CN109544554A - 一种植物图像分割及叶片骨架提取方法及系统 - Google Patents

一种植物图像分割及叶片骨架提取方法及系统 Download PDF

Info

Publication number
CN109544554A
CN109544554A CN201811216474.4A CN201811216474A CN109544554A CN 109544554 A CN109544554 A CN 109544554A CN 201811216474 A CN201811216474 A CN 201811216474A CN 109544554 A CN109544554 A CN 109544554A
Authority
CN
China
Prior art keywords
plant
layer
image
segmentation
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811216474.4A
Other languages
English (en)
Other versions
CN109544554B (zh
Inventor
李叶
许乐乐
郭丽丽
王先锋
阎镇
饶骏
金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology and Engineering Center for Space Utilization of CAS
Original Assignee
Technology and Engineering Center for Space Utilization of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology and Engineering Center for Space Utilization of CAS filed Critical Technology and Engineering Center for Space Utilization of CAS
Priority to CN201811216474.4A priority Critical patent/CN109544554B/zh
Publication of CN109544554A publication Critical patent/CN109544554A/zh
Application granted granted Critical
Publication of CN109544554B publication Critical patent/CN109544554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30188Vegetation; Agriculture

Abstract

本发明涉及一种植物精细分割和叶片骨架提取方法及系统,其方法包括构建包括多个子神经网络的混合神经网络模型;采集多张植物图像作为训练图像样本,根据训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的训练图像样本对混合神经网络模型进行训练;采集目标植物图像,并将目标植物图像输入训练后的混合神经网络模型,训练后的混合神经网络模型输出植物图像分割结果和植物叶片骨架提取结果。本发明的植物图像分割及叶片骨架提取方法,通过构建混合神经网络模型,并采采集植物图像对混合神经网络模型进行训练,从而同时实现植物图像精细分割和叶片骨架提取,并且能有效抑制负复杂背景的干扰,提高植物图像分割及叶片骨架提取的精度。

Description

一种植物图像分割及叶片骨架提取方法及系统
技术领域
本发明涉及图像处理技术领域,尤其涉及一种植物图像分割及叶片骨架提取方法及系统。
背景技术
在植物学研究领域,科学家通过研究植物生长过程能够进行更深入的基因遗传等研究。随着图像技术快速发展,植物图像分析能够快速准确地提供定量的植物生长状态指标给科学家,辅助科学家进一步的深入研究。现今大热的深入学习方法已被广泛应用到植物图像分割及识别中,例如卷积神经网络。常用的卷积神经网络有VGG、FCN、U-Net,这些网络具有深层结构,能够提取深层图像特征极大提高植物图像分割识别的正确率。
针对复杂植物图像场景,VGG虽然能够实现植物精细分割,但是在复杂背景上(例如植物培养箱中强光的反射、观察镜中的植物影子等)极易产生误检,即对复杂背景干扰很敏感;FCN具有强的复杂背景干扰抑制能力,但是难以实现精细的植物分割,漏检小植物及其叶片;U-Net融合浅层图像细节信息和深层图像语义特征,在植物精细分割和复杂背景干扰抑制之间实现性能折中,但是U-Net不能同时输出植物分割结果和叶片骨架提取结果。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种植物图像分割及叶片骨架提取方法及系统,同时实现植物图像精细分割和叶片骨架提取。
本发明解决上述技术问题的技术方案如下:一种植物精细分割和叶片骨架提取方法,包括如下步骤:
步骤1:构建包括多个子神经网络的混合神经网络模型;
步骤2:采集多张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
步骤3:采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型输出植物图像分割结果和植物叶片骨架提取结果。
本发明的有益效果是:本发明的植物图像分割及叶片骨架提取方法,通过构建混合神经网络模型,并采采集植物图像对所述混合神经网络模型进行训练,从而同时实现植物图像精细分割和叶片骨架提取,并且能有效抑制负复杂背景的干扰,提高植物图像分割及叶片骨架提取的精度。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步:所述步骤1中,混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2
上述进一步方案的有益效果是:通过不同的子神经网络组合形成混合神经网络模型,同时实现植物精细分割和也变骨架的提取,有效地对复杂背景干扰进行抑制。
进一步:所述步骤3中,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果具体包括如下步骤:
步骤31:所述第一子神经网络N1根据所述目标植物图像提取浅层图像细节特征一和深层图像语义特征一,并根据所述浅层图像细节特征一和深层图像语义特征一输出带有植物细节信息的分割得分图;
步骤32:所述第一子结构K1根据所述目标植物图像提取深层图像语义特征二,并根据所述深层图像语义特征二输出带有背景干扰抑制的植物分割得分图;所述第二子结构K2根据所述植物分割得分图输出植物叶片骨架提取结果;
步骤33:所述第三子神经网络N3将所述带有植物细节信息的分割得分图和带有背景干扰抑制的植物分割得分图进行融合处理,输出所述植物图像分割结果。
上述进一步方案的有益效果是:通过获取带有植物细节信息的分割得分图和带有复杂背景干扰抑制的植物分割得分图以及植物叶片骨架提取结果,植物叶片骨架提取结果直接对外输出,再将带有植物细节信息的分割得分图和带有复杂背景干扰抑制的植物分割得分图融合,即可得到所述植物图像的精确分割结果。
进一步:所述步骤31具体包括:
步骤311:所述第一子神经网络N1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征一;
步骤312:所述第一子神经网络N1中的池化层和上采样层依次对所述浅层图像细节特征一分别进行降维处理和升维处理,并得到深层图像语义特征一;
步骤313:所述第一子神经网络N1中的拼接层将所述浅层图像细节特征一和深层图像语义特征一进行拼接,得到带有植物细节信息的分割得分图。
上述进一步方案的有益效果是:通过对所述浅层图像细节特征一和深层图像语义特征一进行拼接,可以准确地获取带有植物细节信息的分割得分图。
进一步:所述步骤32具体包括:
步骤321:所述第一子结构K1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征二;
步骤322:所述第一子结构K1中池化层和上采样层依次对所述浅层图像细节特征二分别进行降维处理和升维处理,并得到深层图像语义特征二;
步骤323:所述第一子结构K1中反卷积层对所述深层图像语义特征二进行提取处理,得到带有复杂背景干扰抑制的植物分割得分图;
步骤324:所述第二子结构K2中的卷积层对所述带有复杂背景干扰抑制的植物分割得分图进行提取出处理,得到叶片初步骨架特征;
步骤325:所述第二子结构K2中的池化层、上采样层和反卷积层依次对所述叶片初步骨架特征分别进行降维处理、升维处理和提取处理,并得到叶片骨架提取结果。
上述进一步方案的有益效果是:所述第一子结构K1对所述目标植物图像进行提取处理,对所述浅层图像细节特征二分别进行降维处理和升维处理,得到深层图像语义特征二并抛去部分细节信息,减少复杂背景的干扰,输出带有复杂背景干扰抑制的植物分割得分图;所述第二子结构K2对所述植物分割得分图进行提取、降维、升维和提取处理,即可得到叶片骨架提取结果。
本发明还提供了一种植物图像分割及叶片骨架提取系统,包括:
模型构建模块,用于构建包括多个子神经网络的混合神经网络模型;
采集训练模块,用于采集多张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
采集处理模块,用于采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果。
本发明的植物图像分割及叶片骨架提取系统,通过构建混合神经网络模型,并采采集植物图像对所述混合神经网络模型进行训练,从而同时实现植物图像精细分割和叶片骨架提取,并且能有效抑制负复杂背景的干扰,提高植物图像分割及叶片骨架提取的精度。
在上述技术方案的基础上,本发明还可以做如下改进:
进一步:所述混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2
所述第一子神经网络N1包括数量均为至少一个的卷积层{Ci 1,i=1,…,nc1 1,nc1 1≥1}、池化层{Pi 1,i=1,…,np 1,np 1≥1}、上采样层{Ui 1,i=1,…,nu 1,nu 1≥1}、拼接层{Ai 1,i=1,…,na 1,na 1≥1}、卷积层{Ci 1,i=nc1 1+1,…,nc1 1+nc2 1,nc2 1≥1}和跳跃结构{Si 1,i=1,…,nd 1,nd 1≥1};
所述第一子结构K1包括数量均为至少一个的卷积层{Ci 2-1,i=1,…,nc 2-1,nc 2-1≥1}、池化层{Pi 2-1,i=1,…,np 2-1,np 2-1≥1}、上采样层{Ui 2-1,i=1,…,nu 2-1,nu 2-1≥1}和反卷积层{Di 2-1,i=1,…,nd 2-1,nd 2-1≥1};所述第二子结构K2包含数量均为至少一个卷积层{Ci 2 -2,i=1,…,nc 2-2,nc 2-2≥1}、池化层{Pi 2-2,i=1,…,np 2-2,np 2-2≥1}、上采样层{Ui 2-2,i=1,…,nu 2-2,nu 2-2≥1}和反卷积层{Di 2-2,i=1,…,nd 2-2,nd 2-2≥1};
所述第三子神经网络N3包括数量均为至少一个的拼接层{Ai 3,i=1,…,na 3,na 3≥1},一个卷积层{Ci 3,i=1,…,nc 3,nc 3≥1}。
上述进一步方案的有益效果是:通过不同的子神经网络组合形成混合神经网络模型,同时实现植物精细分割和也变骨架的提取,有效地对复杂背景干扰进行抑制。
进一步:所述第一子神经网络N1中的池化层、上采样层、拼接层的层数相同。
上述进一步方案的有益效果是:通过设置所述池化层、上采样层、拼接层的层数相同,能够使得混合神经网络输出与输入图像尺寸相同的分割结果,并且,拼接层与上采样层相等,还可以把每个输出的深层的图像语义特征都与浅层的图像细节特征融合,尽量去融合特征,提高分割的精细程度。
本发明还提供了一种植物图像分割及叶片骨架提取装置,所述装置包括存储器和处理器;
所述存储器,用于存储计算机程序;
所述处理器,用于当执行所述计算机程序时,实现所述的基于多粒度网络融合的光学遥感图像分割方法。
本发明还提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现所述的植物图像分割及叶片骨架提取方法。
附图说明
图1为本发明的植物图像分割及叶片骨架提取方法流程示意图;
图2为本发明的一实施例的混合神经网络模型结构的示意图;
图3为本发明的植物图像分割及叶片骨架提取系统结构示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,一种植物图像分割及叶片骨架提取方法,包括如下步骤:
步骤1:构建包括多个子神经网络的混合神经网络模型;
步骤2:采集至少一张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
步骤3:采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型输出植物图像分割结果和植物叶片骨架提取结果。
本发明的植物图像分割及叶片骨架提取方法,通过构建混合神经网络模型,并采采集植物图像对所述混合神经网络模型进行训练,从而同时实现植物图像精细分割和叶片骨架提取,并且能有效抑制负复杂背景的干扰,提高植物图像分割及叶片骨架提取的精度。
在本发明提供的实施例中,所述步骤1中,混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2。通过不同的子神经网络组合形成混合神经网络模型,同时实现植物精细分割和也变骨架的提取,有效地对复杂背景干扰进行抑制。
当然,实际中,所述混合神经网络模型还可以包括更多个子神经网络,更多个子神经网络可以对上述第一子神经网络N1、第二子神经网络N2和第三子神经网络N3的每个输出结果进行验证和平均,使得最终的分割结果和叶片提取骨架更加精确。
在本发明提供的实施例中,所述步骤3中,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果具体包括如下步骤:
步骤31:所述第一子神经网络N1根据所述目标植物图像提取浅层图像细节特征一和深层图像语义特征一,并根据所述浅层图像细节特征一和深层图像语义特征一拼接输出带有植物细节信息的分割得分图;
步骤32:所述第一子结构K1根据所述目标植物图像提取深层图像语义特征二,并根据所述深层图像语义特征二输出带有背景干扰抑制的植物分割得分图;所述第二子结构K2根据所述植物分割得分图输出植物叶片骨架提取结果;
步骤33:所述第三子神经网络N3将所述带有植物细节信息的分割得分图和带有背景干扰抑制的植物分割得分图进行融合处理,输出所述植物图像分割结果。
通过获取带有植物细节信息的分割得分图和带有复杂背景干扰抑制的植物分割得分图以及植物叶片骨架提取结果,植物叶片骨架提取结果直接对外输出,再将所述带有植物细节信息的分割得分图和带有复杂背景干扰抑制的植物分割得分图融合,即可得到所述植物图像的精确分割结果。
在本发明提供的实施例中,所述步骤31具体包括:
步骤311:所述第一子神经网络N1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征一;
步骤312:所述第一子神经网络N1中的池化层和上采样层依次对所述浅层图像细节特征一分别进行降维处理和升维处理,并得到深层图像语义特征一;
步骤313:所述第一子神经网络N1中的拼接层将所述浅层图像细节特征一和深层图像语义特征一进行拼接,得到带有植物细节信息的分割得分图。
通过对所述浅层图像细节特征一和深层图像语义特征一进行拼接,可以准确地获取带有植物细节信息的分割得分图。
在第一子神经网络N1中,跳跃结构Si 1首先将针对上采样层Ui 1选择在池化层相邻的前一个卷积层,接着将此卷积层的输出和Ui 1的输出传送给拼接层Ai 1;每个拼接层有两个输入,拼接层将此两个输入串行拼接,并将拼接结果传给下一层。
在本发明提供的实施例中,所述步骤32具体包括:
步骤321:所述第一子结构K1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征二;
步骤322:所述第一子结构K1中池化层和上采样层依次对所述浅层图像细节特征二分别进行降维处理和升维处理,并得到深层图像语义特征二;
步骤323:所述第一子结构K1中反卷积层对所述深层图像语义特征二进行提取处理,得到带有复杂背景干扰抑制的植物分割得分图;
步骤324:所述第二子结构K2中的卷积层对所述带有复杂背景干扰抑制的植物分割得分图进行提取出处理,得到叶片初步骨架特征;
步骤325:所述第二子结构K2中的池化层、上采样层和反卷积层依次对所述叶片初步骨架特征分别进行降维处理、升维处理和提取处理,并得到叶片骨架提取结果。
所述第一子结构K1对所述目标植物图像进行提取处理,对所述浅层图像细节特征二分别进行降维处理和升维处理,得到深层图像语义特征二并抛去部分细节信息,减少复杂背景的干扰,输出带有复杂背景干扰抑制的植物分割得分图;所述第二子结构K2对所述植物分割得分图进行提取、降维、升维和提取处理,即可得到叶片骨架提取结果。
这里,优选地,在本发明提供的实施例中,所述第一子神经网络N1中的池化层、上采样层、拼接层的层数相同。通过设置所述池化层、上采样层、拼接层的层数相同,能够使得混合神经网络输出与输入图像尺寸相同的分割结果,并且,拼接层与上采样层相等,还可以把每个输出的深层的图像语义特征都与浅层的图像细节特征融合,尽量去融合特征,提高分割的精细程度。
如图2所指示,为本发明中的具体实施例。首先构建混合神经网络模型,第一子神经网络N1的结构为卷积层C1 1-卷积层C2 1-池化层P1 1-卷积层C3 1-卷积层C4 1-池化层P2 1-卷积层C5 1-卷积层C6 1-池化层P3 1-卷积层C7 1-卷积层C8 1-池化层P4 1-卷积层C9 1-卷积层C10 1-上采样层U1 1-拼接层A1 1-卷积层C11 1-卷积层C12 1-上采样层U2 1-拼接层A2 1-卷积层C13 1-卷积层C14 1-上采样层U3 1-拼接层A3 1-卷积层C15 1-卷积层C16 1-上采样层U4 1-拼接层A4 1-卷积层C17 1-卷积层C18 1-卷积层C19 1
第二子神经网络N2中第一子结构K1的结构为卷积层C1 2-1-卷积层C2 2-1-池化层P1 2-1-卷积层C3 2-1-卷积层C4 2-1-池化层P2 2-1-卷积层C5 2-1-卷积层C6 2-1-卷积层C7 2-1-池化层P3 2-1-卷积层C8 2-1-卷积层C9 2-1-卷积层C10 2-1-池化层P4 2-1-上采样层U1 2-1-反卷积层D1 2-1-反卷积层D2 2-1-反卷积层D3 2-1-上采样层U2 2-1-反卷积层D4 2-1-反卷积层D5 2-1-反卷积层D6 2-1-上采样层U3 2-1-反卷积层D7 2-1-反卷积层D8 2-1-上采样层U4 2-1-反卷积层D9 2-1-反卷积层D10 2-1-反卷积层D11 2-1
第二子神经网络N2中第二子结构K2的结构为卷积层C1 2-2-卷积层C2 2-2-池化层P1 2-2-卷积层C3 2-2-卷积层C4 2-2-池化层P2 2-2-卷积层C5 2-2-卷积层C6 2-2-卷积层C7 2-2-池化层P3 2-2-卷积层C8 2-2-卷积层C9 2-2-卷积层C10 2-2-池化层P4 2-2-上采样层U1 2-2-反卷积层D1 2-2-反卷积层D2 2-2-反卷积层D3 2-2-上采样层U2 2-2-反卷积层D4 2-2-反卷积层D5 2-2-反卷积层D6 2-2-上采样层U3 2-2-反卷积层D7 2-2-反卷积层D8 2-2-上采样层U4 2-2-反卷积层D9 2-2-反卷积层D10 2-2-反卷积层D11 2-2
第三子神经网络N3的结构为融合层A1 3-卷积层C1 3-卷积层C2 3-卷积层C3 3-卷积层C4 3-卷积层C5 3
其次,采集至少一张植物图像作为训练图像样本,并根据所述训练图像样本标注植物类别及叶片骨架,基于标注后的所述训练图像样本利用反向传播算法训练混合神经网络融合模型的参数。这里,对所述训练图像样本标注可以采用现有的视觉识别,或者采用人工手动标记方式完成,这里不再赘述。
最后,采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型输出植物图像分割结果和植物叶片骨架提取结果,具体如下:
第一子神经网络N1接收植物图像,卷积层从植物图像中提取浅层图像细节特征一,池化层对浅层图像细节特征一进行降维,上采样层对图像特征进行升维,得到深层图像语义特征一,图2实施例中跳跃结构S1 1选择C8 1和U1 1的输出,并传给拼接层A1 1;跳跃结构S2 1选择C6 1和U2 1的输出,并传给拼接层A2 1;跳跃结构S3 1选择C4 1和U3 1的输出,并传给拼接层A3 1;跳跃结构S4 1选择C2 1和U4 1的输出,并传给拼接层A4 1;由此,跳跃结构选择来自浅卷积层的细节特征与来自深上采样层的语义特征并输入到拼接层中,拼接层直接拼接这些细节特征和语义特征,最后N1输出带有植物细节信息的植物分割得分图;
第二子神经网络N2子网络接收植物图像,首先将植物图像输入给第一子结构K1,第一子结构K1利用卷积层提取浅层图像细节特征二,池化层对浅层图像细节特征二进行降维,降维后的图像特征抛去了部分细节,上采样层对降维后的图像特征直接进行升维,升维后的特征缺少细节,得到深层图像语义特征二,反卷积层直接对升维后的深层图像语义特征二提取图像特征,得到带有复杂背景干扰抑制的植物分割得分图,而没有加入额外的细节信息用于植物分割。因此,由于抛去细节信息,第一子结构K1能够有效抑制复杂背景的干扰,图2实施例中,第一子结构K1通过最后一层D11 2-1输出带有复杂背景干扰抑制的植物分割得分图;图2实施例中,K1中最后一层D11 2-1的输出(带有复杂背景干扰抑制的植物分割得分图)输入到第一子结构K2的第一层C1 2-2,接着第一子结构K2利用卷积层提取叶片初步骨架特征,池化层降维处理,上采样层升维处理,反卷积层进一步提取得到更稳定的叶片骨架特征,最后第一子结构K2输出叶片骨架提取结果;
第三子神经网络N3子网络接收两个输入,一个是第一子神经网络N1输出的带有植物细节信息的植物分割得分图,另一个是第二子神经网络N2中第一子结构K1输出带有复杂背景干扰抑制的植物分割得分图,图2实施例中第三子神经网络N3利用拼接层A1 3拼接这两个输入,通过卷积层进一步提取植物分割特征,最后输出植物精细分割结果,并有效抑制复杂背景干扰。
综上,混合神经网络模型通过结合第一子神经网络N1、第二子神经网络N2和第三子神经网络N3同时实现植物精细分割和叶片骨架提取,并且能够对复杂背景干扰进行有效抑制。
如图3所示,本发明还提供了一种植物图像分割及叶片骨架提取系统,包括:
模型构建模块,用于构建包括多个子神经网络的混合神经网络模型;
采集训练模块,用于采集多张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
采集处理模块,用于采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果。
本发明的植物图像分割及叶片骨架提取系统,通过构建混合神经网络模型,并采采集植物图像对所述混合神经网络模型进行训练,从而同时实现植物图像精细分割和叶片骨架提取,并且能有效抑制负复杂背景的干扰,提高植物图像分割及叶片骨架提取的精度。
在本发明提供的实施例中,所述混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2
所述第一子神经网络N1包括数量均为至少一个的卷积层{Ci 1,i=1,…,nc1 1,nc1 1≥1}、池化层{Pi 1,i=1,…,np 1,np 1≥1}、上采样层{Ui 1,i=1,…,nu 1,nu 1≥1}、拼接层{Ai 1,i=1,…,na 1,na 1≥1}、卷积层{Ci 1,i=nc1 1+1,…,nc1 1+nc2 1,nc2 1≥1}和跳跃结构{Si 1,i=1,…,nd 1,nd 1≥1};
所述第一子结构K1包括数量均为至少一个的卷积层{Ci 2-1,i=1,…,nc 2-1,nc 2-1≥1}、池化层{Pi 2-1,i=1,…,np 2-1,np 2-1≥1}、上采样层{Ui 2-1,i=1,…,nu 2-1,nu 2-1≥1}和反卷积层{Di 2-1,i=1,…,nd 2-1,nd 2-1≥1};所述第二子结构K2包含数量均为至少一个卷积层{Ci 2 -2,i=1,…,nc 2-2,nc 2-2≥1}、池化层{Pi 2-2,i=1,…,np 2-2,np 2-2≥1}、上采样层{Ui 2-2,i=1,…,nu 2-2,nu 2-2≥1}和反卷积层{Di 2-2,i=1,…,nd 2-2,nd 2-2≥1};
所述第三子网络N3包括数量均为至少一个的拼接层{Ai 3,i=1,…,na 3,na 3≥1},一个卷积层{Ci 3,i=1,…,nc 3,nc 3≥1}。
其中,所述Ci j表示Nj子神经网络中第i个卷积层;所述Pi j表示Nj子神经网络中第i个池化层;所述Ui j表示Nj子神经网络中第i个上采样层;所述Di j表示Nj子神经网络中第i个反卷积层;所述Ai j表示Nj子神经网络中第i个拼接层;所述Si j表示Nj子神经网络中第i个跳跃结构;所述Ci 2-z表示N2子神经网络中Kz中的第i个卷积层;所述Pi 2-z表示N2子神经网络中Kz中的第i个池化层;所述Ui 2-z表示N2子神经网络中Kz中的第i个上采样层;所述Di 2-z表示N2子神经网络中Kz中的第i个反卷积层;所述n表示对应层的个数。
这里,所述跳跃结构{Si 1,i=1,…,nd 1,nd 1≥1}融合网络中来自浅层的植物细节特征和来自深层的语义特征,使得第一子神经网络N1能够输出带有植物细节信息的植物分割得分图;第二子神经网络N2为带有级联结构的深层神经网络,包含两个具有级联关系的第一子结构K1和第二子结构K2,第一子结构K1和第二子结构K2都具有深层神经网络的结构,第一子结构K1的输出为第二子结构K2的输入,第一子结构K1利用降采样-上采样结构抛去部分细节信息,减少复杂背景的干扰,输出带有复杂背景干扰抑制的植物分割得分图,第二子结构K2利用深层卷积神经网络结构输出叶片骨架提取结果;第三子神经网络N3融合第一子神经网络N1和第二子神经网络N2的输出,融合带有植物细节信息的分割得分图和带有复杂背景干扰抑制的植物分割图,输出植物精细分割结果并有效抑制复杂背景的干扰。
通过不同的子神经网络组合形成混合神经网络模型,同时实现植物精细分割和也变骨架的提取,有效地对复杂背景干扰进行抑制。
优选地,在本发明提供的实施例中,所述第一子神经网络N1中的池化层、上采样层、拼接层的层数相同。通过设置所述池化层、上采样层、拼接层的层数相同,能够使得混合神经网络输出与输入图像尺寸相同的分割结果,并且,拼接层与上采样层相等,还可以把每个输出的深层的图像语义特征都与浅层的图像细节特征融合,尽量去融合特征,提高分割的精细程度。
本发明还提供了一种植物图像分割及叶片骨架提取装置,所述装置包括存储器和处理器;
所述存储器,用于存储计算机程序;
所述处理器,用于当执行所述计算机程序时,实现所述的基于多粒度网络融合的光学遥感图像分割方法。
本发明还提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现所述的植物图像分割及叶片骨架提取方法。
需要说明的是,本发明的实施例中,术语“一”、“二”、“第一”和“第二”等仅用于描述目的,并非逻辑意义上的一和二、或者第一和第二,一和二仅用于区分两个不同的浅层图像细节特征或深层图像语义特征,第一和第二仅用于区分不同的的子神经网络,不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“一”、“二”、“第一”和“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种植物图像分割及叶片骨架提取方法,其特征在于,包括如下步骤:
步骤1:构建包括多个子神经网络的混合神经网络模型;
步骤2:采集至少一张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
步骤3:采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型输出植物图像分割结果和植物叶片骨架提取结果。
2.根据权利要求1所述的植物图像分割及叶片骨架提取方法,其特征在于,所述步骤1中,混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2
3.根据权利要求2所述的植物图像分割及叶片骨架提取方法,其特征在于,所述步骤3中,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果具体包括如下步骤:
步骤31:所述第一子神经网络N1根据所述目标植物图像提取浅层图像细节特征一和深层图像语义特征一,并根据所述浅层图像细节特征一和深层图像语义特征一输出带有植物细节信息的分割得分图;
步骤32:所述第一子结构K1根据所述目标植物图像提取深层图像语义特征二,并根据所述深层图像语义特征二输出带有背景干扰抑制的植物分割得分图;所述第二子结构K2根据所述植物分割得分图输出植物叶片骨架提取结果;
步骤33:所述第三子神经网络N3将所述带有植物细节信息的分割得分图和带有背景干扰抑制的植物分割得分图进行融合处理,输出所述植物图像分割结果。
4.根据权利要求3所述的植物图像分割及叶片骨架提取方法,其特征在于,所述步骤31具体包括:
步骤311:所述第一子神经网络N1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征一;
步骤312:所述第一子神经网络N1中的池化层和上采样层依次对所述浅层图像细节特征一分别进行降维处理和升维处理,并得到深层图像语义特征一;
步骤313:所述第一子神经网络N1中的拼接层将所述浅层图像细节特征一和深层图像语义特征一进行拼接,得到带有植物细节信息的分割得分图。
5.根据权利要求3所述的植物图像分割及叶片骨架提取方法,其特征在于,所述步骤32具体包括:
步骤321:所述第一子结构K1中的卷积层对所述目标植物图像进行提取处理,得到浅层图像细节特征二;
步骤322:所述第一子结构K1中池化层和上采样层依次对所述浅层图像细节特征二分别进行降维处理和升维处理,并得到深层图像语义特征二;
步骤323:所述第一子结构K1中反卷积层对所述深层图像语义特征二进行提取处理,得到带有复杂背景干扰抑制的植物分割得分图;
步骤324:所述第二子结构K2中的卷积层对所述带有复杂背景干扰抑制的植物分割得分图进行提取出处理,得到叶片初步骨架特征;
步骤325:所述第二子结构K2中的池化层、上采样层和反卷积层依次对所述叶片初步骨架特征分别进行降维处理、升维处理和提取处理,并得到叶片骨架提取结果。
6.一种植物图像分割及叶片骨架提取系统,其特征在于,包括:
模型构建模块,用于构建包括多个子神经网络的混合神经网络模型;
采集训练模块,用于采集多张植物图像作为训练图像样本,根据所述训练图像样本标注对应植物的类别和叶片骨架,并根据标注后的所述训练图像样本对所述混合神经网络模型进行训练;
采集处理模块,用于采集目标植物图像,并将所述目标植物图像输入训练后的所述混合神经网络模型,训练后的所述混合神经网络模型根据所述模型参数输出植物图像分割结果和植物叶片骨架提取结果。
7.根据权利要求6所述的植物图像分割及叶片骨架提取系统,其特征在于,所述混合神经网络模型至少包括第一子神经网络N1、第二子神经网络N2和第三子神经网络N3,所述第二子神经网络N2包括相互级联的第一子结构K1和第二子结构K2
所述第一子神经网络N1包括数量均为至少一个的卷积层{Ci 1,i=1,…,nc1 1,nc1 1≥1}、池化层{Pi 1,i=1,…,np 1,np 1≥1}、上采样层{Ui 1,i=1,…,nu 1,nu 1≥1}、拼接层{Ai 1,i=1,…,na 1,na 1≥1}、卷积层{Ci 1,i=nc1 1+1,…,nc1 1+nc2 1,nc2 1≥1}和跳跃结构{Si 1,i=1,…,nd 1,nd 1≥1};
所述第一子结构K1包括数量均为至少一个的卷积层{Ci 2-1,i=1,…,nc 2-1,nc 2-1≥1}、池化层{Pi 2-1,i=1,…,np 2-1,np 2-1≥1}、上采样层{Ui 2-1,i=1,…,nu 2-1,nu 2-1≥1}和反卷积层{Di 2-1,i=1,…,nd 2-1,nd 2-1≥1};所述第二子结构K2包含数量均为至少一个卷积层{Ci 2-2,i=1,…,nc 2-2,nc 2-2≥1}、池化层{Pi 2-2,i=1,…,np 2-2,np 2-2≥1}、上采样层{Ui 2-2,i=1,…,nu 2 -2,nu 2-2≥1}和反卷积层{Di 2-2,i=1,…,nd 2-2,nd 2-2≥1};
所述第三子神经网络N3包括数量均为至少一个的拼接层{Ai 3,i=1,…,na 3,na 3≥1},一个卷积层{Ci 3,i=1,…,nc 3,nc 3≥1}。
8.根据权利要求7所述的植物图像分割及叶片骨架提取系统,其特征在于,所述第一子神经网络N1中的池化层、上采样层、拼接层的层数相同。
9.一种植物图像分割及叶片骨架提取装置,其特征在于,所述装置包括存储器和处理器;
所述存储器,用于存储计算机程序;
所述处理器,用于当执行所述计算机程序时,实现如权利要求1至5任一项所述的基于多粒度网络融合的光学遥感图像分割方法。
10.一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至5任一项所述的植物图像分割及叶片骨架提取方法。
CN201811216474.4A 2018-10-18 2018-10-18 一种植物图像分割及叶片骨架提取方法及系统 Active CN109544554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811216474.4A CN109544554B (zh) 2018-10-18 2018-10-18 一种植物图像分割及叶片骨架提取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811216474.4A CN109544554B (zh) 2018-10-18 2018-10-18 一种植物图像分割及叶片骨架提取方法及系统

Publications (2)

Publication Number Publication Date
CN109544554A true CN109544554A (zh) 2019-03-29
CN109544554B CN109544554B (zh) 2020-01-31

Family

ID=65844052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811216474.4A Active CN109544554B (zh) 2018-10-18 2018-10-18 一种植物图像分割及叶片骨架提取方法及系统

Country Status (1)

Country Link
CN (1) CN109544554B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148146A (zh) * 2019-05-24 2019-08-20 重庆大学 一种利用合成数据的植物叶片分割方法及系统
CN110211079A (zh) * 2019-05-22 2019-09-06 首都医科大学 医学图像的融合方法及装置
CN111783506A (zh) * 2019-05-17 2020-10-16 北京京东尚科信息技术有限公司 目标特征的确定方法、装置和计算机可读存储介质
CN112116595A (zh) * 2020-10-27 2020-12-22 河北农业大学 一种端到端的植物根系特征自动分割系统
CN112581483A (zh) * 2020-12-22 2021-03-30 清华大学 基于自学习的植物叶片叶脉分割方法和装置
CN113554655A (zh) * 2021-07-13 2021-10-26 中国科学院空间应用工程与技术中心 基于多特征增强的光学遥感图像分割方法及装置
CN115375707A (zh) * 2022-08-18 2022-11-22 石河子大学 一种复杂背景下植物叶片精准分割方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901477A (zh) * 2010-07-27 2010-12-01 中国农业大学 植物叶片田间图像边缘提取方法及其系统
CN103729621A (zh) * 2013-12-20 2014-04-16 华南农业大学 基于叶片骨架模型的植物叶片图像自动识别方法
CN104915946A (zh) * 2015-02-10 2015-09-16 浙江工业大学 一种适用于严重退化图像的基于显著性的对象分割方法
CN105787519A (zh) * 2016-03-21 2016-07-20 浙江大学 一种基于叶脉检测的树种分类方法
CN106599925A (zh) * 2016-12-19 2017-04-26 广东技术师范学院 一种基于深度学习的植物叶片识别系统与方法
CN106709924A (zh) * 2016-11-18 2017-05-24 中国人民解放军信息工程大学 基于深度卷积神经网络和超像素的图像语义分割方法
CN107122796A (zh) * 2017-04-01 2017-09-01 中国科学院空间应用工程与技术中心 一种基于多分支网络融合模型的光学遥感图像分类方法
CN107657257A (zh) * 2017-08-14 2018-02-02 中国矿业大学 一种基于多通道卷积神经网络的语义图像分割方法
US20180122082A1 (en) * 2016-11-02 2018-05-03 General Electric Company Automated segmentation using deep learned priors
CN108510504A (zh) * 2018-03-22 2018-09-07 北京航空航天大学 图像分割方法和装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901477A (zh) * 2010-07-27 2010-12-01 中国农业大学 植物叶片田间图像边缘提取方法及其系统
CN103729621A (zh) * 2013-12-20 2014-04-16 华南农业大学 基于叶片骨架模型的植物叶片图像自动识别方法
CN104915946A (zh) * 2015-02-10 2015-09-16 浙江工业大学 一种适用于严重退化图像的基于显著性的对象分割方法
CN105787519A (zh) * 2016-03-21 2016-07-20 浙江大学 一种基于叶脉检测的树种分类方法
US20180122082A1 (en) * 2016-11-02 2018-05-03 General Electric Company Automated segmentation using deep learned priors
CN106709924A (zh) * 2016-11-18 2017-05-24 中国人民解放军信息工程大学 基于深度卷积神经网络和超像素的图像语义分割方法
CN106599925A (zh) * 2016-12-19 2017-04-26 广东技术师范学院 一种基于深度学习的植物叶片识别系统与方法
CN107122796A (zh) * 2017-04-01 2017-09-01 中国科学院空间应用工程与技术中心 一种基于多分支网络融合模型的光学遥感图像分类方法
CN107657257A (zh) * 2017-08-14 2018-02-02 中国矿业大学 一种基于多通道卷积神经网络的语义图像分割方法
CN108510504A (zh) * 2018-03-22 2018-09-07 北京航空航天大学 图像分割方法和装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783506A (zh) * 2019-05-17 2020-10-16 北京京东尚科信息技术有限公司 目标特征的确定方法、装置和计算机可读存储介质
WO2020233427A1 (zh) * 2019-05-17 2020-11-26 北京京东尚科信息技术有限公司 目标的特征的确定方法和装置
CN110211079A (zh) * 2019-05-22 2019-09-06 首都医科大学 医学图像的融合方法及装置
CN110211079B (zh) * 2019-05-22 2021-07-13 首都医科大学 医学图像的融合方法及装置
CN110148146A (zh) * 2019-05-24 2019-08-20 重庆大学 一种利用合成数据的植物叶片分割方法及系统
CN110148146B (zh) * 2019-05-24 2021-03-02 重庆大学 一种利用合成数据的植物叶片分割方法及系统
CN112116595A (zh) * 2020-10-27 2020-12-22 河北农业大学 一种端到端的植物根系特征自动分割系统
CN112581483A (zh) * 2020-12-22 2021-03-30 清华大学 基于自学习的植物叶片叶脉分割方法和装置
CN112581483B (zh) * 2020-12-22 2022-10-04 清华大学 基于自学习的植物叶片叶脉分割方法和装置
CN113554655A (zh) * 2021-07-13 2021-10-26 中国科学院空间应用工程与技术中心 基于多特征增强的光学遥感图像分割方法及装置
CN113554655B (zh) * 2021-07-13 2021-12-31 中国科学院空间应用工程与技术中心 基于多特征增强的光学遥感图像分割方法及装置
CN115375707A (zh) * 2022-08-18 2022-11-22 石河子大学 一种复杂背景下植物叶片精准分割方法及系统

Also Published As

Publication number Publication date
CN109544554B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
CN109544554A (zh) 一种植物图像分割及叶片骨架提取方法及系统
CN112308158B (zh) 一种基于部分特征对齐的多源领域自适应模型及方法
EP3961484A1 (en) Medical image segmentation method and device, electronic device and storage medium
CN106600577B (zh) 一种基于深度反卷积神经网络的细胞计数方法
CN105869173B (zh) 一种立体视觉显著性检测方法
CN107122796B (zh) 一种基于多分支网络融合模型的光学遥感图像分类方法
CN106875406A (zh) 图像引导的视频语义对象分割方法及装置
CN106845401A (zh) 一种基于多空间卷积神经网络的害虫图像识别方法
CN108764329A (zh) 一种肺癌病理图像数据集的构建方法
WO2023045231A1 (zh) 一种解耦分治的面神经分割方法和装置
CN106023145A (zh) 基于超像素标注的遥感图像的分割与识别方法
CN109658419A (zh) 一种医学图像中小器官的分割方法
CN109829918A (zh) 一种基于密集特征金字塔网络的肝脏图像分割方法
CN109492706A (zh) 一种基于循环神经网络的染色体分类预测装置
CN111814563B (zh) 一种种植结构的分类方法及装置
CN106651887A (zh) 一种基于卷积神经网络的图像像素分类方法
CN114998220B (zh) 一种基于改进的Tiny-YOLO v4自然环境下舌像检测定位方法
CN109145885A (zh) 一种大尺度农作物遥感分类方法及系统
CN107527054A (zh) 基于多视角融合的前景自动提取方法
CN110377659A (zh) 一种智能图表推荐系统及方法
CN110188780A (zh) 用于定位多目标特征点的深度学习模型的构建方法及装置
CN109978888A (zh) 一种图像分割方法、装置及计算机可读存储介质
Yan et al. Identification and picking point positioning of tender tea shoots based on MR3P-TS model
CN109671055A (zh) 肺结节检测方法及装置
CN116129289A (zh) 一种注意力边缘交互的光学遥感图像显著性目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant