CN109541682A - Isotropic elasticity parameter protects width inversion method and device - Google Patents
Isotropic elasticity parameter protects width inversion method and device Download PDFInfo
- Publication number
- CN109541682A CN109541682A CN201811188186.2A CN201811188186A CN109541682A CN 109541682 A CN109541682 A CN 109541682A CN 201811188186 A CN201811188186 A CN 201811188186A CN 109541682 A CN109541682 A CN 109541682A
- Authority
- CN
- China
- Prior art keywords
- inversion
- model
- dimensional
- scattering
- isotropic elastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 229910052704 radon Inorganic materials 0.000 claims abstract description 55
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000003384 imaging method Methods 0.000 claims abstract description 52
- 230000005540 biological transmission Effects 0.000 claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 238000005286 illumination Methods 0.000 claims abstract description 33
- 230000006870 function Effects 0.000 claims description 31
- 238000006073 displacement reaction Methods 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 12
- 208000037516 chromosome inversion disease Diseases 0.000 description 89
- 230000003287 optical effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000004590 computer program Methods 0.000 description 9
- 238000013508 migration Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004613 tight binding model Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003094 perturbing effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本申请实施例提供了一种各向同性弹性参数保幅反演方法及装置,该方法包括获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子;基于所述逆广义拉东变换反投影算子构建非线性反演系统;确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数;根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。本申请实施例可以提高弹性参数重构的准确度。
Embodiments of the present application provide a method and device for amplitude-preserving inversion of isotropic elastic parameters. The method includes acquiring an imaging inversion result of each imaging point in an isotropic elastic medium model; the imaging inversion result includes P Inverse generalized Radon transform back-projection operator on the wave scattering field; constructing a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator; determining the illumination matrix and quadratic term of the isotropic elastic medium model transmission coefficient; according to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, solve the nonlinear inversion system to obtain each of the isotropic elastic medium models The quadratic nonlinear amplitude-preserving inversion value at the imaging point. The embodiments of the present application can improve the accuracy of elastic parameter reconstruction.
Description
技术领域technical field
本申请涉及地震反演技术领域,尤其是涉及一种各向同性弹性参数保幅反演方法及装置。The present application relates to the technical field of seismic inversion, and in particular, to a method and device for amplitude-preserving inversion of isotropic elastic parameters.
背景技术Background technique
寻找复杂地质下油气资源已成为地震勘探研究的主要目标;而提取地下介质的物性参数是这个主要目标的核心任务。一般的,完成这一任务需要恰当的反演方法。目前现有技术中,存在多种不同有效的地震反演方法,例如基于逆广义Radon变换的直接保幅反演方法等。与传统的偏移反演方法相比,此方法不仅能够对物性参数在地下介质中发生突变或者间断的位置进行结构成像,而且能一定程度上定量地重构其间断的大小值。其中,基于逆广义Radon变换的共炮点道集的直接线性保幅反演的工作流程可如图1所示。Searching for oil and gas resources under complex geology has become the main goal of seismic exploration research; and extracting the physical parameters of underground media is the core task of this main goal. In general, an appropriate inversion method is required to accomplish this task. At present, in the prior art, there are many different effective seismic inversion methods, such as the direct amplitude-preserving inversion method based on the inverse generalized Radon transform, and the like. Compared with the traditional migration and inversion method, this method can not only perform structural imaging of the locations where physical parameters have abrupt changes or discontinuities in the underground medium, but also quantitatively reconstruct the magnitude of the discontinuities to a certain extent. Among them, the workflow of direct linear amplitude-preserving inversion of common shot gathers based on inverse generalized Radon transform is shown in Figure 1.
Miller等(1984,1987)首次提出了直接保幅反演成像的最初轮廓,对早期的绕射叠加几何方法赋予了声学波动原理,使其更适合于处理复杂地质构造以及震源和检波器异常排列的情况。这一方法的基本原理是:将地震数据近似看作散射位势(例如,声波介质中散射位势与地震波的传播速度有关)在面簇(等时面)上的积分,并称该积分为散射位势的投影。地震偏移反演可以看作是重构散射位势的反演问题,因此,利用带权的绕射叠加则自然地产生了一个反投影算子,使其能从散射位势的投影中重构散射位势。Miller et al. (1984, 1987) first proposed the initial outline of direct amplitude-preserving inversion imaging, and endowed the early diffraction stack geometry method with the principle of acoustic fluctuations, making it more suitable for dealing with complex geological structures and anomalous arrangements of sources and receivers Case. The basic principle of this method is to approximate the seismic data as the integral of the scattering potential (for example, the scattering potential in the acoustic medium is related to the propagation velocity of the seismic wave) over the surface cluster (isochronous surface), and call the integral as Projection of the scattering potential. Seismic migration inversion can be regarded as an inversion problem of reconstructing the scattering potential. Therefore, using weighted diffraction stacking naturally generates a back-projection operator that can reconstruct the scattering potential from the projection of the scattering potential. Constructed scattering potential.
由于这类型反演问题包含一个面积分,可以转述为求解广义Radon变换的逆变换的问题。Beylkin(1984,1985)利用Fourier积分算子理论重新推导了广义Radon变换的逆变换,具体给出了权函数的表达式,从数学的角度严格论证了Miller所提出的保幅偏移反演的合理性,即:反投影算子可以成像散射位势的不连续性,且在符合弱散射(小扰动)的条件下,反投影算子能够重构散射位势的梯度变化值。Cohen等(1986)推导了基于3D有限频宽数据的反演公式,其本质与Beylkin(1985)一致。Bleistein等(1987)类似地考虑了2.5维有限频宽数据的保幅反演方法,并且首次推导出2.5维Kirchhoff保幅反演公式。随后,Bleistein(1987)进一步推出了三维Kirchhoff保幅反演公式。尽管Kirchhoff保幅偏移反演的出发点是地震数据的Kirchooff近似而不是Born近似,但它依然以地震波发生一次反射为假设前提,反射界面上方的速度结构必须已知,而且在偏移过程中需要存储散射夹角信息。Beylkin和Burridge(1990)将Beylkin(1985)的方法推广都各向同性弹性介质的情形,使保幅反演算法适应于任意观测系统,且无需像Bleistein(1987)那样存储散射夹角的信息。De Hoop和Bleistein(1997),以及De Hoop等(1999)在各向异性弹性介质中利用kirchhoff近似以及逆广义Radon变换讨论了反射系数的保幅反演,而Burridge等(1998)在各向异性介质中利用Born近似和逆广义Radon变换得到弹性参数的保幅反演公式。Since this type of inversion problem contains an area integral, it can be formulated as the problem of solving the inverse of the generalized Radon transform. Beylkin (1984, 1985) re-derived the inverse transform of the generalized Radon transform using the Fourier integral operator theory, gave the expression of the weight function, and rigorously demonstrated the inversion of the amplitude-preserving migration proposed by Miller from a mathematical point of view. Rationality, that is: the back-projection operator can image the discontinuity of the scattering potential, and under the condition of weak scattering (small perturbation), the back-projection operator can reconstruct the gradient value of the scattering potential. Cohen et al. (1986) derived an inversion formula based on 3D finite-bandwidth data, the essence of which is consistent with Beylkin (1985). Bleistein et al. (1987) similarly considered the amplitude-preserving inversion method for 2.5-dimensional finite-bandwidth data, and derived the 2.5-dimensional Kirchhoff amplitude-preserving inversion formula for the first time. Subsequently, Bleistein (1987) further introduced the three-dimensional Kirchhoff amplitude-preserving inversion formula. Although the starting point of Kirchhoff amplitude-maintained migration inversion is the Kirchooff approximation of seismic data rather than the Born approximation, it still assumes that the seismic wave has a single reflection, the velocity structure above the reflection interface must be known, and the migration process requires Stores scattering angle information. Beylkin and Burridge (1990) generalized the method of Beylkin (1985) to the case of isotropic elastic media, so that the amplitude-preserving inversion algorithm can be adapted to any observation system, and it does not need to store the information of the scattering angle like Bleistein (1987). De Hoop and Bleistein (1997), and De Hoop et al. (1999) discussed amplitude-preserving inversion of reflection coefficients in anisotropic elastic media using the kirchhoff approximation and the inverse generalized Radon transform, while Burridge et al. Using Born approximation and inverse generalized Radon transform to obtain the amplitude-preserving inversion formula of elastic parameters in the medium.
综上所述,尽管由Miller最初提出的基于逆广义Radon变换的保幅反演理论得到了很好的发展与推广,但它们都是以地震波单散射或者一阶Born近似为假设前提,仅仅适合于弱散射介质模型。当地下介质结构复杂、物性参数扰动量大时,运用这些方法得到的结果往往误差大,很难对其进行高保真反演成像。To sum up, although the amplitude-preserving inversion theory based on the inverse generalized Radon transform originally proposed by Miller has been well developed and generalized, they are all based on the assumption of single seismic wave scattering or the first-order Born approximation, and are only suitable for for the weakly scattering medium model. When the structure of the underground medium is complex and the disturbance of physical parameters is large, the results obtained by using these methods often have large errors, and it is difficult to perform high-fidelity inversion imaging.
发明内容SUMMARY OF THE INVENTION
本申请实施例的目的在于提供一种各向同性弹性参数保幅反演方法及装置,以提高弹性参数重构的准确度。The purpose of the embodiments of the present application is to provide an amplitude-preserving inversion method and apparatus for isotropic elastic parameters, so as to improve the accuracy of elastic parameter reconstruction.
为达到上述目的,一方面,本申请实施例提供了一种各向同性弹性参数保幅反演方法,包括:In order to achieve the above purpose, on the one hand, an embodiment of the present application provides an isotropic elastic parameter amplitude-preserving inversion method, including:
获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子;obtaining an imaging inversion result of each imaging point in the isotropic elastic medium model; the imaging inversion result includes an inverse generalized Radon transform back-projection operator on the P-wave scattering field;
基于所述逆广义拉东变换反投影算子构建非线性反演系统;constructing a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator;
确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数;determining the illumination matrix and quadratic term transmission coefficient of the isotropic elastic medium model;
根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。According to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, the nonlinear inversion system is solved to obtain the position of each imaging point in the isotropic elastic medium model The quadratic nonlinear amplitude-preserving inversion value of .
本申请一较佳实施例中,所述各向同性弹性介质模型为三维模型;In a preferred embodiment of the present application, the isotropic elastic medium model is a three-dimensional model;
相应的,三维空间下,所述非线性反演系统,包括:Correspondingly, in a three-dimensional space, the nonlinear inversion system includes:
其中,分别为三维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场;为照明矩阵;a11(z)、a12(z)、a13(z)、a21(z)、a22(z)、a23(z)、a31(z)、a32(z)、a33(z)分别为照明矩阵中的元素;f1(z)、f2(z)、f3(z)分别为三维模型中各向同性弹性参数的非线性二次组合函数,z为成像点。in, are the inverse generalized Radon transform back-projection operators with different weights in the 3D model, respectively; U P (z) is the P-wave scattering displacement field; is the illumination matrix; a 11 (z), a 12 (z), a 13 (z), a 21 (z), a 22 (z), a 23 (z), a 31 (z), a 32 (z) ), a 33 (z) are the elements in the illumination matrix, respectively; f 1 (z), f 2 (z), f 3 (z) are the nonlinear quadratic combination functions of the isotropic elastic parameters in the three-dimensional model, respectively, z is the imaging point.
本申请一较佳实施例中,所述二次项透射系数,包括:In a preferred embodiment of the present application, the quadratic term transmission coefficient includes:
其中, 分别为三维模型中的二次项透射系数,x为散射点;ω0为参考频率;r为接收点;l(x)为与散射区域和散射点x有关的标量;s为震源;sgn(▽xρ0(x)·e3)为符号函数;▽x为关于x的梯度;ρ0(x)为三维背景模型中密度参数;e3、e2分别为三维中的单位向量,且e3=(0,0,1),e2=(0,1,0);为三维背景模型中P波速度;e为自然常数;i为虚数单位;ξ为三维空间中单位球面上的积分变量;λ0(x)和μ0(x)为三维背景模型中拉梅常数。in, are the quadratic transmission coefficients in the 3D model, x is the scattering point; ω 0 is the reference frequency; r is the receiving point; l(x) is the scalar related to the scattering area and the scattering point x; s is the source; sgn( ▽ x ρ 0 (x)·e 3 ) is the sign function; ▽ x is the gradient with respect to x; ρ 0 (x) is the density parameter in the three-dimensional background model; e 3 and e 2 are the unit vectors in three dimensions, respectively, and e 3 =(0,0,1), e 2 =(0,1,0); is the P wave velocity in the three-dimensional background model; e is the natural constant; i is the imaginary unit; ξ is the integral variable on the unit sphere in the three-dimensional space; λ 0 (x) and μ 0 (x) are the Lame constants in the three-dimensional background model .
本申请一较佳实施例中,所述各向同性弹性介质模型为二维模型;In a preferred embodiment of the present application, the isotropic elastic medium model is a two-dimensional model;
相应的,二维空间下,所述非线性反演系统,包括:Correspondingly, in a two-dimensional space, the nonlinear inversion system includes:
其中,分别为二维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场;为照明矩阵; 分别为照明矩阵的元素, 分别为二维模型中各向同性弹性参数的非线性二次组合函数,z为成像点。in, are the inverse generalized Radon transform back-projection operators with different weights in the two-dimensional model, respectively; U P (z) is the P-wave scattering displacement field; is the lighting matrix; are the elements of the illumination matrix, respectively, are the nonlinear quadratic combination functions of the isotropic elastic parameters in the two-dimensional model, respectively, and z is the imaging point.
本申请一较佳实施例中,所述二次项透射系数,包括:In a preferred embodiment of the present application, the quadratic term transmission coefficient includes:
其中, 分别为二维模型中的二次项透射系数,θ为散射夹角,x为散射点;ω为频率;r为接收点;l(x)为与散射区域和散射点x有关的标量;为符号函数;▽x为关于x的梯度;ρ0(x)为二维背景模型中密度参数;e3为二维中的单位向量,且e3=(0,1);为二维背景模型中P波速度;e为自然常数;i为虚数单位;λ0(x)和μ0(x)为二维背景模型中拉梅常数。in, are the quadratic transmission coefficients in the two-dimensional model, respectively, θ is the scattering angle, x is the scattering point; ω is the frequency; r is the receiving point; l(x) is the scalar related to the scattering area and the scattering point x; is the sign function; ▽ x is the gradient with respect to x; ρ 0 (x) is the density parameter in the two-dimensional background model; e 3 is the unit vector in two dimensions, and e 3 =(0,1); is the P wave velocity in the two-dimensional background model; e is a natural constant; i is an imaginary unit; λ 0 (x) and μ 0 (x) are the Lame constants in the two-dimensional background model.
另一方面,本申请实施例还提供了一种各向同性弹性参数保幅反演装置,包括:On the other hand, an embodiment of the present application also provides an isotropic elastic parameter amplitude-preserving inversion device, including:
结果获取模块,用于获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子;a result acquisition module for acquiring the imaging inversion result of each imaging point in the isotropic elastic medium model; the imaging inversion result includes the inverse generalized Radon transform back-projection operator on the P-wave scattering field;
系统构建模块,用于基于所述逆广义拉东变换反投影算子构建非线性反演系统;a system building module for building a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator;
参数确定模块,用于确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数;a parameter determination module for determining the illumination matrix and the quadratic term transmission coefficient of the isotropic elastic medium model;
保幅反演模块,用于根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。An amplitude-preserving inversion module, configured to solve the nonlinear inversion system according to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, and obtain the isotropic elasticity Quadratic nonlinear preserved amplitude inversion values at each imaging point in the medium model.
本申请一较佳实施例中,所述各向同性弹性介质模型为三维模型;In a preferred embodiment of the present application, the isotropic elastic medium model is a three-dimensional model;
相应的,三维空间下,所述非线性反演系统,包括:Correspondingly, in a three-dimensional space, the nonlinear inversion system includes:
其中,分别为三维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场;为照明矩阵;a11(z)、a12(z)、a13(z)、a21(z)、a22(z)、a23(z)、a31(z)、a32(z)、a33(z)分别为照明矩阵中的元素;f1(z)、f2(z)、f3(z)分别为三维模型中各向同性弹性参数的非线性二次组合函数,z为成像点。in, are the inverse generalized Radon transform back-projection operators with different weights in the 3D model, respectively; U P (z) is the P-wave scattering displacement field; is the illumination matrix; a 11 (z), a 12 (z), a 13 (z), a 21 (z), a 22 (z), a 23 (z), a 31 (z), a 32 (z) ), a 33 (z) are the elements in the illumination matrix, respectively; f 1 (z), f 2 (z), f 3 (z) are the nonlinear quadratic combination functions of the isotropic elastic parameters in the three-dimensional model, respectively, z is the imaging point.
本申请一较佳实施例中,所述二次项透射系数,包括:In a preferred embodiment of the present application, the quadratic term transmission coefficient includes:
其中, 分别为三维模型中的二次项透射系数,x为散射点;ω0为参考频率;r为接收点;l(x)为与散射区域和散射点x有关的标量;s为震源;sgn(▽xρ0(x)·e3)为符号函数;▽x为关于x的梯度;ρ0(x)为三维背景模型中密度参数;e3、e2分别为三维中的单位向量,且e3=(0,0,1),e2=(0,1,0);为三维背景模型中P波速度;e为自然常数;i为虚数单位;ξ为三维空间中单位球面上的积分变量;λ0(x)和μ0(x)为三维背景模型中拉梅常数。in, are the quadratic transmission coefficients in the 3D model, x is the scattering point; ω 0 is the reference frequency; r is the receiving point; l(x) is the scalar related to the scattering area and the scattering point x; s is the source; sgn( ▽ x ρ 0 (x)·e 3 ) is the sign function; ▽ x is the gradient with respect to x; ρ 0 (x) is the density parameter in the three-dimensional background model; e 3 and e 2 are the unit vectors in three dimensions, respectively, and e 3 =(0,0,1), e 2 =(0,1,0); is the P wave velocity in the three-dimensional background model; e is the natural constant; i is the imaginary unit; ξ is the integral variable on the unit sphere in the three-dimensional space; λ 0 (x) and μ 0 (x) are the Lame constants in the three-dimensional background model .
本申请一较佳实施例中,所述各向同性弹性介质模型为二维模型;In a preferred embodiment of the present application, the isotropic elastic medium model is a two-dimensional model;
相应的,二维空间下,所述非线性反演系统,包括:Correspondingly, in a two-dimensional space, the nonlinear inversion system includes:
其中,分别为二维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场;为照明矩阵; 分别为照明矩阵的元素, 分别为二维模型中各向同性弹性参数的非线性二次组合函数,z为成像点。in, are the inverse generalized Radon transform back-projection operators with different weights in the two-dimensional model, respectively; U P (z) is the P-wave scattering displacement field; is the lighting matrix; are the elements of the illumination matrix, respectively, are the nonlinear quadratic combination functions of the isotropic elastic parameters in the two-dimensional model, respectively, and z is the imaging point.
本申请一较佳实施例中,所述二次项透射系数,包括:In a preferred embodiment of the present application, the quadratic term transmission coefficient includes:
其中, 分别为二维模型中的二次项透射系数,θ为散射夹角,x为散射点;ω为频率;r为接收点;l(x)为与散射区域和散射点x有关的标量;为符号函数;▽x为关于x的梯度;ρ0(x)为二维背景模型中密度参数;e3为二维中的单位向量,且e3=(0,1);为二维背景模型中P波速度;e为自然常数;i为虚数单位;λ0(x)和μ0(x)为二维背景模型中拉梅常数。in, are the quadratic transmission coefficients in the two-dimensional model, respectively, θ is the scattering angle, x is the scattering point; ω is the frequency; r is the receiving point; l(x) is the scalar related to the scattering area and the scattering point x; is the sign function; ▽ x is the gradient with respect to x; ρ 0 (x) is the density parameter in the two-dimensional background model; e 3 is the unit vector in two dimensions, and e 3 =(0,1); is the P wave velocity in the two-dimensional background model; e is a natural constant; i is an imaginary unit; λ 0 (x) and μ 0 (x) are the Lame constants in the two-dimensional background model.
由以上本申请实施例提供的技术方案可见,与传统的逆广义Radon变换线性保幅反演方法相比,本申请实施例继承了现有的逆广义Radon变换P-P成像技术的特点,并在此基础上新增了二次散射修正项(即二次项透射系数),从而考虑了局部二次散射,因此,本申请实施例在确保结构成像的同时,提高了弹性参数重构的准确度。It can be seen from the technical solutions provided by the above embodiments of the present application that, compared with the traditional inverse generalized Radon transform linear amplitude-preserving inversion method, the embodiments of the present application inherit the characteristics of the existing inverse generalized Radon transform P-P imaging technology, and here On the basis, a secondary scattering correction term (ie, quadratic term transmission coefficient) is newly added, so that local secondary scattering is considered. Therefore, the embodiments of the present application improve the accuracy of elastic parameter reconstruction while ensuring structural imaging.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments described in this application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort. In the attached image:
图1为现有技术中各向同性弹性参数保幅反演方法的流程图;Fig. 1 is the flow chart of the isotropic elastic parameter amplitude preserving inversion method in the prior art;
图2为本申请一实施例中各向同性弹性参数保幅反演方法的流程图;FIG. 2 is a flowchart of an amplitude-preserving inversion method for isotropic elastic parameters in an embodiment of the application;
图3a~图3c分别为现有技术从6个层状模型的界面抽出密度和Lamé模量参数的弹性P波正则化线性保幅反演结果中,Lamé模量扰动参数λ1的比较结果、密度扰动参数ρ1的比较结果、Lamé模量扰动参数μ1的比较结果示意图;Figures 3a to 3c show the comparison results of the Lamé modulus perturbation parameter λ 1 in the elastic P-wave regularized linear amplitude-preserving inversion results of the density and Lamé modulus parameters extracted from the interfaces of six layered models, respectively, in the prior art. Schematic diagram of the comparison results of the density perturbation parameter ρ 1 and the comparison result of the Lamé modulus perturbation parameter μ 1 ;
图4a~图4c分别为本申请一实施例从6个层状模型的界面抽出密度和Lamé模量参数的弹性P波正则化线性保幅反演结果中,Lamé模量扰动参数λ1的比较结果、密度扰动参数ρ1的比较结果、Lamé模量扰动参数μ1的比较结果示意图;Figures 4a to 4c respectively show the comparison of the Lamé modulus perturbation parameter λ 1 in the elastic P-wave regularized linear amplitude-preserving inversion results of the density and Lamé modulus parameters extracted from the interface of six layered models according to an embodiment of the present application. Results, comparison results of density perturbation parameter ρ 1 , and comparison results of Lamé modulus perturbation parameter μ 1 ;
图5为本申请一实施例中各向同性弹性参数保幅反演装置的结构框图;FIG. 5 is a structural block diagram of an amplitude-preserving inversion device for isotropic elastic parameters according to an embodiment of the present application;
图6为本申请另一实施例中各向同性弹性参数保幅反演装置的结构框图。FIG. 6 is a structural block diagram of an amplitude-preserving inversion apparatus for isotropic elastic parameters according to another embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。例如在下面描述中,在第一部件上方形成第二部件,可以包括第一部件和第二部件以直接接触方式形成的实施例,还可以包括第一部件和第二部件以非直接接触方式(即第一部件和第二部件之间还可以包括额外的部件)形成的实施例等。In order to make those skilled in the art better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described The embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the scope of protection of this application. For example, in the following description, forming the second part above the first part may include an embodiment in which the first part and the second part are formed in a direct contact manner, and may also include an embodiment in which the first part and the second part are formed in a non-direct contact manner ( That is, the first part and the second part may also include additional parts) to form an embodiment and the like.
而且,为了便于描述,本申请一些实施例可以使用诸如“在…上方”、“在…之下”、“顶部”、“下方”等空间相对术语,以描述如实施例各附图所示的一个元件或部件与另一个(或另一些)元件或部件之间的关系。应当理解的是,除了附图中描述的方位之外,空间相对术语还旨在包括装置在使用或操作中的不同方位。例如若附图中的装置被翻转,则被描述为“在”其他元件或部件“下方”或“之下”的元件或部件,随后将被定位为“在”其他元件或部件“上方”或“之上”。Moreover, for the convenience of description, some embodiments of the present application may use spatially relative terms such as "above", "below", "top", "below", etc., to describe the embodiments as shown in the drawings. The relationship of one element or component to another (or other) elements or components. It should be understood that spatially relative terms are intended to include different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" other elements or features would then be oriented "above" or "above" the other elements or features above".
在实现本申请的过程中,本申请发明人发现现有的技术方案存在如下不足之处:In the process of realizing the present application, the inventor of the present application found that the existing technical solutions have the following deficiencies:
1.不能准确重构强扰动介质,原因如下:1. The strongly perturbed medium cannot be accurately reconstructed for the following reasons:
在推导基于逆广义拉东变换(即Radon变换)的线性保幅算子时,需要对地震数据先做一阶Born近似或者单散射的假设,即When deriving the linear amplitude preserving operator based on the inverse generalized Radon transform (that is, Radon transform), it is necessary to make the assumption of first-order Born approximation or single scattering for the seismic data, namely
u≈G+GVG (1)u≈G+GVG (1)
其中,u表示地震数据,G代表参考模型的Green函数,V表示扰动算子。而(1)式能合理成立的条件是:介质模型需满足弱散射或者小扰动的情形。当介质模型的扰动强度超过一定范围时,用线性保幅算法重构出的物性参数值与真实值之间会出现误差,且误差是不可以接受的。Among them, u represents the seismic data, G represents the Green function of the reference model, and V represents the perturbation operator. The condition for formula (1) to be valid is that the medium model needs to satisfy the situation of weak scattering or small disturbance. When the perturbation intensity of the medium model exceeds a certain range, there will be errors between the physical parameter values reconstructed by the linear amplitude-preserving algorithm and the real values, and the errors are unacceptable.
2.没有考虑基于弹性介质多分量数据和二次散射的逆广义Radon变换非线性保幅反演算法。在将线性保幅算法推广到二次散射的过程中只考虑了标量声波介质模型的情形,而实际地下介质往往是复杂的弹性介质,声波二次非线性保幅算法对多分量弹性地震数据的应用存在理论缺陷。2. The nonlinear amplitude-preserving inversion algorithm of the inverse generalized Radon transform based on elastic medium multi-component data and secondary scattering is not considered. In the process of extending the linear amplitude preservation algorithm to the secondary scattering, only the scalar acoustic wave medium model is considered, and the actual underground medium is often a complex elastic medium. There are theoretical flaws in the application.
由此可见,鉴于传统的各向同性弹性介质中逆广义Radon变换线性保幅反演方法是基于Born单散射近似,其只适合于小扰动参数的弹性各向同性介质。为了克服线性保幅反演方法的局限性,本申请一些实施例将在二次散射的基础上考虑基于多分量弹性P波的非线性保幅反演,利用局部二次散射估算,推导出弹性P波二次散射修正项(即二次项透射系数)。与传统的逆广义Radon变换线性保幅反演方法相比,该非线性保幅反演方法继承了现有的逆广义Radon变换P-P成像技术的特点,新增的二次散射修正项能确保结构成像的同时,提高了弹性参数重构的准确度。具体改进的方案原理如下:It can be seen that, since the traditional inverse generalized Radon transform linear amplitude-preserving inversion method in isotropic elastic media is based on the Born single scattering approximation, it is only suitable for elastic isotropic media with small perturbation parameters. In order to overcome the limitations of the linear amplitude-preserving inversion method, some embodiments of the present application will consider nonlinear amplitude-preserving inversion based on multi-component elastic P-waves on the basis of secondary scattering, and use local secondary scattering estimation to derive elasticity P-wave secondary scattering correction term (ie, quadratic term transmission coefficient). Compared with the traditional inverse generalized Radon transform linear amplitude-preserving inversion method, the nonlinear amplitude-preserving inversion method inherits the characteristics of the existing inverse generalized Radon transform P-P imaging technology, and the newly added secondary scattering correction term can ensure the structure At the same time of imaging, the accuracy of elastic parameter reconstruction is improved. The specific improvement scheme principle is as follows:
运用弹性各向同性波动方程以及相应的Green函数,将弹性P波位移场函数写成积分方程形式Using the elastic isotropic wave equation and the corresponding Green function, the elastic P-wave displacement field function is written in the form of an integral equation
这里,s是震源位置(即炮点位置),x是波场记录接收的位置,表示实际模型中由震源s处n-应力方向引起的弹性P波传播到x处m-方向接收到的P波地震记录,ω为地震频率,表示背景介质中弹性P波Green张量,ρ1表示扰动密度参数(即:实际密度参数ρ与背景密度参数ρ0之差),表示扰动弹性参数(即:实际弹性参数cijkl与背景弹性密度参数之差),为关于分量yl的偏导数,uin为波场位移分量,为P波位移分量,为背景介质中弹性P波Green张量。如果处理的介质模型是三维,则式(2)中的每个下标取值范围为1至3;如果介质模型是二维,则下标取值范围为1至2。在弹性各向同性介质中,扰动弹性参数具体可以表示为:Here, s is the source location (ie, the shot location), x is the location where the wavefield record was received, In the actual model, the elastic P-wave caused by the n-stress direction at the source s propagates to the P-wave seismic record received in the m-direction at x, where ω is the seismic frequency, represents the elastic P-wave Green tensor in the background medium, ρ 1 represents the perturbation density parameter (ie: the difference between the actual density parameter ρ and the background density parameter ρ 0 ), Represents the perturbed elastic parameters (ie: the actual elastic parameter c ijkl and the background elastic density parameter Difference), is the partial derivative with respect to the component y l , u in is the displacement component of the wave field, is the displacement component of the P wave, is the elastic P-wave Green tensor in the background medium. If the medium model to be processed is three-dimensional, the value of each subscript in formula (2) ranges from 1 to 3; if the medium model is two-dimensional, the value of the subscript ranges from 1 to 2. In elastically isotropic media, perturbing elastic parameters Specifically, it can be expressed as:
其中,δij是Kronecker符号,λ1和μ1是拉梅弹性模量(即Lamé弹性模量)扰动参数(即:对应的实际Lamé弹性模量与背景Lamé弹性模量之差)。以上这些扰动参数的非零值总在一个有界的区域内。Among them, δ ij is the Kronecker symbol, λ 1 and μ 1 are the Lamé elastic modulus (ie Lamé elastic modulus) perturbation parameters (ie: the difference between the corresponding actual Lamé elastic modulus and the background Lamé elastic modulus). The non-zero values of the above perturbation parameters are always in a bounded region.
如果将记为P波散射位移场,则等于与之差,即在式(2)的基础上考虑P波散射位移场的二阶Born近似,其具体表示为:if the Denoted as the P-wave scattering displacement field, then equal and difference, that is On the basis of equation (2), the second-order Born approximation of the P-wave scattering displacement field is considered, which is specifically expressed as:
其中,r是接收器的位置,第一个积分项是弹性P波单散射场,后面两个积分项之和是弹性P波二次散射场。where r is the position of the receiver, the first integral term is the elastic P-wave single scattering field, and the sum of the last two integral terms is the elastic P-wave secondary scattering field.
鉴于地震波场的振幅强度随着传播距离的增大而减弱,可以将考虑局部二次散射。于是,在式(4)中对任意固定的散射点x来说,由另一散射点y引起的二次散射贡献主要集中在x附近局部区域Bx.在这种意义下,可将式(4)近似表示为:Since the amplitude intensity of the seismic wavefield decreases with the propagation distance, local secondary scattering can be considered. Therefore, for any fixed scattering point x in equation (4), the secondary scattering contribution caused by another scattering point y is mainly concentrated in the local area B x near x . In this sense, the equation ( 4) Approximately expressed as:
在二次散射局部区域Bx中,对扰动参数ρ1(y),λ1(y)和μ1(y)近似展开成点x处一阶Taylor展式,即:In the secondary scattering local area B x , the perturbation parameters ρ 1 (y), λ 1 (y) and μ 1 (y) are approximately expanded into the first-order Taylor expansion at point x, namely:
ρ1(y)≈ρ1(x)+▽xρ1(x)·(y-x) (6)ρ 1 (y)≈ρ 1 (x)+▽ x ρ 1 (x)·(yx) (6)
λ1(y)≈λ1(x)+▽xλ1(x)·(y-x) (7)λ 1 (y)≈λ 1 (x)+▽ x λ 1 (x)·(yx) (7)
μ1(y)≈μ1(x)+▽xμ1(x)·(y-x) (8)μ 1 (y)≈μ 1 (x)+▽ x μ 1 (x)·(yx) (8)
如果引入下面的扰动参数If the following perturbation parameters are introduced
则结合式(6)~(8)以及(二维和三维)Green函数和它导数的高频近似,可以在三维和二维中将式(5)分别进一步近似为:Combining equations (6) to (8) and the high-frequency approximation of (two-dimensional and three-dimensional) Green's function and its derivative, equation (5) can be further approximated in three-dimensional and two-dimensional, respectively:
(一)三维情形(1) Three-dimensional situation
其中:in:
这里,θPP(r,x,s)是P波在散射点x处的散射夹角,ω0是参考频率(一般选取震源子波的主频),是射线从震源s经过散射点x再回到接收点r的总走时,是有k-方向的应力引起的沿射线轨道的振幅,l(x)是与散射区域和散射点x有关的标量,e3和e2分别是三维中的单位向量,且e3=(0,0,1),e2=(0,1,0),sgn是符号函数,Here, θ PP (r, x, s) is the scattering angle of the P wave at the scattering point x, ω 0 is the reference frequency (generally the main frequency of the source wavelet is selected), is the total travel time of the ray from the source s through the scattering point x and back to the receiving point r, is the amplitude along the ray trajectory due to stress in the k-direction, l(x) is a scalar related to the scattering region and scattering point x, e3 and e2 are unit vectors in three dimensions, respectively, and e3 = (0 ,0,1), e 2 =(0,1,0), sgn is the sign function,
分别为三维模型中的二次项透射系数,▽x为关于x的梯度,ρ0(x)为三维背景模型中密度参数,为三维背景模型中P波速度,e为自然常数,i为虚数单位,ξ为三维空间中单位球面上的积分变量,λ0(x)和μ0(x)为三维背景模型中拉梅常数(即Lamé常数),为与接收点相关的振幅分量,为与炮点相关的振幅分量。 are the quadratic term transmission coefficients in the 3D model, ▽ x is the gradient with respect to x, ρ 0 (x) is the density parameter in the 3D background model, is the P wave velocity in the three-dimensional background model, e is a natural constant, i is the imaginary unit, ξ is the integral variable on the unit sphere in the three-dimensional space, λ 0 (x) and μ 0 (x) are the Lame constants in the three-dimensional background model (i.e. Lamé constant), is the amplitude component associated with the receiving point, is the amplitude component associated with the shot.
(二)二维情形(2) Two-dimensional situation
其中:in:
其中, 分别为二维模型中的二次项透射系数,θ为散射夹角,e3为二维中的单位向量,且e3=(0,1)。in, are respectively the quadratic term transmission coefficient in the two-dimensional model, θ is the scattering angle, e 3 is the unit vector in two dimensions, and e 3 =(0,1).
通过Fourier逆变换,将式(10)和(26)转换到时间域,并与广义Radon变换建立联系,具体表示为:Through the inverse Fourier transform, the equations (10) and (26) are converted to the time domain and connected with the generalized Radon transform, which is specifically expressed as:
(一)三维情形(1) Three-dimensional situation
(二)二维情形(2) Two-dimensional situation
其中,δ为Dirac函数,和分别是定义在向量f=(f1,f2,f3)和向量上的广义Radon变换算子。where δ is the Dirac function, and are respectively defined in the vector f=(f 1 , f 2 , f 3 ) and the vector The generalized Radon transform operator on .
在式(42)和(43)的基础上,运用逆广义Radon变换反投影算子构建二次非线性系统,将扰动参数近似地重构。下面就三维和二维的情形分别叙述如下:On the basis of equations (42) and (43), a quadratic nonlinear system is constructed by using the inverse generalized Radon transform back-projection operator, and the disturbance parameters are approximately reconstructed. The three-dimensional and two-dimensional cases are described as follows:
(一)三维情形(1) Three-dimensional situation
按照Beylkin和Burridge(1990)的思路,引入定义在P波散射场上逆广义Radon变换反投影算子其具体表示为According to the idea of Beylkin and Burridge (1990), the back-projection operator of inverse generalized Radon transform defined on the P-wave scattering field is introduced It is specifically expressed as
其中,z是成像点,是加权矩阵因子,用来校正射线几何扩散时振幅的影响,其表达式为:where z is the imaging point, is the weighting matrix factor, which is used to correct the influence of the amplitude of the ray geometric diffusion, and its expression is:
这里,b是关于成像点z和散射夹角θPP的函数,JP(r,z)和JP(z,s)是射线Jacobian函数,Eψ(z)是成像点z处关于方位角的集合,mesEψ(z)是定义在方位角集合Eψ(z)上被积函数为1的积分,Here, b is a function of the imaging point z and the scattering angle θ PP , J P (r,z) and J P (z,s) are the ray Jacobian functions, and E ψ (z) is the azimuth angle at the imaging point z. The set of , where mesE ψ (z) is the integral of the integrand equal to 1 defined over the set of azimuth angles E ψ (z),
将反投影算子分别作用在式(42)上,得到三维空间中弹性扰动参数的非线性反演系统:backprojection operator Acting on equation (42) respectively, the nonlinear inversion system of elastic disturbance parameters in three-dimensional space is obtained:
其中:in:
是在范围(0,π]中的散射夹角集合,分别为三维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场,a11(z)、a12(z)、a13(z)、a21(z)、a22(z)、a23(z)、a31(z)、a32(z)、a33(z)分别为照明矩阵中的元素,f1(z)、f2(z)、f3(z)分别为三维模型中各向同性弹性参数的非线性二次组合函数。 is the set of scattering angles in the range (0,π], are the inverse generalized Radon transform back-projection operators with different weights in the 3D model, respectively; U P (z) is the P-wave scattering displacement field, a 11 (z), a 12 (z), a 13 (z), a 21 ( z), a 22 (z), a 23 (z), a 31 (z), a 32 (z), a 33 (z) are the elements in the illumination matrix, respectively, f 1 (z), f 2 (z ) and f 3 (z) are the nonlinear quadratic combination functions of the isotropic elastic parameters in the 3D model, respectively.
(二)二维情形(2) Two-dimensional situation
在二维空间中,引入逆广义Radon变换反投影算子其具体表示为:In two-dimensional space, the inverse generalized Radon transform back-projection operator is introduced It is specifically expressed as:
其中,H是Hilbert变换,为二维加权矩阵因子,其表达式为where H is the Hilbert transform, is a two-dimensional weighted matrix factor, and its expression is
将反投影算子分别作用到式(43),得到二维空间中弹性扰动参数的非线性反演系统:backprojection operator Acting on Equation (43) respectively, the nonlinear inversion system of elastic disturbance parameters in two-dimensional space is obtained:
其中:in:
是在范围(-π,π]中的散射夹角集合,分别为二维模型中不同权重的逆广义Radon变换反投影算子;UP(z)为P波散射位移场;为照明矩阵;分别为照明矩阵的元素,分别为二维模型中各向同性弹性参数的非线性二次组合函数。 is the set of scattering angles in the range (-π,π], are the inverse generalized Radon transform back-projection operators with different weights in the two-dimensional model, respectively; U P (z) is the P-wave scattering displacement field; is the lighting matrix; are the elements of the illumination matrix, respectively, are the nonlinear quadratic combination functions of the isotropic elastic parameters in the two-dimensional model, respectively.
由此可见,与传统的线性保幅反演技术相比,非线性反演系统(49)和(56)增加了弹性扰动参数的二次项透射系数(如:等),通过求解非线性反演系统,能对大扰动弹性介质的保幅重构起到一定的准确修正作用。It can be seen that, compared with the traditional linear amplitude-preserving inversion technique, the nonlinear inversion systems (49) and (56) increase the quadratic transmission coefficient of the elastic disturbance parameters (such as: etc.), by solving the nonlinear inversion system, it can play a certain accurate correction effect on the amplitude-preserving reconstruction of the large-disturbed elastic medium.
参考图2所示,本申请实施例的各向同性弹性参数保幅反演方法可以包括以下步骤:Referring to FIG. 2 , the amplitude-preserving inversion method for isotropic elastic parameters according to the embodiment of the present application may include the following steps:
S201、获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子。S201. Acquire an imaging inversion result of each imaging point in the isotropic elastic medium model; the imaging inversion result includes an inverse generalized Radon transform back-projection operator on the P-wave scattering field.
在本申请一实施例中,获取各向同性弹性介质模型中每个成像点的成像反演结果的处理与现有技术原理相同,在此不再赘述。具体请参见图1中的步骤(1)~(8)所示。In an embodiment of the present application, the process of acquiring the imaging inversion result of each imaging point in the isotropic elastic medium model is the same as that of the prior art, and details are not described herein again. For details, please refer to steps (1) to (8) in FIG. 1 .
S202、基于所述逆广义拉东变换反投影算子构建非线性反演系统。S202. Construct a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator.
在本申请一实施例中,当所述各向同性弹性介质模型为三维模型时,相应的,三维空间下,所述非线性反演系统例如上式(49)所示。In an embodiment of the present application, when the isotropic elastic medium model is a three-dimensional model, correspondingly, in a three-dimensional space, the nonlinear inversion system is as shown in the above formula (49).
在本申请一实施例中,当所述各向同性弹性介质模型为二维模型时,相应的,二维空间下,所述非线性反演系统例如上式(56)所示。In an embodiment of the present application, when the isotropic elastic medium model is a two-dimensional model, correspondingly, in a two-dimensional space, the nonlinear inversion system is as shown in the above formula (56).
S203、确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数。S203. Determine the illumination matrix and the quadratic term transmission coefficient of the isotropic elastic medium model.
在本申请一实施例中,在三维模型场景下,照明矩阵可如上式(49)中的所示。对应的;在三维模型场景下,二次项透射系数可如上式式(14)~(25)所示。In an embodiment of the present application, in the three-dimensional model scene, the illumination matrix can be as in the above formula (49) shown. Correspondingly; in the three-dimensional model scene, the quadratic term transmission coefficient can be shown in the above formulas (14) to (25).
在本申请一实施例中,在二维模型场景下,照明矩阵可如上式(56)中的所示。对应的;在二维模型场景下,二次项透射系数可如上式式(30)~(41)所示。In an embodiment of the present application, in a two-dimensional model scene, the illumination matrix can be as in the above formula (56) shown. Correspondingly; in the two-dimensional model scenario, the quadratic term transmission coefficient can be shown in the above formulas (30) to (41).
S204、根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。S204. Solve the nonlinear inversion system according to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, and obtain each image in the isotropic elastic medium model The quadratic nonlinear amplitude-preserving inversion value at the point.
在本申请一实施例中,在获得逆广义拉东变换反投影算子、照明矩阵和二次项透射系数的基础上,可基于传统的数值方法等求解非线性反演系统,从而可以获得各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。In an embodiment of the present application, on the basis of obtaining the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, the nonlinear inversion system can be solved based on traditional numerical methods, etc., so that various Quadratic nonlinear amplitude-preserving inversion values at each imaging point in an isotropic elastic medium model.
为了验证本申请实施例的各向同性弹性参数保幅反演方法的合理性和有效性,以下用简单的6个不同扰动的二维层状模型进行测试。In order to verify the rationality and effectiveness of the amplitude-preserving inversion method of the isotropic elastic parameters in the embodiment of the present application, the following tests are performed with 6 simple two-dimensional layered models with different disturbances.
在每个模型的上层中,P波速度为2500m/s,S波速度为1200m/s,密度为1000kg/m3;而在每个模型的下层中,P波速度分别是2525,2550,2625,2750,2800,3000m/s;S波速度分别是1212,1224,1260,1320,1344,1440m/s;密度分别是1010,1020,1050,1100,1120,1200kg/m3。用ρ0=1000kg/m3为弹性背景模型的参数。则6个层状模型中相对密度扰动ρ1/ρ0分别为1,2,5,10,12,20%;而Lamé弹性模量相对扰动λ1/λ0和μ1/μ0是相同,相应模型的扰动量分别为3,6.1,15.8,33.1,40.5,72.8%.利用P波和S波到达时间的不同,可以提取层状模型的多分量P波数据,并用它作为输入数据,来检测本申请实施例的各向同性弹性参数保幅反演方法的有效性和可行性。In the upper layer of each model, the P-wave velocity is 2500m/s, the S-wave velocity is 1200m/s, and the density is 1000kg/m3; while in the lower layer of each model, the P-wave velocity is 2525, 2550, 2625, 2750, 2800, 3000m/s; S-wave velocities are 1212, 1224, 1260, 1320, 1344, 1440m/s; densities are 1010, 1020, 1050, 1100, 1120, 1200kg/m3, respectively. use ρ 0 =1000kg/m3 is the parameter of the elastic background model. Then the relative density perturbations ρ 1 /ρ 0 in the six layered models are 1, 2, 5, 10, 12, and 20%, respectively; while the relative perturbations of Lamé elastic modulus λ 1 /λ 0 and μ 1 /μ 0 are the same , the disturbances of the corresponding models are 3, 6.1, 15.8, 33.1, 40.5, 72.8%, respectively. Using the difference in the arrival time of the P-wave and S-wave, the multi-component P-wave data of the layered model can be extracted and used as input data, to test the validity and feasibility of the amplitude-preserving inversion method for isotropic elastic parameters in the embodiments of the present application.
在上述基础上,图3a~图3c分别示出了现有技术从6个层状模型的界面抽出密度和Lamé模量参数的弹性P波正则化线性保幅反演结果中,Lamé模量扰动参数λ1的比较结果、密度扰动参数ρ1的比较结果、Lamé模量扰动参数μ1的比较结果示意图;图4a~图4c分别示出了本申请一实施例从6个层状模型的界面抽出密度和Lamé模量参数的弹性P波正则化线性保幅反演结果中,Lamé模量扰动参数λ1的比较结果、密度扰动参数ρ1的比较结果、Lamé模量扰动参数μ1的比较结果示意图。On the basis of the above, Figures 3a to 3c respectively show the Lamé modulus perturbation in the elastic P-wave regularized linear amplitude-preserving inversion results of the density and Lamé modulus parameters extracted from the interface of six layered models in the prior art. Schematic diagram of the comparison result of parameter λ 1 , the comparison result of density perturbation parameter ρ 1 , and the comparison result of Lamé modulus perturbation parameter μ 1 ; Figures 4a to 4c respectively show the interfaces of six layered models in an embodiment of the present application From the elastic P-wave regularized linear amplitude-preserving inversion results of the extracted density and Lamé modulus parameters, the comparison results of Lamé modulus perturbation parameter λ 1 , the comparison result of density perturbation parameter ρ 1 , and the comparison of Lamé modulus perturbation parameter μ 1 Schematic diagram of the results.
从图3a~图3c可以看出,随着扰动增大,线性反演值偏离真实值的程度越大。而当扰动量超过10%时,线性反演的误差都超过5%。从图4a~图4c可以看出,当扰动量小于40%时,二次反演误差都不超过5%。由此验证了本申请实施例的各向同性弹性参数保幅反演方法的正确性。It can be seen from Figure 3a to Figure 3c that as the disturbance increases, the linear inversion value deviates from the true value to a greater extent. When the disturbance amount exceeds 10%, the error of linear inversion exceeds 5%. It can be seen from Figure 4a to Figure 4c that when the disturbance amount is less than 40%, the secondary inversion error does not exceed 5%. This verifies the correctness of the amplitude-preserving inversion method for isotropic elastic parameters in the embodiments of the present application.
参考图5所示,本申请一实施例的各向同性弹性参数保幅反演装置可以包括:Referring to FIG. 5 , a device for maintaining amplitude of isotropic elastic parameters according to an embodiment of the present application may include:
结果获取模块51,可以用于获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子;The result acquisition module 51 can be used to acquire the imaging inversion result of each imaging point in the isotropic elastic medium model; the imaging inversion result includes the inverse generalized Radon transform back-projection operator on the P-wave scattering field;
系统构建模块52,可以用于基于所述逆广义拉东变换反投影算子构建非线性反演系统;A system building module 52, which can be used to build a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator;
参数确定模块53,可以用于确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数;The parameter determination module 53 can be used to determine the illumination matrix and the quadratic term transmission coefficient of the isotropic elastic medium model;
保幅反演模块54,可以用于根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。The amplitude-preserving inversion module 54 can be configured to solve the nonlinear inversion system according to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, and obtain the isotropic Quadratic nonlinear amplitude-preserving inversion values at each imaging point in a homogenous elastic medium model.
参考图6所示,本申请另一实施例的各向同性弹性参数保幅反演装置可以包括存储器、处理器、以及存储在所述存储器上的计算机程序,所述计算机程序被所述处理器运行时执行如下步骤:Referring to FIG. 6 , an apparatus for amplitude-preserving inversion of isotropic elastic parameters according to another embodiment of the present application may include a memory, a processor, and a computer program stored on the memory, and the computer program is executed by the processor. The following steps are performed at runtime:
获取各向同性弹性介质模型中每个成像点的成像反演结果;所述成像反演结果包括P波散射场上的逆广义拉东变换反投影算子;obtaining an imaging inversion result of each imaging point in the isotropic elastic medium model; the imaging inversion result includes an inverse generalized Radon transform back-projection operator on the P-wave scattering field;
基于所述逆广义拉东变换反投影算子构建非线性反演系统;constructing a nonlinear inversion system based on the inverse generalized Radon transform back-projection operator;
确定所述各向同性弹性介质模型的照明矩阵和二次项透射系数;determining the illumination matrix and quadratic term transmission coefficient of the isotropic elastic medium model;
根据所述逆广义拉东变换反投影算子、所述照明矩阵和所述二次项透射系数,求解所述非线性反演系统,获得所述各向同性弹性介质模型中每个成像点处的二次非线性保幅反演值。According to the inverse generalized Radon transform back-projection operator, the illumination matrix and the quadratic term transmission coefficient, the nonlinear inversion system is solved to obtain the position of each imaging point in the isotropic elastic medium model The quadratic nonlinear amplitude-preserving inversion value of .
虽然上文描述的过程流程包括以特定顺序出现的多个操作,但是,应当清楚了解,这些过程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行(例如使用并行处理器或多线程环境)。Although the process flows described above include a number of operations occurring in a particular order, it should be expressly understood that the processes may include more or fewer operations, which may be performed sequentially or in parallel (eg, using parallel processors or multithreaded environment).
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, when describing the above device, the functions are divided into various units and described respectively. Of course, when implementing the present application, the functions of each unit may be implemented in one or more software and/or hardware.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology. Information may be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage medium include, but not limited to phase variable memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), only read memory memory (ROM), electrical eradication, programmable only read memory (EEPROM), flash memory or other memory technologies, read only CD-ROMs (CD-ROM), digital multifunctional CD (DVD) or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, or other optical storage, Magnetic box tape, tape magnetic disk storage or other magnetic storage device or any other non -transmission medium can be used to store information that can be accessed by computing devices. As defined herein, computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。It should also be noted that the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, or device that includes a list of elements includes not only those elements, but also no Other elements that are expressly listed, or which are also inherent to such a process, method or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, or device that includes the element.
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。The application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including storage devices.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a progressive manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the system embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and for related parts, please refer to the partial descriptions of the method embodiments.
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above descriptions are merely examples of the present application, and are not intended to limit the present application. Various modifications and variations of this application are possible for those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included within the scope of the claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811188186.2A CN109541682A (en) | 2018-10-12 | 2018-10-12 | Isotropic elasticity parameter protects width inversion method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811188186.2A CN109541682A (en) | 2018-10-12 | 2018-10-12 | Isotropic elasticity parameter protects width inversion method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109541682A true CN109541682A (en) | 2019-03-29 |
Family
ID=65843734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811188186.2A Pending CN109541682A (en) | 2018-10-12 | 2018-10-12 | Isotropic elasticity parameter protects width inversion method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109541682A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111258219A (en) * | 2020-01-19 | 2020-06-09 | 北京理工大学 | An Inversion Identification Method for Multi-Agent System Collaborative Strategy |
CN111913215A (en) * | 2019-05-10 | 2020-11-10 | 中国石油天然气集团有限公司 | Inverse scatter amplitude-maintained migration imaging method, device and computer storage medium |
CN112698400A (en) * | 2020-12-04 | 2021-04-23 | 中国科学院深圳先进技术研究院 | Inversion method, inversion apparatus, computer device, and computer-readable storage medium |
CN113589385A (en) * | 2021-08-11 | 2021-11-02 | 成都理工大学 | Reservoir characteristic inversion method based on seismic scattering wave field analysis |
-
2018
- 2018-10-12 CN CN201811188186.2A patent/CN109541682A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111913215A (en) * | 2019-05-10 | 2020-11-10 | 中国石油天然气集团有限公司 | Inverse scatter amplitude-maintained migration imaging method, device and computer storage medium |
CN111258219A (en) * | 2020-01-19 | 2020-06-09 | 北京理工大学 | An Inversion Identification Method for Multi-Agent System Collaborative Strategy |
CN111258219B (en) * | 2020-01-19 | 2022-05-03 | 北京理工大学 | Inversion identification method for multi-agent system cooperation strategy |
CN112698400A (en) * | 2020-12-04 | 2021-04-23 | 中国科学院深圳先进技术研究院 | Inversion method, inversion apparatus, computer device, and computer-readable storage medium |
CN112698400B (en) * | 2020-12-04 | 2023-06-23 | 中国科学院深圳先进技术研究院 | Inversion method, inversion device, computer equipment and computer readable storage medium |
CN113589385A (en) * | 2021-08-11 | 2021-11-02 | 成都理工大学 | Reservoir characteristic inversion method based on seismic scattering wave field analysis |
CN113589385B (en) * | 2021-08-11 | 2023-08-04 | 成都理工大学 | Reservoir characteristic inversion method based on seismic scattered wave field analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Fast algorithms for elastic-wave-mode separation and vector decomposition using low-rank approximation for anisotropic media | |
Rawlinson et al. | Multiple reflection and transmission phases in complex layered media using a multistage fast marching method | |
Guo et al. | Comparison of two viscoacoustic propagators for Q-compensated reverse time migration | |
Chen et al. | Elastic least-squares reverse time migration via linearized elastic full-waveform inversion with pseudo-Hessian preconditioning | |
Waheed et al. | An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media | |
CN106133556B (en) | Determine the components of the wavefield | |
Song et al. | Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation | |
CN107153216B (en) | Method, apparatus and computer storage medium for determining Poynting vector of seismic wavefield | |
Liu et al. | Toward a unified analysis for source plane-wave migration | |
Ren et al. | Temporal high-order staggered-grid finite-difference schemes for elastic wave propagation | |
Du et al. | Recursive integral time-extrapolation methods for waves: A comparative review | |
CN109541682A (en) | Isotropic elasticity parameter protects width inversion method and device | |
CN109143339B (en) | Elastic reverse time migration imaging method and device based on transverse wave stress invariant | |
Li et al. | A finite-difference approach for solving pure quasi-P-wave equations in transversely isotropic and orthorhombic media | |
CN111007565B (en) | Three-dimensional frequency domain full-acoustic wave imaging method and device | |
Zheng et al. | 2D full-waveform modeling of seismic waves in layered karstic media | |
Ma et al. | Wavefield extrapolation in pseudodepth domain | |
Ivanov et al. | S-wave singularities in tilted orthorhombic media | |
Kim et al. | Estimated source wavelet‐incorporated reverse‐time migration with a virtual source imaging condition | |
Rusmanugroho et al. | Anisotropic full-waveform inversion with tilt-angle recovery | |
Araujo et al. | Symplectic scheme and the Poynting vector in reverse-time migration | |
Brackenhoff et al. | 3D Marchenko applications: Implementation and examples | |
Ma et al. | Nonsplit complex-frequency-shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations—Part 2: Wavefield simulations | |
Yang et al. | Deprimary reverse time migration angle gathers with a stabilized Poynting vector | |
Sun et al. | Multiple attenuation using λ-f domain high-order and high-resolution Radon transform based on SL0 norm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190329 |
|
WD01 | Invention patent application deemed withdrawn after publication |