CN109547127A - A kind of angle detecting method of bowing based on CSI signal strength in wifi - Google Patents

A kind of angle detecting method of bowing based on CSI signal strength in wifi Download PDF

Info

Publication number
CN109547127A
CN109547127A CN201811630390.5A CN201811630390A CN109547127A CN 109547127 A CN109547127 A CN 109547127A CN 201811630390 A CN201811630390 A CN 201811630390A CN 109547127 A CN109547127 A CN 109547127A
Authority
CN
China
Prior art keywords
bowing
csi
angle
data
wifi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811630390.5A
Other languages
Chinese (zh)
Inventor
张发存
张妍
李军怀
王怀军
于蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201811630390.5A priority Critical patent/CN109547127A/en
Publication of CN109547127A publication Critical patent/CN109547127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A kind of angle detecting method of bowing based on CSI signal strength in wifi, comprising the following steps: step 1, configure AP and MP;Construct experimental situation;The wifi router for preparing commercial common wireless network card driving, supporting 802.11n or the above agreement;Configure CSI environment;Step 2, data are acquired;Step 3, data processing;By analyzing and handling channel state information CSI, the characteristic value for embodying movement of bowing is extracted, harmonic-model is established;Angle motion of bowing finally is sorted out using classifier, identifies simultaneously correcting sitting postures;Realize the synchronous adjustment of user's waist and cervical vertebra;By angle reflection waist bending degree of bowing;The method of the present invention is simple, and without carrying any sensor device, real-time is higher.

Description

A kind of angle detecting method of bowing based on CSI signal strength in wifi
Technical field
The invention belongs to computer vision fields, and in particular to a kind of angle of bowing based on CSI signal strength in wifi Detection method.
Background technique
Computer becomes essential study and media of communication in daily life and work, improper using posture, can draw Play the health problems such as cervical vertebra, lumbar vertebrae.Posture problem is used for computer, existing detection method is mainly based upon computer view Feel, sensor etc., these methods need extras to support more, and system cost is higher;And method based on computer vision is wanted Partes corporis humani position information in image is extracted, is unfavorable for protecting the individual privacy of subjects.
Summary of the invention
To overcome above-mentioned the deficiencies in the prior art, the CSI signal strength based on wifi that the object of the present invention is to provide a kind of Angle detecting method of bowing, can timely remind the angle problem of bowing of user oneself, help to be corrected in time, can It solves the problems, such as to bow for a long time and bring.
To achieve the above object, the technical solution adopted by the present invention is that: a kind of CSI signal strength based on wifi is bowed Angle detecting method, comprising the following steps:
Step 1, AP and MP is configured, Ubuntu system, the driving of installing wireless network card, configuration are compiled in experimental calculation machine CSI environment, experimental calculation machine install Ubuntu system as systemic vectors and signal receiver MP, experimental calculation machine;By wifi Router is as signal emitting-source AP;
Step 2, original CSI is acquired, angle measurement experiment of bowing is carried out between configured good AP and MP, is first acquired just Normal angular range data of bowing, then acquire improper angle-data of bowing;
Step 3, abnormal data is handled, period size, amplitude and the frequency in each subcarrier can be extracted in CSI Rate, due to the influence of ambient enviroment, can generate some abnormal datas in CSI collection process, for accurately to collected number According to being analyzed, it is necessary to handle these existing abnormal datas, specific treatment process are as follows:
1) data prediction and denoising, the original CSI got are the three-dimensional matrices of X × Y × 30, to the three-dimensional square Battle array carries out dimension-reduction treatment and extracts the data for representing angle of bowing, and since CSI is easily affected by environment, uses wavelet filter Method carries out denoising to it;
2) anomaly data detection, since bow angle measurement selection is angular range, too high or too low angle of bowing It can not describe the problem, these angles are considered as abnormal data, and accurately to analyze these data, based on threshold test, these are different Regular data;
3) characteristic is extracted, and period size, frequency and the amplitude of each subcarrier are extracted in CSI, passes through analysis Data obtain period size, frequency and amplitude as characteristic, resettle harmonic-model, obtain most preferably estimating for phase and amplitude Evaluation;
4) classifier is classified, to realize that the identification and classification of angular range of bowing will be handled using algorithm of support vector machine Good CSI is input in preparatory trained classifier, angle of bowing is identified, so that corresponding sitting posture is exported, if being currently at Incorrect sitting posture, can instant alerts user adjustment.
Wireless network card described in step 1 drives model Intel 5300.
Wifi router described in step 1 supports 802.11n or the above agreement.
Representative described in step 3 bow angle data using the denoising of wavelet filter method.
Classifier described in step 4 is divided into three classes: angle classifier of normally bowing, the excessively high angle classifier and too low of bowing Angle of bowing classifier, the corresponding sitting posture of the classifier of these angles of bowing are respectively normal sitting position, sit down weak and limp, seat of lying prone.
Period size is extracted according to the following steps in each subcarrier:
1) Wavelet Denoising Method processing is carried out to collected CSI;
2) frequency, the amplitude in each subcarrier are extracted;
3) harmonic-model y is established to each CSI sub-carrier signal(t)=Ai sin(wit+τi), wherein y(t)For subcarrier Signal, t are time variable;Using Least Square Method, amplitude A is obtainediWith phase τiBest estimate.By amplitude AiWith Phase τiBest estimate substitute into harmonic-model obtained in estimation signal and collected sub-carrier signal error be smaller , remember that this error is Ki, then each period size be
Compared with prior art, the beneficial effects of the present invention are:
The present invention does not need to carry any sensor device, facilitates tester to test, while will not relate to tester Privacy concern, system is simple, be easy deployment, have certain practicability.Using commercial common wireless network card and without route By device, mobile device etc. is can be used to replace in the wireless router in experiment, because the wifi that router provides does not need to test Card, as long as being connectable to wifi, so that it may realize this method.
System is simple, does not need to carry additional special hardware device, is easy deployment, has certain practicability.
Detailed description of the invention
Fig. 1 is flow chart of the invention.
Specific embodiment
The following describes the present invention in detail with reference to the accompanying drawings and specific embodiments.
Proposed by the present invention a kind of based on CSI sitting posture detecting method in wifi, basic principle is: different human limbs is living Kinetic energy enough causes different CSI signal change patterns, it will be observed that signal change pattern to be mapped as different human limb living It is dynamic, it will be able to be identified in real time.
To use wifi signal real time automatic detection sitting posture method in the actual environment, need to solve the problems, such as following four: 1) CSI in wifi signal stream is how to embody sitting posture movement, how to determine head angle or waist angle in sitting posture;2) sitting posture Does related physical feeling angle use its exact value or range? 3) for complicated actual environment, how in wifi wireless signal Movement of bowing automatically and precisely is identified in stream? 4) relationship of bow angle and sitting posture is determined.
In response to the above problems, solution of the present invention is as follows: if 1) there is no any movement of bowing between AP and MP, acquisition To CSI waveform diagram after processing there is no apparent amplitude to change, if bowing movement therebetween, CSI is after processing The peak value of waveform diagram may get higher or be lower, but the height of peak change is different, and difference angle of bowing corresponds to peak value The height of variation is different.2) according to actual environment and experimental result various aspects the considerations of, angle of bowing in this experiment takes one Range, and this angular range should be maintained within 20 degree, angular range is excessive or too small all result can be made not accurate enough; 3) further, when doing this experiment, it should guarantee that data fluctuations are only generated by movement of bowing as far as possible.Respectively under the same environment Collected data are handled, and the difference of observation comparison waveform diagram, existing difference is exactly caused by bowing and acting.4) not The corresponding waist bending degree of same angle of bowing is different, extracts due to waist and the common caused CSI of headwork variation Signal intensity characteristic value.And the angular range that provides normally to bow corresponds to a kind of correct sitting posture, and improper angle of bowing The sitting posture of the corresponding mistake of range.Improper angular range of bowing includes being greater than normally to bow angular range and to be less than normal It bows angular range, so that corresponding sitting posture is exactly seat of sitting down weak and limp and lie prone, both sitting postures can all lead to flank pain.
Referring to Fig. 1, a kind of angle detecting method of bowing based on CSI signal strength in wifi, comprising the following steps:
Step 1, AP and MP is configured, Ubuntu system is compiled on the experimental calculation machine prepared, common commercialization is installed Wireless network card drives (Intel 5300), configures CSI environment, prepares the wifi router for supporting 802.11n or the above agreement;
Step 2, initial data is acquired, angle measurement experiment of bowing is carried out between configured good AP and MP, is first acquired Normal angular range data of bowing, then improper angle-data of bowing is acquired, because will form a chain between each pair of AP and MP Collected CSI is saved in experimental calculation machine by road using channel state information tool CSI Tool;Wifi router is used for Wifi signal is issued, experimental calculation machine, that is, receiving end is for receiving CSI in wifi and CSI being sent to setting for signal processing unit Standby (experimental calculation machine);AP is wifi router, for generating wifi signal;MP is the experimental calculation machine configured with CSI environment, For receiving wifi signal, the channel state information CSI in wifi signal is acquired;
Step 3, abnormal data is handled, period size, amplitude and the frequency in each subcarrier can be extracted in CSI Rate is easy to be affected by the ambient, generates some abnormal datas when acquiring CSI, in order to accurately analyze acquisition Information, it is necessary to handle these abnormal datas;Specific treatment process are as follows:
1) data prediction and denoising, the original CSI of acquisition are the three-dimensional matrices of X × Y × 30, wherein X expression connects By antenna number, Y indicates transmission antenna number, and 30 indicate 30 subcarriers in an ofdm system;Firstly, being dropped to three-dimensional matrice The data that can represent angle measurement of bowing are extracted after dimension processing, it is contemplated that existing high-frequency noise need to use low-pass filtering Device is to its denoising;High-frequency noise included in CSI is got rid of using wavelet filter method;
2) anomaly data detection, the present invention construct three groups of test sets, and angular range of normally bowing crosses low angle and bows range With excessively high angular range of bowing, the anomaly data detection of this step refer to bow it is too high or too low low present in angular range Brilliance degree, too high or too low angle of bowing belong to abnormal data in daily angular range of bowing, this step is different to these Regular data is detected, and according to the requirement of experimental situation and experimental result, is detected using local outlier factor detection algorithm (LOF) Outlier factor present in CSI;When testing, if normally bowing in angular range defined, CSI is that smoothly, do not have Too big fluctuating;But if angle of bowing is too low or excessively high, and channel state information CSI just will appear obvious variation;At this In the process, angle of bowing is too low or excessively high occurred data variation is exactly abnormal data, needs to carry out these abnormal datas Detection is compared and discusses by analyzing these abnormal datas, then with the data for angle appearance of normally bowing;
(since bow angle measurement selection is angular range, too high or too low angle of bowing can not be described the problem, These existing angles are considered as abnormal data.For accurate these data of analysis, these abnormal numbers based on threshold test According to)
3) characteristic is extracted, and after completing data exception detection, needs to extract the characteristic value in abnormal data, CSI In include multiple subcarriers frequency, amplitude and period size, while extracting the frequency for the multiple subcarriers for including in CSI, Amplitude and period size obtain period size, frequency and amplitude by analyzing data, characteristic are regarded as, in conjunction with frequency Collected CSI establishes harmonic-model y to each CSI sub-carrier signal(t)=Ai sin(wit+τi), wherein y(t)Indicate each CSI sub-carrier signal, t are time variable, obtain amplitude A using Least Square Method according to collected every CSIiWith Phase τiBest estimate;By amplitude AiWith phase τiBest estimate substitute into harmonic-model obtained in estimation signal and Collected sub-carrier signal error be it is lesser, remember this error be Ki, then the period size of each subcarrier be
4) classifier is classified, and the present invention classifies to the characteristic extracted using algorithm of support vector machine, makes With algorithm of support vector machine, i.e., will treated CSI inputs to preparatory trained classifier, classifier bows output angle Range, i.e., corresponding output sitting posture;Preparatory trained classifier is divided into three classes: normally bow angle classifier, excessively high angle of bowing It spends classifier and too low angle classifier of bowing, the corresponding sitting posture of the classifier of these angles of bowing is respectively normal sitting position, paralysis It sits, seat of lying prone;If this classifier is too high or too low angle classifier of bowing, corresponding sitting posture is seat of sitting down weak and limp or lie prone, and system is just It can be automatically reminded to the sitting posture that the user needs to adjust oneself in time.
Wireless network card described in step 1 drives model Intel 5300.
Wifi router described in step 1 supports 802.11n or the above agreement.
Representative described in step 3 bow angle data using the denoising of wavelet filter method.
Classifier described in step 4 is divided into three classes: angle classifier of normally bowing, the excessively high angle classifier and too low of bowing Angle of bowing classifier, the corresponding sitting posture of the classifier of these angles of bowing are respectively normal sitting position, sit down weak and limp, seat of lying prone.
Period size is extracted according to the following steps in each subcarrier:
1) Wavelet Denoising Method processing is carried out to collected CSI;
2) frequency, the amplitude in each subcarrier are extracted;
3) harmonic-model y is established to each CSI sub-carrier signal(t)=Ai sin(wit+τi), wherein y(t)For subcarrier Signal, t are time variable;Using Least Square Method, amplitude A is obtainediWith phase τiBest estimate.By amplitude AiWith Phase τiBest estimate substitute into harmonic-model obtained in estimation signal and collected sub-carrier signal error be smaller , remember that this error is Ki, then each period size be
The CSI treatment process includes extracting characteristic period size and test and bowing angle and to identify sitting posture, is extracted The characteristic period size extracted, is inputed to classifier trained in advance by the characteristic for reflecting movement of bowing out, point Class device judges to bow angular range and identifies sitting posture.
Step 2.1: acquisition CSI data do different angle motions of bowing, by collected CSI number between AP and MP According to being saved in experimental calculation machine.Wherein, AP is wifi router, and for generating wifi signal, MP is configured with CSI environment Experimental calculation machine acquires the channel state information CSI data in wifi signal for receiving wifi signal;
Step 2.2: processing CSI data, Data Dimensionality Reduction pretreatment, Wavelet Denoising Method extract the period for representing movement of bowing Size establishes harmonic-model, and period size is substituted into trained classifier in advance and is classified, identifies different angles of bowing Degree movement, adjusts sitting posture.
During this method is realized, hardware that the angle detecting method of bowing based on CSI signal strength in wifi uses Respectively there are 2 classes with software:
Hardware
1) equipped with Intel 5300 wireless network card driving experimental calculation machine, this computer can be used as systemic vectors and Signal receiver MP, experimental calculation machine need to be equipped with Ubuntu system;
2) router is as signal emitting-source AP.
Software
1) using Linux 802.11n CSI Tool kit from the channel status information that physical layer acquires need using MATLAB carries out signal processing;
2) experimental calculation machine work system is Ubuntu11.04, is guaranteed the repair free of charge using CSI information collection tool under linux system Change computer radio trawl performance.

Claims (5)

1. a kind of angle detecting method of bowing of the CSI signal strength based on wifi, which comprises the following steps:
Step 1, AP and MP is configured, Ubuntu system is compiled in experimental calculation machine, the driving of installing wireless network card configures CSI ring Border, experimental calculation machine install Ubuntu system as systemic vectors and signal receiver MP, experimental calculation machine;By wifi router As signal emitting-source AP;
Step 2, original CSI is acquired, angle measurement experiment of bowing is carried out between configured good AP and MP, first acquisition is normal It bows angular range data, then acquires improper angle-data of bowing;
Step 3, abnormal data is handled, period size, amplitude and the frequency in each subcarrier can be extracted in CSI, In CSI collection process, due to the influence of ambient enviroment, some abnormal datas can be generated, for accurately to collected data into Row analysis, it is necessary to these existing abnormal datas be handled, specific treatment process are as follows:
1) data prediction and denoising, the original CSI got are the three-dimensional matrices of X × Y × 30, to the three-dimensional matrice into Row dimension-reduction treatment extracts the data for representing angle of bowing, and since CSI is easily affected by environment, uses wavelet filter method Denoising is carried out to it;
2) anomaly data detection, since bow angle measurement selection is angular range, too high or too low angle of bowing cannot Enough describing the problem, these angles are considered as abnormal data, accurately to analyze these data, these abnormal numbers based on threshold test According to;
3) characteristic is extracted, and period size, frequency and the amplitude of each subcarrier are extracted in CSI, by analyzing data Period size, frequency and amplitude are obtained as characteristic, resettles harmonic-model, obtains the best estimate of phase and amplitude Value;
4) classifier is classified, to realize the bow identification and classification of angular range, using algorithm of support vector machine, by what is handled well CSI is input in preparatory trained classifier, angle of bowing is identified, so that corresponding sitting posture is exported, if being currently at not just True sitting posture, can instant alerts user adjustment.
2. a kind of angle detecting method of bowing of CSI signal strength based on wifi according to claim 1, feature exist In wireless network card described in step 1 drives model Intel5300.
3. a kind of angle detecting method of bowing of CSI signal strength based on wifi according to claim 1, feature exist In wifi router described in step 1 supports 802.11n or the above agreement.
4. a kind of angle detecting method of bowing of CSI signal strength based on wifi according to claim 1, feature exist In, representative described in step 3 bow angle data using the denoising of wavelet filter method.
5. a kind of angle detecting method of bowing of CSI signal strength based on wifi according to claim 1, feature exist In classifier described in step 4 is divided into three classes: angle classifier of normally bowing, excessively high bow and too low are bowed at angle classifier Angle classifier, the corresponding sitting posture of the classifier of these angles of bowing are respectively normal sitting position, sit down weak and limp, seat of lying prone.
CN201811630390.5A 2018-12-29 2018-12-29 A kind of angle detecting method of bowing based on CSI signal strength in wifi Pending CN109547127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811630390.5A CN109547127A (en) 2018-12-29 2018-12-29 A kind of angle detecting method of bowing based on CSI signal strength in wifi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811630390.5A CN109547127A (en) 2018-12-29 2018-12-29 A kind of angle detecting method of bowing based on CSI signal strength in wifi

Publications (1)

Publication Number Publication Date
CN109547127A true CN109547127A (en) 2019-03-29

Family

ID=65830934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811630390.5A Pending CN109547127A (en) 2018-12-29 2018-12-29 A kind of angle detecting method of bowing based on CSI signal strength in wifi

Country Status (1)

Country Link
CN (1) CN109547127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111027416A (en) * 2019-11-21 2020-04-17 电子科技大学 Position self-adaptive action recognition method based on commercial WiFi
WO2020228324A1 (en) * 2019-05-14 2020-11-19 广东康云科技有限公司 Wifi-based object detection method and system, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105962946A (en) * 2016-06-23 2016-09-28 华中科技大学 Non-contact human body sleeping posture safety detection method and system
CN106108904A (en) * 2016-06-23 2016-11-16 华中科技大学 A kind of contactless human body respiration parameter method for real-time measurement and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105962946A (en) * 2016-06-23 2016-09-28 华中科技大学 Non-contact human body sleeping posture safety detection method and system
CN106108904A (en) * 2016-06-23 2016-11-16 华中科技大学 A kind of contactless human body respiration parameter method for real-time measurement and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WENFENG HE等: "WiFi-based Gesture Recognition System", 《 2015 24TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND NETWORKS (ICCCN)》 *
何文锋: "基于WIFI的手势识别研究", 《CNKI全国优秀硕士论文全文库 信息科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228324A1 (en) * 2019-05-14 2020-11-19 广东康云科技有限公司 Wifi-based object detection method and system, and storage medium
CN111027416A (en) * 2019-11-21 2020-04-17 电子科技大学 Position self-adaptive action recognition method based on commercial WiFi
CN111027416B (en) * 2019-11-21 2022-03-15 电子科技大学 Position self-adaptive action recognition method based on commercial WiFi

Similar Documents

Publication Publication Date Title
CN106022378B (en) Sitting posture judgment method and based on camera and pressure sensor cervical spondylosis identifying system
JP5848551B2 (en) Learning device, learning device control method, detection device, detection device control method, and program
CN105678222B (en) A kind of mobile device-based Human bodys' response method
CN104143079B (en) The method and system of face character identification
CN105022981B (en) A kind of method, device and mobile terminal detecting human eye health state
CN106108904B (en) A kind of contactless human body respiration parameter method for real-time measurement and system
CN105310696B (en) A kind of fall detection model building method and corresponding fall detection method and device
CN109766796A (en) A kind of depth pedestrian detection method towards dense population
CN113435283B (en) Ultra-wideband radar identity recognition method based on breath sample space
CN103718175A (en) Apparatus, method, and medium detecting object pose
CN106491129B (en) A kind of Human bodys' response system and method based on EOG
CN109547127A (en) A kind of angle detecting method of bowing based on CSI signal strength in wifi
CN106137130A (en) A kind of sleep period recognition methods based on Audio Processing
CN107480716A (en) Method and system for identifying saccade signal by combining EOG and video
CN103902978A (en) Face detection and identification method
Chen et al. WiFace: Facial expression recognition using Wi-Fi signals
CN109740522A (en) A kind of personnel's detection method, device, equipment and medium
Benocci et al. A context-aware smart seat
CN108958489A (en) A kind of interesting image regions Rapid Detection method based on brain electricity and eye tracker
Kwon et al. Hands-free human activity recognition using millimeter-wave sensors
CN108371806B (en) Gymnastics training device and training method thereof
CN110309767A (en) In vivo detection equipment, recognition methods, device and storage medium
CN105962946A (en) Non-contact human body sleeping posture safety detection method and system
CN107480635A (en) Glance signal identification method and system based on bimodal classification model fusion
CN106725466A (en) A kind of bow-backed alarm set and based reminding method based on surface myoelectric technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329

RJ01 Rejection of invention patent application after publication