018-01-16 云南财经大学 Radar emitter signal feature selection approach based on peplomer subgroup multi-objective Algorithm
CN107546781A (en) * 2017-09-06 2018-01-05 广西电网有限责任公司电力科学研究院 Micro-capacitance sensor multiple target running optimizatin method based on PSO innovatory algorithms
CN108256696A (en) * 2018-03-16 2018-07-06 电子科技大学 A kind of bonding state prediction and the radar network antenna allocation method of particle group optimizing
CN108874990A (en) * 2018-06-12 2018-11-23 亓富军 A kind of method and system extracted based on power technology journal article unstructured data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《基于卷积神经网络的SAR图像目标识别研究》;田壮壮 等;《雷达学报》;20160630;第5卷(第3期);第320-325页

Also Published As

Publication number Publication date
CN109557529A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
Han et al. Non-parametric models for joint probabilistic distributions of wind speed and direction data
CN105205313B (en) Fuzzy Gaussian sum particle filtering method and device and target tracking method and device
CN106683122A (en) Particle filtering method based on Gaussian mixture model and variational Bayes
CN110658508B (en) A Parameter Estimation Method of K-Distributed Sea Clutter Based on Feature Quantities
CN105572572B (en) Analog-circuit fault diagnosis method based on WKNN-LSSVM
CN116008267B (en) Ocean chlorophyll a concentration three-dimensional distribution inversion method, terminal and medium
CN108919059A (en) A kind of electric network failure diagnosis method, apparatus, equipment and readable storage medium storing program for executing
CN109557529B (en) A Radar Target Detection Method Based on Statistical Modeling of Generalized Pareto Distribution Clutter
Danilin et al. Design of artificial neural networks with a specified quality of functioning
CN108896456B (en) Aerosol extinction coefficient inversion method based on feedback type RBF neural network
CN117056402B (en) A motor diagnosis method, device and storage medium based on multi-source signals
CN104463227A (en) Polarimetric SAR image classification method based on FQPSO and target decomposition
CN109814101B (en) Method and device for predicting aircraft position
CN109784142B (en) A hyperspectral target detection method based on conditional random projection
CN107577896B (en) Multi-machine aggregation equivalence method for wind farms based on hybrid Copula theory
CN110211189A (en) ToF camera depth error modeling bearing calibration and device
CN104680549A (en) SAR (synthetic aperture radar) image change detection method based on high-order neighborhood TMF (triplet Markov random field) model
CN111765883B (en) Robot Monte Carlo positioning method, equipment and storage medium
CN110703038B (en) Harmonic impedance estimation method suitable for fan access power distribution network
CN104462739B (en) A kind of environmental parameters ground method of sampling suitable for large-range multi-dimension satellite remote sensing date inverting
Mazas et al. Questioning MLE for the estimation of environmental extreme distributions
CN109376369A (en) Particle filter method based on classification evolutionary resampling
Han et al. Multi-reservoir echo state network with sparse Bayesian learning
Watzenig et al. Accelerated Markov chain Monte Carlo sampling in electrical capacitance tomography
CN109783875A (en) A kind of self iteration update optimization algorithm of marine gravity data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230621

Address after: 710000 No. 19, Zone C, venture R & D Park, No. 69, Jinye Road, high tech Zone, Xi'an, Shaanxi Province

Patentee after: Xi'an Daoyin Technology Co.,Ltd.

Address before: No.109, Deya Road, Kaifu District, Changsha City, Hunan Province 410003

Patentee before: National University of Defense Technology

TR01 Transfer of patent right