CN109541663A - The correcting method of appearance Multipath Errors is surveyed in a kind of GNSS positioning - Google Patents
The correcting method of appearance Multipath Errors is surveyed in a kind of GNSS positioning Download PDFInfo
- Publication number
- CN109541663A CN109541663A CN201811339466.9A CN201811339466A CN109541663A CN 109541663 A CN109541663 A CN 109541663A CN 201811339466 A CN201811339466 A CN 201811339466A CN 109541663 A CN109541663 A CN 109541663A
- Authority
- CN
- China
- Prior art keywords
- satellite
- ambiguity
- floating
- upd
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000005211 surface analysis Methods 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 39
- 238000012360 testing method Methods 0.000 claims description 24
- 238000012937 correction Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 3
- 230000003068 static effect Effects 0.000 abstract description 5
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
- G01S19/54—Determining attitude using carrier phase measurements; using long or short baseline interferometry
- G01S19/55—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种GNSS定位测姿多路径误差的纠正方法,该方法包括:短基线求解及多路径计算;基于趋势面分析的多路径半天球模型建立;多路径实时纠正。使用趋势面分析方法对天空网格内的多路径空间分布特征进行拟合,提升了基于空间重复性的多路径建模方法对高频多路径的建模能力,提升了定位测姿精度;降低了对天空网格尺度的要求,提高了计算效率。本方法同时适用于静态和多路径环境不变的动态场景。
The invention discloses a method for correcting multi-path errors of GNSS positioning and attitude measurement. The trend surface analysis method is used to fit the multi-path spatial distribution characteristics in the sky grid, which improves the modeling ability of the multi-path modeling method based on spatial repeatability for high-frequency multi-path, and improves the positioning and attitude measurement accuracy; The requirements for the scale of the sky grid are improved, and the calculation efficiency is improved. This method is suitable for both static and dynamic scenes with unchanged multi-path environments.
Description
技术领域technical field
本发明涉及卫星定位导航领域,尤其涉及一种GNSS定位测姿多路径误差的纠正方法。The invention relates to the field of satellite positioning and navigation, in particular to a method for correcting multi-path errors in GNSS positioning and attitude measurement.
背景技术Background technique
基于多路径时空重复性的建模方法可以实现GNSS定位中多路径效应的实时处理。其中基于空间重复性的多路径建模方法,例如球谐函数模型和多径半天球图(MHM)方法,不仅适用于静态定位模式,还适用于船舶和飞机等多路径环境不变的动态载体定位,因此具有显著的优势。但这几种方法都存在明显的局限。球谐函数模型的精度依赖于拟合阶数,难于兼顾模型精度和计算效率。MHM法虽然计算效率较球谐函数模型有大幅提升,但它利用网格内的平均残差作为校正值,忽略了网格内多路径值的差异,导致高频多路径建模不佳同时需要精细的网格分割才能保证精度。The modeling method based on multipath spatiotemporal repeatability can realize the real-time processing of multipath effects in GNSS positioning. Among them, the multi-path modeling methods based on spatial repeatability, such as spherical harmonic function model and multi-path hemisphere map (MHM) method, are not only suitable for static positioning mode, but also for dynamic carriers with invariant multi-path environments such as ships and aircraft. positioning, and therefore has significant advantages. But these methods have obvious limitations. The accuracy of the spherical harmonic model depends on the fitting order, and it is difficult to take into account the model accuracy and computational efficiency. Although the computational efficiency of the MHM method is greatly improved compared with the spherical harmonic model, it uses the average residual error in the grid as the correction value, ignoring the difference of multi-path values in the grid, resulting in poor high-frequency multi-path modeling. Fine mesh segmentation can ensure accuracy.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种GNSS定位测姿多路径误差的纠正方法。该方法利用趋势面方法对天空图网格内的多路径空间分布特征进行拟合,提升了对高频多路径的建模能力,同时一定程度上降低了对网格尺度的要求进而提升了计算效率。The purpose of the present invention is to provide a method for correcting multi-path errors in GNSS positioning and attitude measurement. This method uses the trend surface method to fit the spatial distribution characteristics of multi-paths in the sky map grid, which improves the modeling ability of high-frequency multi-paths, and at the same time reduces the requirements for grid scale to a certain extent and improves the calculation. efficiency.
实现本发明目的的具体技术方案是:The concrete technical scheme that realizes the object of the present invention is:
一种GNSS定位测姿多路径误差的纠正方法,该方法包括以下具体步骤:A method for correcting multi-path errors in GNSS positioning and attitude measurement, the method includes the following specific steps:
步骤1:短基线求解及多路径计算Step 1: Short Baseline Solution and Multipath Computation
(1)建立共时钟单差模型(1) Establish a common clock single-difference model
基于共时钟多天线接收机求解短基线,站间单差能够消除大气延迟、卫星钟差和接收机钟差,得到共时钟单差模型:Based on the common clock multi-antenna receiver to solve the short baseline, the inter-station single difference can eliminate the atmospheric delay, satellite clock difference and receiver clock difference, and the common clock single difference model is obtained:
式中,Δ代表单差算子;λ为载波波长;φi、ri、Ni及φi mth分别为载波相位观测值、卫星至天线间的几何距离、模糊度参数及多路径效应;φUPD为UPD(uncalibrated phasedelay,相位延迟)参数;where Δ represents the single-difference operator; λ is the carrier wavelength; φ i , ri , N i and φ i mth are the observed value of the carrier phase, the geometric distance between the satellite and the antenna, the ambiguity parameter and the multipath effect, respectively; φ UPD is UPD (uncalibrated phasedelay, phase delay) parameter;
(2)解算短基线(2) Solve the short baseline
采用Kalman滤波解算单差模型;k历元时,观测方程的矩阵形式为:Kalman filtering is used to solve the single-difference model; at k epochs, the matrix form of the observation equation is:
Zk=HkXk+εk (2)Z k =H k X k +ε k (2)
X=[dBx dBy dBz VBx VBy VBz -ΔN1 … -ΔNm ΔφUPD]T (3)X=[dB x dB y dB z VB x VB y VB z -ΔN 1 … -ΔN m Δφ UPD ] T (3)
其中,Zk为观测值残差向量,即单差观测量减初始几何距离、初始模糊度及初始UPD值;Xk为状态向量;[dBx dBy dBz]T表示基线矢量增量;[VBx VBy VBz]T表示基线速度矢量增量;ΔNi为第i颗卫星的模糊度参数增量;Hk为设计矩阵,lx,ly,lz为卫星-接收机连线的方向余弦;(Xi,Yi,Zi)为卫星坐标;(X0,Y0,Z0)为接收机的近似坐标;ρ0为卫星到接收机近似坐标之间的距离εk为观测噪声;上标T代表矩阵的转置;Among them, Z k is the residual vector of the observation value, that is, the single-difference observation minus the initial geometric distance, the initial ambiguity and the initial UPD value; X k is the state vector; [dB x dB y dB z ] T represents the baseline vector increment; [VB x VB y VB z ] T is the baseline velocity vector increment; ΔN i is the ambiguity parameter increment of the i-th satellite; H k is the design matrix, l x , ly , and l z are the satellite-receiver connection Cosine of the direction of the line; (X i , Y i , Z i ) are satellite coordinates; (X 0 , Y 0 , Z 0 ) are the approximate coordinates of the receiver; ρ 0 is the distance between the satellite and the approximate coordinates of the receiver ε k is the observation noise; the superscript T represents the transpose of the matrix;
从k历元到k+1历元,状态向量的预测方程及其协方差矩阵为:From epoch k to epoch k+1, the prediction equation of the state vector and its covariance matrix are:
Xk+1,k=AkXk (6)X k+1,k =A k X k (6)
状态向量的更新公式及其协方差矩阵为:The update formula of the state vector and its covariance matrix are:
Xk+1=Xk+1,k+Kk+1(Zk+1-Ak+1Xk+1,k) (8)X k+1 =X k+1,k +K k+1 (Z k+1 -A k+1 X k+1,k ) (8)
Ck+1=Ck+1,k-Kk+1Ak+1Ck+1,k (9)C k+1 =C k+1,k -K k+1 A k+1 C k+1,k (9)
其中,Ak为状态转移矩阵,Qk为状态转移方程的误差协方差矩阵,Pk+1为观测噪声的方差矩阵,Kk+1为增益矩阵,Rk为观测噪声的方差矩阵,Ck+1,k及Ck+1分别为预测方差阵及更新方差阵;Among them, A k is the state transition matrix, Q k is the error covariance matrix of the state transition equation, P k+1 is the variance matrix of the observation noise, K k+1 is the gain matrix, R k is the variance matrix of the observation noise, C k+1, k and C k+1 are the prediction variance matrix and the update variance matrix, respectively;
利用Kalman滤波可获得模糊度参数的浮点解Ni,进一步对浮点模糊度的固定方式如下:选取参考卫星i,将该卫星的浮点模糊度Ni和UPD参数合并成新的UPD参数;此时新的UPD参数实为UPD与参考卫星浮点模糊度之和,而其余非参考卫星的浮点模糊度则变为其原浮点模糊度与参考卫星浮点模糊度之差;如下式所示:The floating-point solution Ni of the ambiguity parameter can be obtained by Kalman filtering, and the method of fixing the floating-point ambiguity is as follows: select a reference satellite i , and combine the floating-point ambiguity Ni and UPD parameters of the satellite into a new UPD parameter ; At this time, the new UPD parameter is actually the sum of UPD and the floating-point ambiguity of the reference satellite, while the floating-point ambiguity of other non-reference satellites becomes the difference between the original floating-point ambiguity and the floating-point ambiguity of the reference satellite; as follows The formula shows:
其中,为合并得到的新UPD参数;Ni为参考卫星i的浮点模糊度,k=1,2...i-1,i+i,…,n为卫星k在UPD参数与参考卫星浮点模糊度合并后的新浮点模糊度;通过三个步骤进行模糊度固定:首先忽略模糊度的整数特性,采用参数估计方法解算基线向量和模糊度浮点解;然后利用模糊度浮点解及其协方差矩阵,根据其整数特性逐卫星进行模糊度固定;将整数模糊度回代原观测方程重新解算,得到模糊度固定后的基线向量解;in, is the new UPD parameter obtained by merging; Ni is the floating-point ambiguity of the reference satellite i , k=1,2...i-1,i+i,...,n is the new floating-point ambiguity of satellite k after the UPD parameters are combined with the reference satellite floating-point ambiguity; the ambiguity is fixed in three steps: Firstly, ignoring the integer characteristics of ambiguity, the parameter estimation method is used to solve the baseline vector and the ambiguity floating-point solution; then the ambiguity floating-point solution and its covariance matrix are used to fix the ambiguity satellite by satellite according to its integer characteristics; Resolve the original observation equation by replacing the original observation equation to obtain the baseline vector solution after the ambiguity is fixed;
(3)基于已获得的解计算多路径(3) Calculate the multipath based on the obtained solution
Kalmam滤波解的后验残差即为卫星的多路径:The posterior residual of the Kalmam filter solution is the multipath of the satellite:
步骤2:基于趋势面分析的多路径半天球模型建立Step 2: Establishment of a multi-path hemisphere model based on trend surface analysis
(1)分配多路径数据至天空网格(1) Assign multipath data to the sky grid
对已获得多路径数据的卫星计算高度角方位角;首先,计算站心坐标系下用户到卫星的观测向量[Δe Δn Δu]T:Calculate the altitude and azimuth for the satellites that have obtained multipath data; first, calculate the observation vector [Δe Δn Δu] T from the user to the satellite in the station center coordinate system:
其中,[Δx Δy Δz]T是地心地固直角坐标系下用户到卫星的观测向量;λ和φ分别是经度和纬度;其次计算载体坐标系下用户到卫星的观测向量[Δx′ Δy′ Δz′]T:Among them, [Δx Δy Δz] T is the observation vector from the user to the satellite in the geocentric geo-fixed rectangular coordinate system; λ and φ are the longitude and latitude, respectively; Next, calculate the observation vector from the user to the satellite in the carrier coordinate system [Δx′ Δy′ Δz ′] T :
其中,ψ,θ和γ分别为载体航向角、俯仰角和横滚角;卫星高度角ele和方位角azi则为:Among them, ψ, θ and γ are the carrier heading angle, pitch angle and roll angle respectively; the satellite altitude angle ele and azimuth angle azi are:
将天空按照高度角和方位角划分为不同网格,并将对应高度角、方位角的卫星多路径数据分配至网格中;Divide the sky into different grids according to the altitude and azimuth, and assign the satellite multipath data corresponding to the altitude and azimuth to the grid;
(2)构建天空各网格的多路径趋势面模型(2) Build a multi-path trend surface model for each grid of the sky
首先,对天空网格的多路径建立一次和二次趋势面模型:First, model the primary and secondary trend surfaces for the multipath of the sky grid:
一次趋势面: A trend surface:
二次趋势面: Secondary trend surface:
式中,xi,yi表示天空网格内第i个多路径值对应的方位角和高度角,a0,a1,...an代表趋势面拟合系数,为趋势面模型的拟合值;where x i , y i represent the azimuth and elevation angles corresponding to the i- th multipath value in the sky grid, a 0 , a 1 ,...an represent the trend surface fitting coefficients, is the fitting value of the trend surface model;
其次,进行拟合适度的R2检验和显著性F检验;其中拟合度系数R2用回归平方和SSR占总离差平方和SST的比重来表示;R2取值介于0~1,其值越大,模型的拟合度越高;其计算公式为:Secondly, carry out the R 2 test and the significant F test for the appropriate fit; in which the coefficient of fit R 2 is represented by the proportion of the regression square sum SSR to the total deviation square sum S T ; the value of R 2 ranges from 0 to 1. The larger the value, the higher the fitting degree of the model; its calculation formula is:
其中,zi是为剩余平方和where zi is is the residual sum of squares
如果R2大预定阈值,则判定模型通过检验;If R 2 is greater than a predetermined threshold, the model is judged to pass the test;
若两个模型均通过检验再用F检验进行选优,F检验用于检验趋势面方程是否显著,其计算式为:If both models pass the test and then use the F test to select the best, the F test is used to test whether the trend surface equation is significant, and its calculation formula is:
式中,p代表回归平方和的自由度,由计算得到,(n-p-1)则为剩余平方和的自由度,r为趋势面分析次数,n为格点内残差值总数;F服从自由度为(p,n-p-1)的F分布,在给定置信水平的情况下,通过查F分布表,得到临界值F,以此检验所拟合的哪个趋势面方程在置信水平α下更为显著;where p represents the degrees of freedom of the regression sum of squares, given by Calculated, (np-1) is the degree of freedom of the remaining sum of squares, r is the number of trend surface analysis, n is the total number of residual values in the grid point; F obeys the F distribution with degrees of freedom (p, np-1), In the case of a given confidence level, by checking the F distribution table, the critical value F is obtained, so as to test which trend surface equation fitted is more significant under the confidence level α;
若均没有通过则直接用网格内的残差均值来替代趋势面模型;If none of them pass, the mean value of residuals in the grid is used to replace the trend surface model directly;
步骤3:多路径实时纠正Step 3: Multipath correction in real time
实时采集GNSS观测数据,计算载体坐标系下卫星的高度角、方位角,选取对应天空图网格的多路径趋势面模型进行多路径估计,并对卫星观测数据进行改正。Collect GNSS observation data in real time, calculate the altitude and azimuth angles of satellites in the carrier coordinate system, select the multi-path trend surface model corresponding to the sky map grid for multi-path estimation, and correct the satellite observation data.
本发明将趋势面分析法与传统MHM法相结合,其优势之一是沿袭了基于空间重复性的多路径建模方法同时适用于静态和多路径环境不变的动态定位导航应用,之二在于利用趋势面方法对天空图网格内的多路径空间分布特征进行拟合,提升了对高频多路径的建模能力,同时降低了对网格尺度的要求进而提升了计算效率。The present invention combines the trend surface analysis method with the traditional MHM method. One of its advantages is that it follows the multi-path modeling method based on spatial repeatability and is suitable for dynamic positioning and navigation applications in which static and multi-path environments remain unchanged. The trend surface method fits the spatial distribution characteristics of multi-paths in the sky map grid, which improves the modeling ability of high-frequency multi-paths, and reduces the requirements for the grid scale and improves the computational efficiency.
附图说明Description of drawings
图1为本发明流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明方法及多路径半天球图模型值的功率谱分析对比图;Fig. 2 is the power spectrum analysis comparison diagram of the method of the present invention and the model value of the multipath hemisphere;
图3为不同网格分辨率下两种模型基线解对比图。Figure 3 is a comparison diagram of the baseline solutions of the two models under different grid resolutions.
具体实施方式Detailed ways
以下结合附图及实施例对本发明做详细描述。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
实施例Example
本发明适用于GNSS定位导航应用中静态和多路径环境不变的动态载体的多路径误差纠正。与目前已有的基于空间重复性的多路径建模方法相比,本发明提升了对高频多路径的建模能力,同时降低了对网格尺度的要求进而提升了计算效率。The invention is suitable for multi-path error correction of static and multi-path environment-invariant dynamic carriers in GNSS positioning and navigation applications. Compared with the existing multi-path modeling methods based on spatial repeatability, the present invention improves the modeling capability of high-frequency multi-paths, reduces the requirement for grid scale, and improves computing efficiency.
为验证本发明,实施了静态短基线多路径改正实验,具体实施步骤包括:In order to verify the present invention, a static short-baseline multi-path correction experiment is implemented, and the specific implementation steps include:
步骤1:短基线求解及多路径计算Step 1: Short Baseline Solution and Multipath Computation
(1)建立共时钟单差模型(1) Establish a common clock single-difference model
基于共时钟多天线接收机求解短基线,站间单差可以消除大气延迟、卫星钟差和接收机钟差,得到共时钟单差模型:Based on the common clock multi-antenna receiver to solve the short baseline, the inter-station single difference can eliminate the atmospheric delay, satellite clock difference and receiver clock difference, and the common clock single difference model is obtained:
式中,Δ代表单差算子;λ为载波波长;φi、ri、Ni及φi mth分别为载波相位观测值、卫星至天线间的几何距离、模糊度参数及多路径效应;φUPD为UPD(uncalibrated phasedelay,相位延迟)参数。where Δ represents the single-difference operator; λ is the carrier wavelength; φ i , ri , N i and φ i mth are the observed value of the carrier phase, the geometric distance between the satellite and the antenna, the ambiguity parameter and the multipath effect, respectively; φ UPD is a UPD (uncalibrated phasedelay, phase delay) parameter.
(2)解算短基线(2) Solve the short baseline
采用Kalman滤波解算单差模型。k历元时,观测方程的矩阵形式为:The single-difference model is solved using Kalman filtering. At epoch k, the matrix form of the observation equation is:
Zk=HkXk+εk (2)Z k =H k X k +ε k (2)
X=[dBx dBy dBz VBx VBy VBz -ΔN1 … -ΔNm ΔφUPD]T (3)X=[dB x dB y dB z VB x VB y VB z -ΔN 1 … -ΔN m Δφ UPD ] T (3)
其中,Zk为观测值残差向量,即单差观测量减初始几何距离、初始模糊度及初始UPD值;Xk为状态向量;[dBx dBy dBz]T表示基线矢量增量;[VBx VBy VBz]T表示基线速度矢量增量;ΔNi为第i颗卫星的模糊度参数增量;Hk为设计矩阵,lx,ly,lz为卫星-接收机连线的方向余弦;(Xi,Yi,Zi)为卫星坐标;(X0,Y0,Z0)为接收机的近似坐标;ρ0为卫星到接收机近似坐标之间的距离εk为观测噪声。上标T代表矩阵的转置。Among them, Z k is the residual vector of the observation value, that is, the single difference observation minus the initial geometric distance, the initial ambiguity and the initial UPD value; X k is the state vector; [dB x dB y dB z ] T represents the baseline vector increment; [VB x VB y VB z ] T is the baseline velocity vector increment; ΔN i is the ambiguity parameter increment of the i-th satellite; H k is the design matrix, l x , ly , and l z are the satellite-receiver connection Cosine of the direction of the line; (X i , Y i , Z i ) are satellite coordinates; (X 0 , Y 0 , Z 0 ) are the approximate coordinates of the receiver; ρ 0 is the distance between the satellite and the approximate coordinates of the receiver εk is the observation noise. The superscript T represents the transpose of the matrix.
从k历元到k+1历元,状态向量的预测方程及其协方差矩阵为:From epoch k to epoch k+1, the prediction equation of the state vector and its covariance matrix are:
Xk+1,k=AkXk (6)X k+1,k =A k X k (6)
状态向量的更新公式及其协方差矩阵为:The update formula of the state vector and its covariance matrix are:
Xk+1=Xk+1,k+Kk+1(Zk+1-Ak+1Xk+1,k) (8)X k+1 =X k+1,k +K k+1 (Z k+1 -A k+1 X k+1,k ) (8)
Ck+1=Ck+1,k-Kk+1Ak+1Ck+1,k (9)C k+1 =C k+1,k -K k+1 A k+1 C k+1,k (9)
其中,Ak为状态转移矩阵,Qk为状态转移方程的误差协方差矩阵,Pk+1为观测噪声的方差矩阵,Kk+1为增益矩阵,Rk为观测噪声的方差矩阵,Ck+1,k及Ck+1分别为预测方差阵及更新方差阵。Among them, A k is the state transition matrix, Q k is the error covariance matrix of the state transition equation, P k+1 is the variance matrix of the observed noise, K k+1 is the gain matrix, R k is the variance matrix of the observed noise, C k+1, k and C k+1 are the prediction variance matrix and the update variance matrix, respectively.
利用Kalman滤波可获得模糊度参数的浮点解Ni,进一步对浮点模糊度的固定方式如下:选取参考卫星i,将该卫星的浮点模糊度Ni和UPD参数合并成新的UPD参数;此时新的UPD参数实为UPD与参考卫星浮点模糊度之和,而其余非参考卫星的浮点模糊度则变为其原浮点模糊度与参考卫星浮点模糊度之差;如下式所示:The floating-point solution Ni of the ambiguity parameter can be obtained by Kalman filtering, and the method of fixing the floating-point ambiguity is as follows: select a reference satellite i , and combine the floating-point ambiguity Ni and UPD parameters of the satellite into a new UPD parameter ; At this time, the new UPD parameter is actually the sum of UPD and the floating-point ambiguity of the reference satellite, while the floating-point ambiguity of other non-reference satellites becomes the difference between the original floating-point ambiguity and the floating-point ambiguity of the reference satellite; as follows The formula shows:
其中,为合并得到的新UPD参数;Ni为参考卫星i的浮点模糊度,k=1,2...i-1,i+i,n为卫星k在UPD参数与参考卫星浮点模糊度合并后的新浮点模糊度;通过三个步骤进行模糊度固定:首先忽略模糊度的整数特性,采用参数估计方法解算基线向量和模糊度浮点解;然后利用模糊度浮点解及其协方差矩阵,根据其整数特性逐卫星进行模糊度固定;将整数模糊度回代原观测方程重新解算,得到模糊度固定后的基线向量解。in, is the new UPD parameter obtained by merging; Ni is the floating-point ambiguity of the reference satellite i , k=1,2...i-1,i+i,n is the new floating-point ambiguity of satellite k after the UPD parameter is combined with the reference satellite floating-point ambiguity; the ambiguity is fixed in three steps: first ignore Integer characteristics of ambiguity, the parameter estimation method is used to solve the baseline vector and ambiguity floating-point solution; then the ambiguity floating-point solution and its covariance matrix are used to fix the ambiguity satellite by satellite according to its integer characteristics; The original observation equation is re-solved to obtain the baseline vector solution after the ambiguity is fixed.
(3)基于已获得的解计算多路径(3) Calculate the multipath based on the obtained solution
Kalmam滤波解的后验残差即为卫星的多路径:The posterior residual of the Kalmam filter solution is the multipath of the satellite:
步骤2:基于趋势面分析的多路径半天球模型建立Step 2: Establishment of a multi-path hemisphere model based on trend surface analysis
(1)分配多路径数据至天空网格(1) Assign multipath data to the sky grid
对已获得多路径数据的卫星计算高度角方位角。首先,计算站心坐标系下用户到卫星的观测向量[Δe Δn Δu]T:Elevation and azimuth are calculated for satellites for which multipath data has been acquired. First, calculate the observation vector [Δe Δn Δu] T from the user to the satellite in the station center coordinate system:
其中,[Δx Δy Δz]T是地心地固直角坐标系下用户到卫星的观测向量;λ和φ分别是经度和纬度;其次计算载体坐标系下用户到卫星的观测向量[Δx′ Δy′ Δz′]T:Among them, [Δx Δy Δz] T is the observation vector from the user to the satellite in the geocentric geo-fixed rectangular coordinate system; λ and φ are the longitude and latitude, respectively; Next, calculate the observation vector from the user to the satellite in the carrier coordinate system [Δx′ Δy′ Δz ′] T :
其中,ψ,θ和γ分别为载体航向角、俯仰角和横滚角;卫星高度角ele和方位角azi则为:Among them, ψ, θ and γ are the carrier heading angle, pitch angle and roll angle respectively; the satellite altitude angle ele and azimuth angle azi are:
将天空按照高度角和方位角划分为不同网格,划分单元可以以度为单位(如1°*1°,方位角×高度角);也可以考虑等面积分割法,即以一定面积为单位进行网格划分(通过保持高度角的间隔固定,方位角间隔的大小不同使每个格点的面积保持一致:例如格点面积为M°*N°时,高度角为0°~N°之间划分M个格点,高度角为N°~2N°之间划分M*COS(N/360*2pi)个格点)。然后,将对应高度角方位角的卫星多路径数据分配至网格中。Divide the sky into different grids according to the altitude and azimuth angles, and the division unit can be in degrees (such as 1°*1°, azimuth angle×altitude angle); you can also consider the equal area division method, that is, take a certain area as the unit Perform grid division (by keeping the interval of the height angle fixed, the size of the azimuth angle interval is different to keep the area of each grid point consistent: for example, when the grid point area is M°*N°, the height angle is between 0° and N°. M grid points are divided between, and M*COS (N/360*2pi) grid points are divided between N° and 2N° for the height angle. Then, the satellite multipath data corresponding to the altitude and azimuth are allocated to the grid.
(2)构建天空各网格的多路径趋势面模型(2) Build a multi-path trend surface model for each grid of the sky
首先,对天空网格的多路径建立一次和二次趋势面模型:First, model the primary and secondary trend surfaces for the multipath of the sky grid:
一次趋势面: A trend surface:
二次趋势面: Secondary trend surface:
式中,xi,yi表示天空网格内第i个多路径值对应的方位角和高度角,a0,a1,...an代表趋势面拟合系数,为趋势面模型的拟合值;where x i , y i represent the azimuth and elevation angles corresponding to the i- th multipath value in the sky grid, a 0 , a 1 ,...an represent the trend surface fitting coefficients, is the fitting value of the trend surface model;
其次,进行拟合适度的R2检验和显著性F检验;其中拟合度系数R2用回归平方和SSR占总离差平方和SST的比重来表示;R2取值介于0~1,其值越大,模型的拟合度越高;其计算公式为Secondly, carry out the R 2 test and the significant F test for the appropriate fit; in which the coefficient of fit R 2 is represented by the proportion of the regression square sum SSR to the total deviation square sum S T ; the value of R 2 ranges from 0 to 1, the larger the value, the higher the fit of the model; its calculation formula is
其中,zi是为剩余平方和where zi is is the residual sum of squares
如果R2大一定阈值,则判定模型通过检验。If R 2 is larger than a certain threshold, the model is judged to pass the test.
若两个模型均通过检验再用F检验进行选优,F检验用于检验趋势面方程是否显著,其计算式为:If both models pass the test and then use the F test to select the best, the F test is used to test whether the trend surface equation is significant, and its calculation formula is:
式中,p代表回归平方和的自由度,由计算得到,(n-p-1)则为剩余平方和的自由度,r为趋势面分析次数,n为格点内残差值总数;F服从自由度为(p,n-p-1)的F分布,在给定置信水平的情况下,通过查F分布表,得到临界值F,以此检验所拟合的哪个趋势面方程在置信水平α下更为显著。In the formula, p represents the degree of freedom of the regression sum of squares, which is given by Calculated, (np-1) is the degree of freedom of the remaining sum of squares, r is the number of trend surface analysis, n is the total number of residual values in the grid point; F obeys the F distribution with degrees of freedom (p, np-1), In the case of a given confidence level, the critical value F can be obtained by checking the F distribution table, so as to test which trend surface equation fitted is more significant at the confidence level α.
若均没有通过则直接用网格内的残差均值来替代趋势面模型;If none of them pass, the mean value of residuals in the grid is used to replace the trend surface model directly;
步骤3:多路径实时纠正Step 3: Multipath correction in real time
实时采集GNSS观测数据,计算载体坐标系下卫星的高度角方位角,选取对应天空图网格的多路径趋势面模型进行多路径估计,并对卫星观测数据进行改正。Collect GNSS observation data in real time, calculate the altitude and azimuth of satellites in the carrier coordinate system, select the multi-path trend surface model corresponding to the sky map grid for multi-path estimation, and correct the satellite observation data.
通过对比本发明方法和已有的基于空间重复性的多路径建模方法(如多路径半天球图,MHM),本发明方法对高频多路径的纠正效果优于MHM。图2是利用两种方法多路径模型之后,提取其中一颗卫星(以G06为例)的模型值进行功率谱分析的结果,如图所示,本发明方法功率在整个频段均高于MHM模型,表明本发明方法相比MHM模型包含了更丰富的多路径变化,不仅能更好地进行低频多路径的改正,还提升了对高频多路径的改正性能。By comparing the method of the present invention with the existing multi-path modeling methods based on spatial repeatability (such as multi-path hemisphere map, MHM), the method of the present invention is better than MHM in the correction effect of high-frequency multi-path. Figure 2 is the result of extracting the model value of one of the satellites (taking G06 as an example) for power spectrum analysis after using the multipath models of two methods. As shown in the figure, the power of the method of the present invention is higher than that of the MHM model in the entire frequency band , indicating that the method of the present invention contains more abundant multi-path changes than the MHM model, which can not only perform better correction of low-frequency multi-path, but also improve the correction performance of high-frequency multi-path.
对天空分别进行1°*1°、2°*2°、5°*5°、9°*9°的网格划分,两种方法的基线解进行对比结果见图3,结果表明随着天空网格的增大,本发明方法的基线解更为稳定,说明本发明方法对天空网格精细程度要求更低,因此算法效率更高。The sky is divided into grids of 1°*1°, 2°*2°, 5°*5°, and 9°*9° respectively. The comparison results of the baseline solutions of the two methods are shown in Figure 3. The results show that with the sky As the grid increases, the baseline solution of the method of the present invention is more stable, indicating that the method of the present invention has lower requirements on the fineness of the sky grid, so the algorithm is more efficient.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811339466.9A CN109541663B (en) | 2018-11-12 | 2018-11-12 | A Correction Method for Multipath Error of GNSS Positioning and Attitude Measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811339466.9A CN109541663B (en) | 2018-11-12 | 2018-11-12 | A Correction Method for Multipath Error of GNSS Positioning and Attitude Measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109541663A true CN109541663A (en) | 2019-03-29 |
CN109541663B CN109541663B (en) | 2022-04-05 |
Family
ID=65846773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811339466.9A Active CN109541663B (en) | 2018-11-12 | 2018-11-12 | A Correction Method for Multipath Error of GNSS Positioning and Attitude Measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109541663B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110068847A (en) * | 2019-04-01 | 2019-07-30 | 和芯星通科技(北京)有限公司 | A kind of method and apparatus that appearance is surveyed in the positioning of GNSS multi-aerial receiver |
CN110456397A (en) * | 2019-07-29 | 2019-11-15 | 桂林电子科技大学 | A multi-antenna ultra-short baseline positioning monitoring method, device and storage medium |
CN110687556A (en) * | 2019-11-04 | 2020-01-14 | 中国电子科技集团公司第五十四研究所 | Multi-path error modeling method suitable for LAAS |
CN111505670A (en) * | 2020-05-06 | 2020-08-07 | 苏州象天春雨科技有限公司 | Multipath detection and suppression method and system using dual antennas |
CN112612039A (en) * | 2020-12-23 | 2021-04-06 | 武汉大学 | GNSS indirect signal detection and elimination method and system for static survey station |
CN114488227A (en) * | 2022-01-26 | 2022-05-13 | 西南交通大学 | Multipath error correction method based on spatial correlation |
CN114488228A (en) * | 2022-04-11 | 2022-05-13 | 南京北斗创新应用科技研究院有限公司 | GNSS multi-path error weakening method suitable for dynamic carrier platform |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122566A (en) * | 2014-07-01 | 2014-10-29 | 华东师范大学 | Multi-path error removing method of navigation satellite system and multi-path hemisphere model |
CN105629263A (en) * | 2015-12-21 | 2016-06-01 | 广州中海达卫星导航技术股份有限公司 | Troposphere atmosphere delay error correction method and correction system |
-
2018
- 2018-11-12 CN CN201811339466.9A patent/CN109541663B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104122566A (en) * | 2014-07-01 | 2014-10-29 | 华东师范大学 | Multi-path error removing method of navigation satellite system and multi-path hemisphere model |
CN105629263A (en) * | 2015-12-21 | 2016-06-01 | 广州中海达卫星导航技术股份有限公司 | Troposphere atmosphere delay error correction method and correction system |
Non-Patent Citations (5)
Title |
---|
DANAN DONG ET AL.: "Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame", 《GEOPHYSICAL JOURNAL INTERNATIONAL》 * |
周东卫: "GNSS参考站网络的对流层完备性监测技术研究", 《工程勘察》 * |
梁茜茜 等: "基于机载激光雷达数据的海岸带水域提取方法", 《遥感技术与应用》 * |
胡羽中等: "GNSS形变监测中系统误差的时空相关性研究", 《测绘信息与工程》 * |
黄丁发等: "GPS/VRS实时网络改正数生成算法研究", 《测绘学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110068847A (en) * | 2019-04-01 | 2019-07-30 | 和芯星通科技(北京)有限公司 | A kind of method and apparatus that appearance is surveyed in the positioning of GNSS multi-aerial receiver |
CN110456397A (en) * | 2019-07-29 | 2019-11-15 | 桂林电子科技大学 | A multi-antenna ultra-short baseline positioning monitoring method, device and storage medium |
CN110687556A (en) * | 2019-11-04 | 2020-01-14 | 中国电子科技集团公司第五十四研究所 | Multi-path error modeling method suitable for LAAS |
CN110687556B (en) * | 2019-11-04 | 2021-06-22 | 中国电子科技集团公司第五十四研究所 | Multi-path error modeling method suitable for LAAS |
CN111505670A (en) * | 2020-05-06 | 2020-08-07 | 苏州象天春雨科技有限公司 | Multipath detection and suppression method and system using dual antennas |
CN112612039A (en) * | 2020-12-23 | 2021-04-06 | 武汉大学 | GNSS indirect signal detection and elimination method and system for static survey station |
CN112612039B (en) * | 2020-12-23 | 2023-08-15 | 武汉大学 | GNSS indirect signal detection and elimination method and system for static station |
CN114488227A (en) * | 2022-01-26 | 2022-05-13 | 西南交通大学 | Multipath error correction method based on spatial correlation |
CN114488227B (en) * | 2022-01-26 | 2023-10-20 | 西南交通大学 | Multipath error correction method based on spatial correlation |
CN114488228A (en) * | 2022-04-11 | 2022-05-13 | 南京北斗创新应用科技研究院有限公司 | GNSS multi-path error weakening method suitable for dynamic carrier platform |
CN114488228B (en) * | 2022-04-11 | 2022-07-01 | 南京北斗创新应用科技研究院有限公司 | GNSS multi-path error weakening method suitable for dynamic carrier platform |
Also Published As
Publication number | Publication date |
---|---|
CN109541663B (en) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109541663B (en) | A Correction Method for Multipath Error of GNSS Positioning and Attitude Measurement | |
US11378699B2 (en) | System and method for determining GNSS positioning corrections | |
Guo et al. | Adaptive robust Kalman filtering for precise point positioning | |
CN106842268B (en) | double-GNSS receiver carrier phase double-difference integer ambiguity floating point solution vector estimation method | |
CN104122566B (en) | Multi-path error removing method of navigation satellite system and multi-path hemisphere model | |
CN111239787A (en) | GNSS dynamic Kalman filtering method in cluster autonomous coordination | |
US11609346B2 (en) | GNSS-based attitude determination algorithm and triple-antenna GNSS receiver for its implementation | |
CN110412638A (en) | A low-cost three-antenna GNSS RTK positioning and attitude measurement method | |
CN104483691B (en) | A kind of GNSS combines accurate one-point positioning method | |
US20130234886A1 (en) | Adaptive Method for Estimating the Electron Content of the Ionosphere | |
CN107085198B (en) | A kind of method and apparatus constructing four array element solid arrays | |
WO2023197714A1 (en) | Gnss multi-path error reducing method suitable for dynamic carrier platform | |
CN109669196B (en) | A Precise Attitude Measurement Method for Multi-antenna GNSS Carrier Phase Considering Baseline Deformation | |
Ng et al. | Direct position estimation utilizing non-line-of-sight (NLOS) GPS signals | |
Chu et al. | GPS/Galileo long baseline computation: method and performance analyses | |
CN101893712B (en) | A Fitting Method for Precise Orbit Determination of Geostationary Satellites | |
CN110907975B (en) | Ambiguity fixing method based on sequential least squares | |
CN110823191B (en) | Method and system for determining ocean current measurement performance of mixed baseline dual-antenna squint interference SAR | |
CN105353392A (en) | Dynamic carrier precision positioning method based on multiple GNSS antennas | |
US20210396890A1 (en) | Attitude determination based on global navigation satellite system information | |
CN117269987A (en) | Low-orbit enhanced SBAS ionosphere monitoring system and grid estimation method | |
CN109633722B (en) | North-finding method for small UAV satellite based on one-third L1 wavelength antenna configuration | |
CN106199670B (en) | A kind of GNSS single-frequency single epoch attitude determination method based on Monte Carlo | |
Jiexin et al. | Combination of land-based and satellite-based OTH geolocations using differentiable exact penalty method | |
Chen et al. | Performance analysis of the GNSS instantaneous ambiguity resolution method using three collinear antennas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |