CN109543759A - 一种直流式气液旋流分离器分离性能的预测方法 - Google Patents

一种直流式气液旋流分离器分离性能的预测方法 Download PDF

Info

Publication number
CN109543759A
CN109543759A CN201811427491.2A CN201811427491A CN109543759A CN 109543759 A CN109543759 A CN 109543759A CN 201811427491 A CN201811427491 A CN 201811427491A CN 109543759 A CN109543759 A CN 109543759A
Authority
CN
China
Prior art keywords
cyclone separator
single flow
liquid cyclone
flow gas
support vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811427491.2A
Other languages
English (en)
Inventor
邓雅军
张琳
李国龙
宇波
孙东亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Petrochemical Technology filed Critical Beijing Institute of Petrochemical Technology
Priority to CN201811427491.2A priority Critical patent/CN109543759A/zh
Publication of CN109543759A publication Critical patent/CN109543759A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • Pure & Applied Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Cyclones (AREA)

Abstract

本发明公开了一种直流式气液旋流分离器分离性能的预测方法,首先对直流式气液旋流分离器导流叶片的叶片个数、叶片出口角、叶片宽度以及叶片包角这四个因素进行取值,构建导流叶片的样本空间;采用数值模拟法获得样本空间中设计点的分离效率和压降;将样本空间作为支持向量机SVM的输入,将分离效率和压降作为输出,对支持向量机进行训练,建立性能预测模型;再采用设定的测试集对预测精度进行检验;基于所建立的性能预测模型,输入给定的任意导流叶片的结构参数,对分离性能进行预测。该方法可以准确、快速地预测得到直流式气液旋流分离器的分离性能,大大缩短了研发周期和设计成本。

Description

一种直流式气液旋流分离器分离性能的预测方法
技术领域
本发明涉及石油天然气技术领域,尤其涉及一种直流式气液旋流分离器分离性能的预测方法。
背景技术
我国深海天然气资源极为丰富,深海天然气开采对保障我国能源安全具有重要战略意义,但深海天然气开采难度极大,采收方案不仅异于陆上,与浅海也有很大差别。国际主流开采方法是采用水下多相生产系统,水下气液分离器是其关键设备。直流式气液旋流分离器具有压降较小、结构紧凑和易于并联等优点,因此在水下气液分离中有着广阔的应用前景。
目前,旋流器的性能预测主要有两种方法:数值模拟法和智能算法。采用数值模拟法进行性能预测精度较高,但需要反复生成网格并进行数值求解,耗时很长。智能算法主要包括人工神经网络和支持向量机等方法。人工神经网络具有很强的学习和归纳能力、非线性处理能力以及并行处理能力,而且一旦网络建立后就具有普遍的实用性等显著优点受到研究者的青睐,其中应用最为广泛的是BP神经网络。然而,BP神经网络属于前馈网络,没有反馈,尽管其理论比较完善且应用广泛,在人工神经网络中具有重要的地位,但也存在着隐含层神经元节点个数难以确定、收敛速度慢以及局部最优等不可回避的问题。现有技术中还没有采用智能优化算法对直流式气液旋流分离器进行分离性能预测的相关报道。
发明内容
本发明的目的是提供一种直流式气液旋流分离器分离性能的预测方法,该方法可以准确、快速地预测得到直流式气液旋流分离器的分离性能,大大缩短了研发周期和设计成本。
本发明的目的是通过以下技术方案实现的:
一种直流式气液旋流分离器分离性能的预测方法,所述方法包括:
步骤1、首先对直流式气液旋流分离器导流叶片的叶片个数、叶片出口角、叶片宽度以及叶片包角这四个因素进行取值,基于该四个因素采用正交试验法构建所述导流叶片的样本空间;
步骤2、采用数值模拟法获得所述样本空间中设计点的分离效率和压降;
步骤3、将所述样本空间作为支持向量机SVM的输入,将步骤2获得的分离效率和压降作为输出,对所述支持向量机进行训练,建立所述直流式气液旋流分离器的性能预测模型;
步骤4、再采用设定的测试集对所述支持向量机的预测精度进行检验,验证所述性能预测模型的精度;
步骤5、基于所建立的性能预测模型,输入给定的任意导流叶片的结构参数,对直流式气液旋流分离器的分离性能进行快速预测。
在步骤3中,所述直流式气液旋流分离器的性能预测模型的建立过程具体为:
首先定义支持向量机训练样本的训练集为{xi,yi},(i=1,2,…,l),其中xi∈Rn为n维的系统输入向量,yi∈R为系统输出向量;
设在高维线性空间中建立的线性回归函数为:
f(x)=wΦ(x)+b
式中,Φ(x)表示非线性映射函数,该函数的作用是将输入空间X映射到高维空间中;
再定义ε线性不敏感损失函数:
其中,y和f(x)分别表示训练样本的实际值和预测值,当实际值与预测值的偏差不大于ε时,损失函数的取值为零;
则变量w和b通过使下式最小化来估计:
其中,C表示惩罚因子;
然后通过引入松弛变量ξi将优化目标函数转换为:
再引入Lagerange方程:
式中,为Lagerange乘子;
将Lagerange方程分别对变量w,b,ξii *求偏导,并令它们等于0:
再代入优化后的目标函数式,转换为对偶形式:
然后对上述方程进行求解,得到所述支持向量机最终的回归函数表示为:
其中,K(xi,x)=Φ(xi)Φ(xj)是核函数。
由上述本发明提供的技术方案可以看出,上述方法可以准确、快速地预测得到直流式气液旋流分离器的分离性能,极大的方便了直流式气液旋流分离器的设计、运动和优化,大大缩短了研发周期和设计成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的直流式气液旋流分离器分离性能的预测方法流程示意图;
图2为本发明实施例中基于支持向量机的旋流器性能预测方法的精度比较示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的直流式气液旋流分离器分离性能的预测方法流程示意图,所述方法包括:
步骤1、首先对直流式气液旋流分离器导流叶片的叶片个数、叶片出口角、叶片宽度以及叶片包角这四个因素进行取值,基于该四个因素采用正交试验法构建所述导流叶片的样本空间;
步骤2、采用数值模拟法获得所述样本空间中设计点的分离效率和压降;
步骤3、将所述样本空间作为支持向量机SVM的输入,将步骤2获得的分离效率和压降作为输出,对所述支持向量机进行训练,建立所述直流式气液旋流分离器的性能预测模型;
这里,支持向量机(SVM)是一种新的智能算法,非常适用于样本数目较少的问题,SVM的优点如下:(1)在样本数有限的情况下可以得到最优解。(2)在理论上,SVM得到的是全局最优解。(3)无需反复试凑,支持向量就可以决定SVM方法的拓扑结构。(4)具有良好的泛化能力,可以将原始变量通过非线性映射变换到高维特征空间,在此空间中构造线性判别函数,解决了“维数灾难”问题。
在该步骤中,所述直流式气液旋流分离器的性能预测模型的建立过程具体为:
首先定义支持向量机训练样本的训练集为{xi,yi},(i=1,2,…,l),其中xi∈Rn为n维的系统输入向量,yi∈R为系统输出向量;
设在高维线性空间中建立的线性回归函数为:
f(x)=wΦ(x)+b (1)
式中,Φ(x)表示非线性映射函数,该函数的作用是将输入空间X映射到高维空间中;
再定义ε线性不敏感损失函数:
其中,y和f(x)分别表示训练样本的实际值和预测值,当实际值与预测值的偏差不大于ε时,损失函数的取值为零;
则变量w和b通过使下式最小化来估计:
其中,C表示惩罚因子;
然后通过引入松弛变量ξi和ξi *,将优化目标函数转换为:
再引入Lagerange方程:
式中,为Lagerange乘子;
将Lagerange方程分别对变量w,b,ξii *求偏导,并令它们等于0:
再代入优化后的目标函数式(4),转换为对偶形式:
然后对上述方程进行求解,得到所述支持向量机最终的回归函数表示为:
其中,K(xi,x)=Φ(xi)Φ(xj)是核函数。
步骤4、再采用设定的测试集对所述支持向量机的预测精度进行检验,验证所述性能预测模型的精度;
步骤5、基于所建立的性能预测模型,输入给定的任意导流叶片的结构参数,对直流式气液旋流分离器的分离性能进行快速预测。
下面以具体实施例对本发明实施例所提供的直流式气液旋流分离器分离性能预测方法进行详细描述:
步骤一,选取导流叶片的叶片个数、叶片出口角、叶片宽度以及叶片包角这四个设计变量正交设计中的4个因素,每个变量具有5个取值。选用正交设计中的4因素5水平正交表来构建样本空间,其中因素水平取值见下表1所示:
表1旋流器导流叶片的取样空间
步骤二,采用数值模拟法获得所述样本空间中设计点的分离效率和压降,最终得到的正交表见下表2:
表2因素5水平正交表
步骤三,将样本空间作为支持向量机的输入,将数值计算得到的分离效率和压降作为输出,对支持向量机进行训练,建立旋流器的性能预测模型,具体建立模型的过程见上述方法实施例所述。
再将支持向量机的预测结果和数值模拟计算得到的分离效率进行对比,如图2所示为本发明实施例中基于支持向量机的旋流器性能预测方法的精度比较示意图。
步骤四,再采用设定的测试集对所述支持向量机的预测精度进行检验,验证所述性能预测模型的精度;
下表3和表4分别给出了SVM预测得到的分离效率、压降与数值模拟值的相对误差。其中,SVM预测分离效率的最大和平均相对偏差分别为2.82%和0.86%,SVM预测压降的最大和平均相对偏差分别为9.39%和3.18%。
表3支持向量机方法预测分离效率的相对误差
表4支持向量机方法预测压降的相对误差
步骤五,基于所建立的性能预测模型,输入给定的任意导流叶片的结构参数,对直流式气液旋流分离器的分离性能进行预测。
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
综上所述,本发明实施例所述预测方法无需每次进行数值模拟,即可准确、快速地得到直流式气液旋流分离器的分离性能,极大的方便了直流式气液旋流分离器的设计、运动和优化,大大缩短了研发周期和设计成本。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (2)

1.一种直流式气液旋流分离器分离性能的预测方法,其特征在于,所述方法包括:
步骤1、首先对直流式气液旋流分离器导流叶片的叶片个数、叶片出口角、叶片宽度以及叶片包角这四个因素进行取值,基于该四个因素采用正交试验法构建所述导流叶片的样本空间;
步骤2、采用数值模拟法获得所述样本空间中设计点的分离效率和压降;
步骤3、将所述样本空间作为支持向量机SVM的输入,将步骤2获得的分离效率和压降作为输出,对所述支持向量机进行训练,建立所述直流式气液旋流分离器的性能预测模型;
步骤4、再采用设定的测试集对所述支持向量机的预测精度进行检验,验证所述性能预测模型的精度;
步骤5、基于所建立的性能预测模型,输入给定的任意导流叶片的结构参数,对直流式气液旋流分离器的分离性能进行快速预测。
2.根据权利要求1所述直流式气液旋流分离器分离性能的预测方法,其特征在于,在步骤3中,所述直流式气液旋流分离器的性能预测模型的建立过程具体为:
首先定义支持向量机训练样本的训练集为{xi,yi},(i=1,2,…,l),其中xi∈Rn为n维的系统输入向量,yi∈R为系统输出向量;
设在高维线性空间中建立的线性回归函数为:
f(x)=wΦ(x)+b
式中,Φ(x)表示非线性映射函数,该函数的作用是将输入空间X映射到高维空间中;
再定义ε线性不敏感损失函数:
其中,y和f(x)分别表示训练样本的实际值和预测值,当实际值与预测值的偏差不大于ε时,损失函数的取值为零;
则变量w和b通过使下式最小化来估计:
其中,C表示惩罚因子;
然后通过引入松弛变量ξi将优化目标函数转换为:
再引入Lagerange方程:
式中,αi,λi,为Lagerange乘子;
将Lagerange方程分别对变量w,b,ξi,求偏导,并令它们等于0:
再代入优化后的目标函数式,转换为对偶形式:
然后对上述方程进行求解,得到所述支持向量机最终的回归函数表示为:
其中,K(xi,x)=Φ(xi)Φ(xj)是核函数。
CN201811427491.2A 2018-11-27 2018-11-27 一种直流式气液旋流分离器分离性能的预测方法 Pending CN109543759A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811427491.2A CN109543759A (zh) 2018-11-27 2018-11-27 一种直流式气液旋流分离器分离性能的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811427491.2A CN109543759A (zh) 2018-11-27 2018-11-27 一种直流式气液旋流分离器分离性能的预测方法

Publications (1)

Publication Number Publication Date
CN109543759A true CN109543759A (zh) 2019-03-29

Family

ID=65850417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811427491.2A Pending CN109543759A (zh) 2018-11-27 2018-11-27 一种直流式气液旋流分离器分离性能的预测方法

Country Status (1)

Country Link
CN (1) CN109543759A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096794A (zh) * 2019-04-29 2019-08-06 北京石油化工学院 一种倒u型槽最佳安全高度的获取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654203A (zh) * 2015-12-31 2016-06-08 西北农林科技大学 一种基于支持向量机的黄瓜全程光合速率预测模型及建立方法
CN106446940A (zh) * 2016-09-13 2017-02-22 大连理工大学 一种基于支持向量机的超级电容器电容值退化趋势的预测方法
CN108805217A (zh) * 2018-06-20 2018-11-13 山东大学 一种基于支持向量机的锂离子电池健康状态估计方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105654203A (zh) * 2015-12-31 2016-06-08 西北农林科技大学 一种基于支持向量机的黄瓜全程光合速率预测模型及建立方法
CN106446940A (zh) * 2016-09-13 2017-02-22 大连理工大学 一种基于支持向量机的超级电容器电容值退化趋势的预测方法
CN108805217A (zh) * 2018-06-20 2018-11-13 山东大学 一种基于支持向量机的锂离子电池健康状态估计方法及系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘爱兰等: "导叶结构对直流导叶式气液分离器性能的影响", 《轻工机械》 *
岳湘刚等: "基于人工神经网络的可取式桥塞胶筒密封性能预测", 《机电工程技术》 *
李华标等: "基于回归正交试验的旋风分离器结构优化研究", 《机电技术》 *
满晓伟: "新型直流导叶式旋风管的性能研究", 《中国优秀硕士学位论文数据库 工程科技Ⅰ辑》 *
胡江玮等: "基于神经网络的旋风分离器分离效率研究", 《机械制造与自动化》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096794A (zh) * 2019-04-29 2019-08-06 北京石油化工学院 一种倒u型槽最佳安全高度的获取方法
CN110096794B (zh) * 2019-04-29 2023-07-25 北京石油化工学院 一种倒u型槽最佳安全高度的获取方法

Similar Documents

Publication Publication Date Title
CN105186525B (zh) 风电接入下无功电压控制分区方法
Yang et al. Machine learning prediction of specific capacitance in biomass derived carbon materials: effects of activation and biochar characteristics
WO2019056753A1 (zh) 一种分布式光伏电站集群的动态等值建模方法
CN104155519B (zh) 谐波序列关系分析与电力计算相结合的谐波源定位方法
CN105956252B (zh) 基于生成型深信度网络的超短期风速多尺度预报建模方法
CN109522665A (zh) 一种直流式气液旋流分离器导流叶片的多目标优化方法
CN104680249B (zh) 一种基于改进离散粒子群算法的pmu配置方法
CN109543759A (zh) 一种直流式气液旋流分离器分离性能的预测方法
CN104638654B (zh) 兼顾风电场和网络节点电压调节的statcom控制方法
Znidi et al. Coherency detection and network partitioning based on hierarchical DBSCAN
CN110287237B (zh) 一种基于社会网络结构分析社团数据挖掘方法
CN102904252B (zh) 求解含分布式电源的配电网不确定性潮流的方法
CN107276093B (zh) 基于场景削减的电力系统概率潮流计算方法
CN114266396A (zh) 一种基于电网特征智能筛选的暂态稳定判别方法
Erdeljan et al. Distributed PSO algorithm for data model partitioning in power distribution systems
CN106340896B (zh) 一种多逆变器并网控制通道间交互影响的分析方法
CN116319377A (zh) 一种抵御网络攻击的配电网分布式动态状态估计方法
CN107563260A (zh) 一种基于主成分分析和最近邻图的密度峰值聚类方法及系统
Kari et al. Power Transformer Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning Machine.
CN109188162A (zh) 一种基于可拓径向基神经网络的变压器状态评估方法
CN106684854B (zh) 一种基于节点等效的有源配电网电压越限风险分析方法
He et al. A method for transient stability assessment based on pattern recognition
CN106709598A (zh) 一种基于单类样本的电压稳定性预测判断方法
CN110233476A (zh) 一种黑启动过程中的电压稳定性测评方法及相关装置
CN108846439A (zh) 一种无先验知识条件下基于小数据集的贝叶斯网络参数学习方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329

RJ01 Rejection of invention patent application after publication