CN109548155A - 一种分布式非平衡边缘云网络接入与资源分配机制 - Google Patents

一种分布式非平衡边缘云网络接入与资源分配机制 Download PDF

Info

Publication number
CN109548155A
CN109548155A CN201811476816.6A CN201811476816A CN109548155A CN 109548155 A CN109548155 A CN 109548155A CN 201811476816 A CN201811476816 A CN 201811476816A CN 109548155 A CN109548155 A CN 109548155A
Authority
CN
China
Prior art keywords
edge cloud
task
cloud server
user
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811476816.6A
Other languages
English (en)
Other versions
CN109548155B (zh
Inventor
蒋卫恒
邬小刚
赖琴
蒲金伟
胡凯棚
曾艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Chencan Microelectronics Technology Co ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Publication of CN109548155A publication Critical patent/CN109548155A/zh
Application granted granted Critical
Publication of CN109548155B publication Critical patent/CN109548155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种分布式非平衡边缘云网络接入与资源分配机制,属于移动云计算与移动边缘计算领域;本发明在每一轮资源分配时,多用户多任务基于可用无线接入基站和边缘云服务器,向最优路径上的无线接入基站和边缘云服务器发送服务请求;如果边缘云服务器的服务请求所需资源超过最大可用资源,则保留任务,拒绝其他用户任务;边缘云服务器依据拒绝信息更新当前服务用户任务集,被拒绝用户任务基于更新的数据复执行上述步骤,直到所有用户任务已完成卸载或所有任务无可接入无线接入基站和边缘云服务器为止。本发明能显著降低多用户多任务卸载总时延‑能耗‑成本加权和。

Description

一种分布式非平衡边缘云网络接入与资源分配机制
技术领域
本发明属于移动云计算与移动边缘计算领域,特别是涉及一种分布式非平衡边缘云网络接入与资源分配机制。
背景技术
移动互联网与移动应用创新仍面临三大矛盾:即移动设备计算密集型应用需求剧增但移动设备自身计算能力和电池容量有限、移动云接入需求剧增但接入能力有限、移动网络技术革新越来越多但运营商网络管道化严重且用户平均收益不断降低。为了解决上述矛盾,移动边缘计算(MEC,Mobile Edge Computing)新技术被提出,其定义为“在无线接入网络(RAN,Radio Access Network)内靠近移动用户的位置提供IT和云计算能力的新平台”。这种模式中,大量计算和存储资源被放置在网络边缘,靠近移动设备或传感器。因而,移动用户可以将计算密集型任务迁移到MEC服务器中执行,从而显著降低对移动设备计算能力的要求并减小移动设备计算密集型任务执行带来的能耗。其次,通过在网络边缘服务服务器,移动用户无需接入远端云从而可以显著地降低云平台和骨干网络负载。此外,移动网络运营商可以将移动边缘计算服务器空闲资源租用给第三方从而获得附加收益。
本发明所提方法从以下出发点考虑;第一,现有针对移动边缘云计算系统迁移决策与资源分配研究大都基于平衡移动云边缘计算服务器部署,即每个无线接入点都配置独立非共享边缘云服务器。然而,实际网络中,基于空域业务分布不均匀性以及部署成本因素,运营商一般选择非平衡的移动边缘服务器部署策略,即多个无线接入点通过一跳或多跳链路接入少数几个共享边缘计算服务器。当前针对这种非平衡移动边缘云服务器部署下的迁移决策与资源分配还少有研究;第二,现有关于移动边缘云计算系统迁移决策与资源分配研究的系统设计目标主要为时延、能耗或时延-能耗权重和,并未考虑移动边缘云服务器的服务(使用)成本。在发明讨论的非平衡移动边缘云服务器部署场景中,边缘云服务器的服务成本具有多重含义,如无线接入点到边缘云服务器时延、无线接入点与边缘云服务器间达成的服务协议定价,或虚拟网络运营商与计算服务提供商关于资源使用定价等。特别地,这种服务成本与关联的无线接入点有关。在这种情况下,系统迁移决策与资源分配设计需要联合考虑时延-能耗-成本折中;第三,现有算法都属于集中式算法,算法执行单元需采集大量用户任务属性数据,信息交互开销大,并且算法收敛慢。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种分布式非平衡边缘云网络接入与资源分配机制;
本发明针对非平衡边缘云服务器部署场景,引入关联无线接入基站依赖的边缘云服务器使用成本,定义基于能耗-时延-成本权重和的用户任务卸载性能评价指标,提出分布式多用户多任务云网络接入与资源分配机制。
该机制是一种循环算法,每一轮资源分配时,多用户多任务基于可用无线接入基站和边缘云服务器,依据最小时延-能耗-成本权重和准则独立选择最优任务卸载路径,并向该最优路径上的无线接入基站和边缘云服务器发送服务请求。如果无线接入基站或边缘云服务器的服务请求所需资源超过最大可用资源,则保留满足资源约束、时延-能耗-成本权重和最小且接入任务数最多的任务,拒绝其他用户任务。无线接入基站与边缘云服务器依据拒绝信息更新当前服务用户任务集,被拒绝用户任务基于更新的可用无线接入基站和边缘云服务器重复执行上述步骤,直到所有用户任务已完成卸载或所有任务无可接入无线接入基站和边缘云服务器为止。
为实现上述目的,本发明提供了一种分布式非平衡边缘云网络接入与资源分配机制,包括以下步骤:
S1、定义下列各项数据;
定义用户集合A={1,...,i,...,|A|};
定义到第s轮接入与资源分配,用户i未卸载任务集合其中s≥0;
定义到第s轮接入与资源分配,用户i已卸载任务集合
定义卸载任务集非空用户集合
定义用户i卸载任务j的计算资源需求ri,j
定义无线接入基站集合B={1,...,m,...,|B|};
定义无线接入基站m可接入用户数Qm
定义边缘云服务器集合C={1,...,n,...,|C|};
定义边缘云服务器n当前可用计算资源Rn
定义用户i卸载任务j通过无线接入基站m卸载传输的时延和能耗分别为ti,j,m和ei,j,m
定义无线接入基站m连接边缘云服务器n的成本为cm,n
定义第s轮接入与资源分配中,用户卸载任务的可接入无线接入基站集和可接入边缘云服务器集
定义第s轮接入与资源分配中,无线接入基站m收到的总任务服务请求集合为
定义在s轮接入与资源分配中,边缘云服务器n收到的总任务服务请求集合为
以上各项数据的定义顺序不分先后;
S2、初始化s=0,并且所有边缘云服务器广播自身连接成本给所有用户;
S3、任意用户未卸载任务可接入无线接入基站集合和可接入边缘云服务器集合
S4、任意用户执行步骤S4-1到步骤S4-6;
S4-1:对于未卸载任务构造大小为的成本矩阵
S4-2:对于未卸载任务的成本矩阵Ci,j,计算每一个可接入无线接入基站的可接入边缘云服务器的最小成本及该边缘云服务器索引
S4-3:对于未卸载任务计算其通过可接入无线接入基站m以及其最小成本可接入边缘云服务器卸载计算任务的总时延-能耗-成本权重和其中αi,βi和γi分别为时延、能耗与成本权重因子;
S4-4:对于未卸载任务计算其最优可接入无线接入基站和最优可接入边缘云服务器
S4-5:如果用户的所有未卸载任务都被执行一次,跳转到步骤S4-6,否则跳转到步骤S4-1;
S4-6:用户针对自身每个任务的最优迁移路径向对应的无线接入基站和边缘云服务器发送服务请求,该服务请求包括用户索引i,任务索引j,任务路径上的无线接入基站索引和边缘云服务器索引任务计算资源需求ri,j,任务迁移时延-能耗-成本权重和
S5、任意边缘云服务器n∈C,针对当前总服务请求任务集独立执行步骤S5-1到步骤S5-4;
S5-1:计算集合Vn(s)中所有任务计算资源需求如果有则执行步骤S5-2,否则执行步骤S5-4;
S5-2:对集合Vn(s)中任务按照时延-能耗-成本权重和值降序排列,即并搜索kn值使得
S5-3:边缘云服务器向任务属于集合的用户及该任务请求的无线接入基站发送拒绝服务消息;
S5-4:边缘云服务器向其连接的无线接入基站发送空消息,表明本边缘云服务器当前不拒绝任何服务请求;
S6、对于用户及卸载任务如果其被边缘云服务器n拒绝,则更新可接入边缘云服务器集如果其被无线接入基站m拒绝,则更新可接入无线接入基站集如果卸载任务未被任何边缘云服务器或无线基站拒绝,则更新用户i未卸载任务集合和用户i已卸载任务集合
S7、如果条件之一成立,则算法结束,跳转到步骤S10,否则,s=s+1,跳转到步骤S4.
S8、算法结束。
较佳的,步骤S4-3中的权重因子满足αiii=1,αiii∈[0,1]。
较佳的,步骤S5-3中所述拒绝服务消息包括被拒绝任务索引、归属用户索引以及边缘云服务器索引。
本发明的有益效果是:
本发明可快速获得多用户多任务卸载路径,以及无线接入基站与边缘云服务器资源分配;
本发明可最小化多用户多任务卸载的时延-能耗-成本加权和;
本发明信息交互量少,收敛速度快,易实现。
附图说明
图1是本发明性能示例场景图;
图2是分配轮次对比图;
具体实施方式
下面结合实施例对本发明作进一步说明:
图1网络中包括四个移动用户(或任务、应用)S1、S2、S3和S4,三个无线网络接入基站B1、B2和B3,以及两个边缘云服务器C1和C2。任意用户Si(i=1,…,4)计算卸载任务由一个四元组刻画;其中,表示该用户Si任务计算资源需求量,分别表示用户Si接入B1、B2和B3的时延-能耗加权代价。例如,对于用户S1与(2,3,2,5),卸载计算任务的计算资源需求为2个单位,接入B1、B2和B3的时延-能耗加权代价分别为3、2和5。任意无线网络接入点Bj(j=1,..,3)由一个二元组刻画,分别表示无线网络接入点Bj接入边缘云服务器C1和C2的成本。例如,对于无线网络接入基站B1与(2,3),其使用边缘云服务器C1和C2的单位成本分别是2和3。对于边缘云服务器Ck(k=1,2),由(zk)刻画,表示Ck的可用计算资源数量。例如,对于边缘云服务器C1与(4),其有4个单位的计算资源。显然,对于不同的用户Si,选择不同的任务卸载路径将承担不同的卸载成本并消耗对应的计算资源,如S2-B1-C2,即用户S2选择通过无线接入基站B1接入边缘云服务器C2,则其时延-能耗-成本和为8,消耗计算资源2个单位。可以看出,用户卸载路径选择受多个因素影响,包括无线接入基站接入时延-能耗、无线接入基站-边缘云服务器间连接成本、边缘云服务器计算资源以及其他用户卸载策略等。从系统全局角度来看,用户卸载路径是能耗-时延-成本的折中考虑。
本发明在适用于平衡网络的同时还适用于非平衡边缘云网络,即多个无线接入基站通过回程链路共享接入数目少于无线接入基站的边缘云服务器。网络中多用户具有多计算密集型任务需要卸载到边缘云服务器完成计算,并且每个用户多个任务具有不同计算资源需求。一方面,用户任务卸载到边缘云服务器计算将支付一定费用(成本),并且该成本取决于所选择的无线接入基站,另一方面,用户任务卸载选择不同无线接入基站还面临不同时延开销与能耗。所有边缘云服务器计算资源有限,每个无线接入基站有最大可接入用户数限制;基于最小化全体用户所有任务卸载时延-能耗-成本和准则实现分布式接入与资源分配;
一种分布式非平衡边缘云网络接入与资源分配机制,分配过程包括以下步骤:
S1、定义下列各项数据;
定义用户集合A={1,...,i,...,|A|};
定义到第s轮接入与资源分配,用户i未卸载任务集合其中s≥0;
定义到第s轮接入与资源分配,用户i已卸载任务集合
定义卸载任务集非空用户集合
定义用户i卸载任务j的计算资源需求ri,j
定义无线接入基站集合B={1,...,m,...,|B|};
定义无线接入基站m可接入用户数Qm
定义边缘云服务器集合C={1,...,n,...,|C|};
定义边缘云服务器n当前可用计算资源Rn
定义用户i卸载任务j通过无线接入基站m卸载传输的时延和能耗分别为ti,j,m和ei,j,m
定义无线接入基站m连接边缘云服务器n的成本为cm,n
定义第s轮接入与资源分配中,用户卸载任务的可接入无线接入基站集和可接入边缘云服务器集
定义第s轮接入与资源分配中,无线接入基站m收到的总任务服务请求集合为
定义在s轮接入与资源分配中,边缘云服务器n收到的总任务服务请求集合为
以上各项数据的定义顺序不分先后;
S2、初始化s=0,并且所有边缘云服务器广播自身连接成本给所有用户;
S3、任意用户未卸载任务可接入无线接入基站集合和可接入边缘云服务器集合
S4、任意用户执行步骤S4-1到步骤S4-6;
S4-1:对于未卸载任务构造大小为的成本矩阵
S4-2:对于未卸载任务的成本矩阵Ci,j,计算每一个可接入无线接入基站的可接入边缘云服务器的最小成本及该边缘云服务器索引
S4-3:对于未卸载任务计算其通过可接入无线接入基站m以及其最小成本可接入边缘云服务器卸载计算任务的总时延-能耗-成本权重和其中αi,βi和γi分别为时延、能耗与成本权重因子,权重因子满足αiii=1,αiii∈[0,1];
S4-4:对于未卸载任务计算其最优可接入无线接入基站和最优可接入边缘云服务器
S4-5:如果用户的所有未卸载任务都被执行一次,跳转到步骤S4-6,否则跳转到步骤S4-1;
S4-6:用户针对自身每个任务的最优迁移路径向对应的无线接入基站和边缘云服务器发送服务请求,该服务请求包括用户索引i,任务索引j,任务路径上的无线接入基站索引和边缘云服务器索引任务计算资源需求ri,j,任务迁移时延-能耗-成本权重和
S5、任意边缘云服务器n∈C,针对当前总服务请求任务集独立执行步骤S5-1到步骤S5-4;
S5-1:计算集合Vn(s)中所有任务计算资源需求如果有则执行步骤S5-2,否则执行步骤S5-4;
S5-2:对集合Vn(s)中任务按照时延-能耗-成本权重和值降序排列,即并搜索kn值使得
S5-3:边缘云服务器向任务属于集合Rn(s)={(si,j)[l]|l>kn}的用户及该任务请求的无线接入基站发送拒绝服务消息,所述拒绝服务消息包括被拒绝任务索引、归属用户索引以及边缘云服务器索引;
S5-4:边缘云服务器向其连接的无线接入基站发送空消息,表明本边缘云服务器当前不拒绝任何服务请求;
S6、对于用户及卸载任务如果其被边缘云服务器n拒绝,则更新可接入边缘云服务器集如果其被无线接入基站m拒绝,则更新可接入无线接入基站集如果卸载任务未被任何边缘云服务器或无线基站拒绝,则更新用户i未卸载任务集合和用户i已卸载任务集合
本轮循环中,如果其被边缘云服务器n拒绝,则步骤S6中更新后的可接入边缘云服务器集为步骤S1-S5中的可接入边缘云服务器集去掉边缘云服务器n后得到的集合;
本轮循环中,如果其被无线接入基站m拒绝,则步骤S6中更新后的可接入无线接入基站集为步骤S1-S5中的可接入无线接入基站集去掉无线接入基站m后所得到的集合;
本轮循环中,如果卸载任务未被任何边缘云服务器或无线基站拒绝,则步骤S6中更新后的用户i未卸载任务集合为步骤S1-S5中的未卸载任务集合去掉卸载任务j后得到的集合;步骤S6中更新后的用户i已卸载任务集合为步骤S1-S5中的已卸载任务集合加上卸载任务j后得到的集合;
S7、如果条件之一成立,则算法结束,跳转到步骤S10,否则,s=s+1,跳转到步骤S4.
S8、算法结束。
将本发明所提方法与集中式算法进行性能比较;
集中式算法基本思想为:网络中存在一个虚拟决策中心来收集用户请求信息和资源信息,并进行资源分配,每轮只能分配一个任务。
仿真设置条件为:在图1的场景下,每个用户的平均任务数作为横轴变化,其中每个任务的计算资源量ri,j∈[2,6],每个任务迁移的时延ti,j,m∈[2,10],每个任务迁移的能耗ei,j,m∈[2,10],每个基站接入不同服务器的成本cm,n∈[5,6],基站的可接入任务数为Qm∈[5,7],边缘服务器的可用资源为Rn∈[30,40],此外,α=0.2,β=0.3,γ=0.5。
图2展示了本发明所提方法与集中式算法分配轮次数的对比图;其为执行1000次蒙特卡洛仿真下平均结果。在图2中,随着任务数增多,本发明所提算法的分配轮次增加缓慢,最终稳定在3轮左右;而集中式算法的分配轮次等于总的任务数,随着任务数增多,分配轮次迅速增多。此外,从图2可见,与集中式算法相比,本发明所提算法显著地减少了任务的分配轮次,使得该算法具有更好的时效性。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (3)

1.一种分布式非平衡边缘云网络接入与资源分配机制,其特征在于包括以下步骤:
S1、定义下列各项数据;
定义用户集合A={1,...,i,...,|A|};
定义到第s轮接入与资源分配,用户i未卸载任务集合其中s≥0;
定义到第s轮接入与资源分配,用户i已卸载任务集合
定义卸载任务集非空用户集合
定义用户i卸载任务j的计算资源需求ri,j
定义无线接入基站集合B={1,...,m,...,|B|};
定义无线接入基站m可接入用户数Qm
定义边缘云服务器集合C={1,...,n,...,|C|};
定义边缘云服务器n当前可用计算资源Rn
定义用户i卸载任务j通过无线接入基站m卸载传输的时延和能耗分别为ti,j,m和ei,j,m
定义无线接入基站m连接边缘云服务器n的成本为cm,n
定义第s轮接入与资源分配中,用户卸载任务的可接入无线接入基站集和可接入边缘云服务器集
定义第s轮接入与资源分配中,无线接入基站m收到的总任务服务请求集合为
定义在s轮接入与资源分配中,边缘云服务器n收到的总任务服务请求集合为
以上各项数据的定义顺序不分先后;
S2、初始化s=0,并且所有边缘云服务器广播自身连接成本给所有用户;
S3、任意用户未卸载任务可接入无线接入基站集合和可接入边缘云服务器集合
S4、任意用户执行步骤S4-1到步骤S4-6;
S4-1:对于未卸载任务构造大小为的成本矩阵
S4-2:对于未卸载任务的成本矩阵Ci,j,计算每一个可接入无线接入基站的可接入边缘云服务器的最小成本及该边缘云服务器索引
S4-3:对于未卸载任务计算其通过可接入无线接入基站m以及其最小成本可接入边缘云服务器卸载计算任务的总时延-能耗-成本权重和其中αi,βi和γi分别为时延、能耗与成本权重因子;
S4-4:对于未卸载任务计算其最优可接入无线接入基站和最优可接入边缘云服务器
S4-5:如果用户的所有未卸载任务都被执行一次,跳转到步骤S4-6,否则跳转到步骤S4-1;
S4-6:用户针对自身每个任务的最优迁移路径向对应的无线接入基站和边缘云服务器发送服务请求,该服务请求包括用户索引i,任务索引j,任务路径上的无线接入基站索引和边缘云服务器索引任务计算资源需求ri,j,任务迁移时延-能耗-成本权重和
S5、任意边缘云服务器n∈C,针对当前总服务请求任务集独立执行步骤S5-1到步骤S5-4;
S5-1:计算集合Vn(s)中所有任务计算资源需求如果有则执行步骤S5-2,否则执行步骤S5-4;
S5-2:对集合Vn(s)中任务按照时延-能耗-成本权重和值降序排列,即并搜索kn值使得
S5-3:边缘云服务器向任务属于集合Rn(s)={(si,j)[l]|l>kn}的用户及该任务请求的无线接入基站发送拒绝服务消息;
S5-4:边缘云服务器向其连接的无线接入基站发送空消息,表明本边缘云服务器当前不拒绝任何服务请求;
S6、对于用户及卸载任务如果其被边缘云服务器n拒绝,则更新可接入边缘云服务器集如果其被无线接入基站m拒绝,则更新可接入无线接入基站集如果卸载任务未被任何边缘云服务器或无线基站拒绝,则更新用户i未卸载任务集合和用户i已卸载任务集合
S7、如果条件之一成立,则算法结束,跳转到步骤S10,否则,s=s+1,跳转到步骤S4.
S8、算法结束。
2.如权利要求1中所述的一种分布式非平衡边缘云网络接入与资源分配机制,其特征在于;步骤S4-3中的所述权重因子满足αiii=1,αiii∈[0,1]。
3.如权利要求1中所述的一种分布式非平衡边缘云网络接入与资源分配机制,其特征在于;步骤S5-3中所述拒绝服务消息包括被拒绝任务索引、归属用户索引以及边缘云服务器索引。
CN201811476816.6A 2018-03-01 2018-12-05 一种分布式非平衡边缘云网络接入与资源分配方法 Active CN109548155B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018101706937 2018-03-01
CN201810170693 2018-03-01

Publications (2)

Publication Number Publication Date
CN109548155A true CN109548155A (zh) 2019-03-29
CN109548155B CN109548155B (zh) 2022-05-20

Family

ID=65852613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811476816.6A Active CN109548155B (zh) 2018-03-01 2018-12-05 一种分布式非平衡边缘云网络接入与资源分配方法

Country Status (1)

Country Link
CN (1) CN109548155B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111189A (zh) * 2019-05-14 2019-08-09 重庆大学 基于双边拍卖的在线组合资源分配与支付方法
CN110519370A (zh) * 2019-08-28 2019-11-29 湘潭大学 一种基于设施选址问题的边缘计算资源分配方法
CN110765365A (zh) * 2019-10-25 2020-02-07 国网河南省电力公司信息通信公司 分布式边云协同缓存策略的实现方法、装置、设备和介质
CN110856240A (zh) * 2019-11-07 2020-02-28 长沙理工大学 一种任务卸载的方法、设备及可读存储介质
CN110851363A (zh) * 2019-11-12 2020-02-28 广东电网有限责任公司 一种云测试系统及方法
CN111328107A (zh) * 2020-01-20 2020-06-23 北京大学 多云异构移动边缘计算系统架构和能量优化的设计方法
CN112004239A (zh) * 2020-08-11 2020-11-27 中国科学院计算机网络信息中心 一种基于云边协同的计算卸载方法及系统
CN112162837A (zh) * 2020-09-17 2021-01-01 中国科学院计算机网络信息中心 一种基于软件定义的边缘计算调度方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279685A1 (en) * 2016-03-25 2017-09-28 Cisco Technology, Inc. Adjusting anomaly detection operations based on network resources
CN107465748A (zh) * 2017-08-18 2017-12-12 东南大学 移动边缘云计算系统中基于演进博弈的动态资源分配方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279685A1 (en) * 2016-03-25 2017-09-28 Cisco Technology, Inc. Adjusting anomaly detection operations based on network resources
CN107465748A (zh) * 2017-08-18 2017-12-12 东南大学 移动边缘云计算系统中基于演进博弈的动态资源分配方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENMENG WANG等: ""Joint Computation Offloading and Interference Management in Wireless Cellular Networks with Mobile Edge Computing"", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》 *
CHENMENG WANG等: ""Joint computation offloading, resource allocation and content caching in cellular networks with mobile edge computing"", 《2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC)》 *
HELI ZHANG等: ""Combinational Auction-Based Service Provider Selection in Mobile Edge Computing Networks"", 《IEEE ACCESS》 *
WEIHENG JIANG等: ""Energy-delay-cost Tradeoff for Task Offloading in Imbalanced Edge Cloud Based Computing"", 《ARXIV.ORG,HTTPS://ARXIV.ORG/PDF/1805.02006.PDF》 *
李子姝等: ""移动边缘计算综述"", 《电信科学》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111189A (zh) * 2019-05-14 2019-08-09 重庆大学 基于双边拍卖的在线组合资源分配与支付方法
CN110111189B (zh) * 2019-05-14 2023-07-25 重庆大学 基于双边拍卖的在线组合资源分配与支付方法
CN110519370B (zh) * 2019-08-28 2022-03-25 湘潭大学 一种基于设施选址问题的边缘计算资源分配方法
CN110519370A (zh) * 2019-08-28 2019-11-29 湘潭大学 一种基于设施选址问题的边缘计算资源分配方法
CN110765365A (zh) * 2019-10-25 2020-02-07 国网河南省电力公司信息通信公司 分布式边云协同缓存策略的实现方法、装置、设备和介质
CN110856240A (zh) * 2019-11-07 2020-02-28 长沙理工大学 一种任务卸载的方法、设备及可读存储介质
CN110856240B (zh) * 2019-11-07 2022-07-19 长沙理工大学 一种任务卸载的方法、设备及可读存储介质
CN110851363A (zh) * 2019-11-12 2020-02-28 广东电网有限责任公司 一种云测试系统及方法
CN111328107B (zh) * 2020-01-20 2021-06-18 北京大学 多云异构移动边缘计算系统架构和能量优化的设计方法
CN111328107A (zh) * 2020-01-20 2020-06-23 北京大学 多云异构移动边缘计算系统架构和能量优化的设计方法
CN112004239A (zh) * 2020-08-11 2020-11-27 中国科学院计算机网络信息中心 一种基于云边协同的计算卸载方法及系统
CN112004239B (zh) * 2020-08-11 2023-11-21 中国科学院计算机网络信息中心 一种基于云边协同的计算卸载方法及系统
CN112162837A (zh) * 2020-09-17 2021-01-01 中国科学院计算机网络信息中心 一种基于软件定义的边缘计算调度方法及系统

Also Published As

Publication number Publication date
CN109548155B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN109548155B (zh) 一种分布式非平衡边缘云网络接入与资源分配方法
CN109547555B (zh) 基于公平性准则的非平衡边缘云网络接入与资源分配方法
CN109548031B (zh) 一种非平衡边缘云网络接入与资源分配方法
CN110087318A (zh) 基于5g移动边缘计算的任务卸载和资源分配联合优化方法
CN111182570B (zh) 提高运营商效用的用户关联和边缘计算卸载方法
WO2023024219A1 (zh) 云边协同网络中时延和频谱占用联合优化方法及系统
Zhang et al. DMRA: A decentralized resource allocation scheme for multi-SP mobile edge computing
CN113918240B (zh) 任务卸载方法及装置
CN103442412B (zh) 一种基于加权最优二分图匹配的网络选择方法
Li et al. Deployment of edge servers in 5G cellular networks
CN110519776A (zh) 一种雾计算系统中的均衡聚类和联合资源分配方法
CN109714382A (zh) 一种非平衡边缘云mec系统的多用户多任务迁移决策方法
CN115278779B (zh) Mec网络中基于渲染感知的vr服务模块动态放置方法
Krolikowski et al. Optimal cache leasing from a mobile network operator to a content provider
CN112004265A (zh) 一种基于srm算法的社交网络资源分配方法
CN102724105A (zh) 一种负载均衡方法和装置
CN113992677A (zh) 一种延迟与能耗联合优化的mec计算卸载方法
Li et al. Design of a service caching and task offloading mechanism in smart grid edge network
CN111324429B (zh) 一种基于多代血统参考距离的微服务组合调度方法
Shao et al. Delay and energy consumption oriented UAV inspection business collaboration computing mechanism in edge computing based electric power IoT
Li et al. Research on container migration mechanism of power edge computing on load balancing
Krolikowski et al. Fair distributed user-traffic association in cache equipped cellular networks
Hu et al. An information transport dynamic load balancing policy based on software defined mobile networks
He et al. Maximizing sleeping capacity based on QoS provision for information-centric Internet of Things
CN114143317A (zh) 面向跨云层移动边缘计算的多优先级计算卸载策略优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240122

Address after: No. LC45, 2nd Floor, Building 39, Chongqing University of Science and Technology, No. 20 Daxuecheng East Road, Huxi Street, High tech Zone, Shapingba District, Chongqing, 401331

Patentee after: Chongqing Zicheng Xintong Technology Co.,Ltd.

Country or region after: China

Address before: 400044 No. 174 Shapingba street, Shapingba District, Chongqing

Patentee before: Chongqing University

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240202

Address after: 400038 # 145-1, Gaotan Yanzheng Street, Xinqiao Street, Shapingba District, Chongqing City (self number: 740)

Patentee after: Chongqing Chencan Mingcheng Enterprise Management Partnership (L.P.)

Country or region after: China

Address before: No. LC45, 2nd Floor, Building 39, Chongqing University of Science and Technology, No. 20 Daxuecheng East Road, Huxi Street, High tech Zone, Shapingba District, Chongqing, 401331

Patentee before: Chongqing Zicheng Xintong Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240730

Address after: 402760 No.92 Donglin Avenue, Biquan street, Bishan District, Chongqing

Patentee after: Chongqing Chencan Microelectronics Technology Co.,Ltd.

Country or region after: China

Address before: 400038 # 145-1, Gaotan Yanzheng Street, Xinqiao Street, Shapingba District, Chongqing City (self number: 740)

Patentee before: Chongqing Chencan Mingcheng Enterprise Management Partnership (L.P.)

Country or region before: China