CN109541461A - 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法 - Google Patents

一种基于磁场分布监测的永磁同步电机偏心故障诊断方法 Download PDF

Info

Publication number
CN109541461A
CN109541461A CN201811290972.3A CN201811290972A CN109541461A CN 109541461 A CN109541461 A CN 109541461A CN 201811290972 A CN201811290972 A CN 201811290972A CN 109541461 A CN109541461 A CN 109541461A
Authority
CN
China
Prior art keywords
fault
permanent magnet
magnet synchronous
synchronous motor
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811290972.3A
Other languages
English (en)
Other versions
CN109541461B (zh
Inventor
黄嵩
曾冲
杨永明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201811290972.3A priority Critical patent/CN109541461B/zh
Publication of CN109541461A publication Critical patent/CN109541461A/zh
Application granted granted Critical
Publication of CN109541461B publication Critical patent/CN109541461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Abstract

本发明公开了一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,主要步骤为:1)同步测量所述永磁同步电机的定子齿的磁通。2)计算所述永磁同步电机的故障特征值fq,并对所述故障特征值fq进行离散傅里叶变换,从而得到故障特征值空间分布的谐波情况FIk(t)。3)根据故障特征值空间分布的谐波情况FIk(t)判断所述永磁同步电机是否发生故障。4)诊断所述永磁同步电机的偏心故障类型;5)计算所述永磁同步电机的故障程度和/或偏心方向。本发明提出的诊断方法不仅可以识别偏心故障的类型,还可以准确识别偏心故障的程度和/或方向。

Description

一种基于磁场分布监测的永磁同步电机偏心故障诊断方法
技术领域
本发明涉及电机故障诊断领域,具体是一种基于磁场分布监测的永磁同步电机偏心故障诊断方法。
背景技术
永磁同步电机具有结构简单、无电刷和滑环,无电励磁系统,运行可靠性高、功率密度大、电机的形状和尺寸灵活多样等多种显著优点,符合节能减排的经济发展需要。永磁同步电机不仅可以部分替代传统的电励磁电机,还可以实现电励磁电机难以达到的高效率。因此,永磁同步电机在航空航天、数控机床、电动汽车等领域获得了广泛应用。
但是,由于永磁同步电机的工作环境大多恶劣,因此永磁同步电机不可避免的会出现各种故障。尤其是当偏心故障严重时,会导致永磁同步电机停转,甚至出现永久性损伤。若不能及时发现永磁同步电机的偏心故障,并计算出偏心故障程度和/或偏心故障,容易造成巨大的经济损失。
随着故障诊断技术的不断发展,出现了各类电机故障诊断系统。但目前的电机故障诊断系统仍然存在准确度低、诊断片面等问题。
发明内容
本发明的目的是解决现有技术中存在的问题。
为实现本发明目的而采用的技术方案是这样的,一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,主要包括以下步骤:
1)确定待诊断偏心故障的永磁同步电机。
2)测量所述永磁同步电机的定子齿的磁通。
进一步,同步测量永磁同步电机的定子齿的磁通的主要步骤如下:
2.1)在所述永磁同步电机的每一个定子齿上绕制一个线圈,线圈匝数为1,并对定子齿和所述定子齿上绕制的线圈依次编号。记定子齿和所述定子齿上绕制的线圈编号均为i。i=1,2,…,N。N为电机定子齿总数。定子齿和定子槽数量相同。N也为电机定子槽总数。
2.2)同步测量t至t+T时间内各线圈上的电压ui,并记录t+T时刻的电机瞬时转速R。T为同步电周期。
2.3)对各线圈电压进行傅里叶变换,从而获取各线圈电压基波分量
2.4)计算各定子齿磁通的基波分量基波分量如下所示:
式中,p为所述永磁同步电机的极对数。j为虚数单位。R为t+T时刻的电机瞬时转速。为各线圈电压基波分量。i为定子齿和定子齿上绕制的线圈编号。
3)计算所述永磁同步电机的故障特征值fi,并对所述故障特征值fi进行离散傅里叶变换,从而得到故障特征值空间分布的谐波情况FIk(t)。
进一步,计算永磁同步电机的故障特征值fi的主要步骤如下:
3.1)计算所述永磁同步电机在无故障情况下的第i号定子齿的磁通基波分量i为所述永磁同步电机的定子齿序号。
无故障情况下,第i号定子齿的磁通基波分量如下所示:
式中,N为所述永磁同步电机的定子槽数。为第i号定子齿的磁通基波。为第号定子齿的磁通基波。
3.2)计算故障特征值fi。故障特征值fi如下所示:
式中,为无故障情况下第i号定子齿的磁通基波分量。
3.3)对故障特征值fi进行离散傅里叶变换,从而获取故障特征值空间分布中谐波分布情况FIk(t)。k为谐波次数。
4)根据故障特征值空间分布的谐波情况FIk(t)判断所述永磁同步电机是否发生故障。若未发生故障,则结束诊断,若发生故障,则转入步骤5。
进一步,诊断永磁同步电机是否发生偏心故障的主要步骤如下。
4.1)设定阈值TH1和阈值TH2。TH1表示最小程度的偏心故障对FI1的影响。TH2为偏心故障引起的γ的最大值。γ为除基波外其他谐波能量在整个频谱中的占比。FI1为故障特征值空间波形的基波。
4.2)判断所述永磁同步电机是否发生偏心故障。
若故障特征值空间分布中谐波分布情况FIk(t)满足公式4,则判定所述永磁同步电机发生偏心故障。
5)诊断所述永磁同步电机的偏心故障类型。
进一步,诊断所述永磁同步电机的偏心故障类型的方法为:
5.1)判断FI1(t)的值是否为常数。若FI1(t)为常数,则所述永磁同步电机的故障为静态偏心故障。若否,则转入步骤2。
5.2)判断FI1(t)的幅值是否为常数,且判断FI1(t)的相位是否随时间以同步速度变化。若FI1(t)的幅值为常数,且FI1(t)的相位随时间以同步速度变化,则所述永磁同步电机的故障为动态偏心故障。若否,则转入步骤3。
5.3)判断FI1(t)的幅值是否随时间变化。若FI1(t)的幅值随时间变化,则所述永磁同步电机的故障为混合偏心故障。
6)计算所述永磁同步电机的故障程度和/或偏心方向。
进一步,计算所述永磁同步电机的故障程度和/或偏心方向的主要方法为:
若所述永磁同步电机发生静态偏心故障或动态偏心故障,则故障程度FS如下所示:
式中,TΩ为同步机械周期。TΩ=pT。t为时间。FI1(τ)为故障特征值空间波形的基波。
若所述永磁同步电机发生静态偏心故障,则偏心方向FO如下所示:
式中,TΩ为同步机械周期。TΩ=pT。p为所述永磁同步电机的极对数。t为时间。
若所述永磁同步电机发生混合偏心故障,则将故障特征值空间分布中谐波分布情况分解为静态部分FI1s和动态部分FI1r。静态部分FI1s和动态部分FI1r分别如下所示:
式中,TΩ为同步机械周期。TΩ=pT。
其中,分解得到的静态部分FI1s的故障程度和故障方向分别按照公式4、公式5计算;分解得到的动态部分FI1r故障程度按照公式4计算。
本发明的技术效果是毋庸置疑的。本发明可用于诊断永磁同步电机偏心故障,并且不受其他故障的影响。本发明提出利用探测线圈诊断偏心故障,无需电机相电流、相电压、转子位置等信号。本发明提出的诊断方法可以识别偏心故障的类型。本发明可以准确识别偏心故障的程度和方向。本发明不受电机工况变化的影响。本发明不依赖电机参数。本发明无需事先获取电机正常运行时的参考值。
附图说明
图1为不同状态对应的故障特征值频谱;
图2为不同类型偏心故障对应的故障特征量基波幅值;
图3为不同类型偏心故障对应的故障特征量基波相位;
图4为负载转矩对诊断结果的影响;
图5为转速对诊断结果的影响;
图6(a)为静态偏心故障示意图;
图6(b)为动态偏心故障示意图;
图6(c)为混合偏心故障示意图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
参见图1至图5,一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,主要包括以下步骤:
1)确定待诊断偏心故障的永磁同步电机。
2)测量所述永磁同步电机的定子齿的磁通。
进一步,同步测量永磁同步电机的定子齿的磁通的主要步骤如下:
2.1)在所述永磁同步电机的每一个定子齿上绕制一个线圈,线圈匝数为1,并对定子齿和所述定子齿上绕制的线圈依次编号。记定子齿和所述定子齿上绕制的线圈编号均为i。i=1,2,…,N。N为电机定子齿总数。定子齿和定子槽数量相同。N也为电机定子槽总数。
第1号齿上的线圈为1号线圈,第2号齿上的线圈为2号线圈。由于每个齿上都有一个线圈,因此线圈的数量和定子齿相同。
2.2)同步测量t至t+T时间内各线圈上的电压ui,并记录t+T时刻的电机瞬时转速R。T为同步电周期。本发明适用于电机稳定运行的情况,平均转速和瞬时转速基本相同。
2.3)对各线圈电压进行傅里叶变换,从而获取各线圈电压基波分量
2.4)计算各定子齿磁通的基波分量基波分量如下所示:
式中,p为所述永磁同步电机的极对数。j为虚数单位。R为t+T时刻的电机转速。为各线圈电压基波分量;i为定子齿和定子齿上绕制的线圈编号。
3)计算所述永磁同步电机的故障特征值fi,并对所述故障特征值fi进行离散傅里叶变换,从而得到故障特征值空间分布的谐波情况FIk(t)。fi是故障特征值(faultindicator)的缩写。
进一步,计算永磁同步电机的故障特征值fi的主要步骤如下:
3.1)计算所述永磁同步电机在无故障情况下的第i号定子齿的磁通基波分量i为所述永磁同步电机的定子齿序号。
无故障情况下,第i号定子齿的磁通基波分量如下所示:
式中,N为所述永磁同步电机的定子槽数。为第i号定子齿的磁通基波。为第号定子齿的磁通基波。
3.2)计算故障特征值fi。故障特征值fi如下所示:
式中,为无故障情况下第i号定子齿的磁通基波分量。
3.3)对故障特征值fi进行离散傅里叶变换,从而获取故障特征值空间分布中谐波分布情况FIk(t)。k为谐波次数。N为所述永磁同步电机的定子槽数。
4)根据故障特征值空间分布的谐波情况FIk(t)判断所述永磁同步电机是否发生故障。若未发生故障,则结束诊断,若发生故障,则转入步骤5。
进一步,诊断永磁同步电机是否发生偏心故障的主要步骤如下。
4.1)设定阈值TH1和阈值TH2。TH1表示最小程度的偏心故障对FI1的影响。TH2为偏心故障引起的γ的最大值。γ为除基波外其他谐波能量在整个频谱中的占比。FI1为故障特征值空间波形的基波。
4.2)判断所述永磁同步电机是否发生偏心故障。
若故障特征值空间分布中谐波分布情况FIk(t)满足公式4,则判定所述永磁同步电机发生偏心故障。
式中,n为任意定子齿序号。FIn(t)为故障特征值空间分布中的谐波分布。
5)诊断所述永磁同步电机的偏心故障类型。
进一步,诊断所述永磁同步电机的偏心故障类型的方法为:
5.1)判断FI1(t)的值是否为常数。若FI1(t)为常数,则所述永磁同步电机的故障为静态偏心故障。若否,则转入步骤2。
5.2)判断FI1(t)的幅值是否为常数,且判断FI1(t)的相位是否随时间以同步速度变化。若FI1(t)的幅值为常数,且FI1(t)的相位随时间以同步速度变化,则所述永磁同步电机的故障为动态偏心故障。若否,则转入步骤3。
5.3)判断FI1(t)的幅值是否随时间变化。若FI1(t)的幅值随时间变化,则所述永磁同步电机的故障为混合偏心故障。
6)计算所述永磁同步电机的故障程度和/或偏心方向。
进一步,计算所述永磁同步电机的故障程度和/或偏心方向的主要方法为:
若所述永磁同步电机发生静态偏心故障或动态偏心故障,则故障程度FS如下所示:
式中,TΩ为同步机械周期。TΩ=pT。t为时间。FI1(τ)为故障特征值空间波形的基波。
若所述永磁同步电机发生静态偏心故障,则偏心方向FO如下所示:
式中,TΩ为同步机械周期。TΩ=pT。p为所述永磁同步电机的极对数。t为时间。
若所述永磁同步电机发生混合偏心故障,则将故障特征值空间分布中谐波分布情况分解为静态部分FI1s和动态部分FI1r。静态部分FI1s和动态部分FI1r分别如下所示:
式中,TΩ为同步机械周期。TΩ=pT。
其中,分解得到的静态部分FI1s的故障程度和故障方向分别按照公式4、公式5计算;分解得到的动态部分FI1r故障程度按照公式4计算。
实施例2:
一种基于磁场分布监测的永磁同步电机偏心故障诊断方法的原理为:
对于一台正常的永磁同步电机而言,其定转子几何中心(Os、Or)以及转子的旋转中心(Oω)都是重合的。
如图6a所示,如果Or和Oω同时偏离Os至同一位置,那么永磁同步电机发生静态偏心。
如图6b所示如果Or偏离Os,而Oω仍然和Os重合,那么永磁同步电机发生动态偏心。
如图6c所示如果Or和Oω都偏离Os,但处于不同位置,那么电机发生混合偏心。
偏心故障的程度和方向可以用偏心率表示,偏心率的定义如下:
式中,是从Os到Or的矢量,lg0是无故障情况下气隙长度。
对于静态偏心,偏心率满足下式:
式中,是从Os到Or的矢量。
对于动态偏心,偏心率满足下式:
式中,Ω是转子旋转的机械角速度。是从Os到Or的矢量。
混合偏心可以看作静态偏心和动态偏心的叠加:
偏心故障下,电机气隙分布可以用下式表示:
式中,θ是气隙对应的空间位置角;rs是定子内径;rr是转子外径;是偏心率的方向角。
通常定子内径和转子外径远大于气隙长度,因此式(12)可以近似为:
永磁同步电机的定子齿磁通满足下式:
式中,下标i是定子齿编号。Fi是第i号齿对应的等效磁动势,Rc是第i号齿等效磁路对应的定转子铁心(包括永磁体)磁阻,Rg为第i号齿对应气隙磁阻。
Rg可以通过下式计算得到:
式中,μ0是真空磁导率,Ag是截面积,lg是气隙长度。
对于正常的电机,lg=lg0,定子齿磁通φih满足:
偏心故障时,气隙长度由式13计算得出,定子齿磁通φie满足:
式中,θi是第i号齿的空间位置角(令θ1=0)。
定义各齿对应的故障特征量为:
式中,β为计算系数。
式中,计算系数β满足下式:
对于一个特定的电机而言,可以认为β是一个常数。
静态偏心下故障特征fi(i)满足下式:
动态偏心下故障特征fi(i,t)满足下式:
混合偏心下故障特征fi(i,t)满足下式:
上述各式表明,发生偏心故障时fi在空间上呈正弦分布,并且其幅值可以反映偏心率的大小(即偏心故障的严重程度),其相位可以反映偏心率的角度(即偏心故障的方向)。此外,根据fi分布随时间变化的关系可以识别偏心故障的类型(静态、动态、混合)。因此可以根据fi对偏心故障进行诊断。
实施例3:
一种基于磁场分布监测的永磁同步电机偏心故障诊断方法的仿真实验,主要包括以下步骤:
1)确定待诊断偏心故障的永磁同步电机;
2)同步测量所述永磁同步电机的定子齿的磁通;
3)计算所述永磁同步电机的故障特征值fi,并对所述故障特征值fi进行离散傅里叶变换,从而得到故障特征值空间分布的谐波情况FIk(t);
4)根据故障特征值空间分布的谐波情况FIk(t)判断所述永磁同步电机是否发生故障;若未发生故障,则结束诊断,若发生故障,则转入步骤5;
进一步,诊断永磁同步电机是否发生偏心故障的主要步骤如下。
4.1)设定阈值TH1和阈值TH2。TH1=0.01,TH2=0.1。TH1表示最小程度的偏心故障对FI1的影响。TH2为偏心故障引起的γ的最大值。γ为除基波外其他谐波能量在整个频谱中的占比。FI1为当谐波次数k=1时,故障特征值空间分布中谐波分布。
不同状态对应的故障特征值频谱如图1所示。从图1中可以看出,电机正常运行时,FI1的基波和谐波都很小。发生偏心故障时,FI1的基波显著增大,其他谐波仍然很小;发生匝间短路和失磁故障时,FI1的基波和谐波都显著增大。偏心故障时FI1的分布明显区别去其他状态,因此FI1可以诊断出偏心故障。
4.2)判断所述永磁同步电机是否发生偏心故障。
若故障特征值空间分布中谐波分布情况FIk(t)满足公式23,则判定所述永磁同步电机发生偏心故障。
式中,TH1表示最小程度的偏心故障对FI1的影响。γ为除基波外其他谐波能量在整个频谱中的占比。TH2为偏心故障引起的γ的最大值。
表1不同状态偏心故障存在性诊断结果
从表1结果可以看出,只有偏心故障时,公式4所述的两个条件同时满足,说明本方法可以正确诊断出偏心故障并且不受其他类型故障的影响。
静态、动态、混合偏心时,FI1的幅值和相位随时间的变化情况如图3所示,图中各状态对应的电机转速为3000r/mn,机械周期为20ms。
5)诊断所述永磁同步电机的偏心故障类型。
6)计算所述永磁同步电机的故障程度和/或偏心方向。
可以看出,静态偏心时,FI1的幅值和相位基本上都不随时间变化;动态偏心时,FI1的幅值基本上不随时间变化,相位随时间均速减小,减小的速率和转子机械角速度一致。混合偏心时,FI1的幅值和相位都随时间变化。显然,根据步骤5所述条件可以轻易判断出上述偏心故障的类型。说明本方法可以正确诊断出偏心故障的类型。
在仿真中改变偏心距离和方向的设置,可得不同程度、方向的偏心故障,它们对应的故障程度诊断结果如表和表所示,其中是仿真中偏心率大小和方向的设定值,FS和FO是根据步骤5计算得到诊断结果:
表2不同故障程度诊断结果
表3不同方向静态偏心故障诊断结果
从表2可以看出,相同时,静态偏心、动态偏心对应的FS基本一致。并且FS和大致成正比。从表3可以看出,不同变化时,FO也随之变化,并且FO的误差始终保持在10°以内。上述分析说明本方法可以正确反映偏心故障的程度和方向。
不同负载转矩、转速下的诊断结果如图5所示。从图5可以看出,FS和FO基本上都不受负载转矩及转速的影响。说明本方法不受电机工况影响,可以在各种工况下正确诊断出偏心故障的程度的方向。

Claims (6)

1.一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于,主要包括以下步骤:
1)确定待诊断偏心故障的所述永磁同步电机;
2)测量所述永磁同步电机的定子齿的磁通。
3)计算所述永磁同步电机的故障特征值fi,并对所述故障特征值fi进行离散傅里叶变换,从而得到故障特征值空间分布的谐波情况FIk(t);
4)根据故障特征值空间分布的谐波情况FIk(t)判断所述永磁同步电机是否发生故障;若未发生故障,则结束诊断,若发生故障,则转入步骤5;
5)诊断所述永磁同步电机的偏心故障类型;
6)计算所述永磁同步电机的故障程度和/或偏心方向。
2.根据权利要求1所述的一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于:测量永磁同步电机的定子齿的磁通的主要步骤如下:
1)在所述永磁同步电机的每一个定子齿上绕制一个线圈,线圈匝数为1,并对定子齿和所述定子齿上绕制的线圈依次编号;记定子齿和所述定子齿上绕制的线圈编号均为i;i=1,2,…,N;N为电机定子齿总数;定子齿和定子槽数量相同;N也为电机定子槽总数;
2)同步测量t至t+T时间内各线圈上的电压ui,并记录t+T时刻的电机瞬时转速R;T为同步电周期;
3)对各线圈电压进行傅里叶变换,从而获取各线圈电压基波分量
4)计算各定子齿磁通的基波分量基波分量如下所示:
式中,p为所述永磁同步电机的极对数;j为虚数单位;R为t+T时刻的电机转速;为各线圈电压基波分量;i为定子齿和定子齿上绕制的线圈编号。
3.根据权利要求1或2所述的一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于:计算永磁同步电机的故障特征值fi的主要步骤如下:
1)估计所述永磁同步电机在无故障情况下的第i号定子齿的磁通基波分量i为所述永磁同步电机的定子齿序号;
无故障情况下,第i号定子齿的磁通基波分量如下所示:
式中,N为所述永磁同步电机的定子槽数;为第i号定子齿的磁通基波;为第号定子齿的磁通基波;
2)计算故障特征值fi;故障特征值fi(i,t)如下所示:
式中,为无故障情况下第i号定子齿的磁通基波分量;
3)对故障特征值fi进行离散傅里叶变换,从而获取故障特征值空间分布中谐波分布情况FIk(t);k为谐波次数;
4.根据权利要求1或3所述的一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于,诊断永磁同步电机是否发生偏心故障的主要步骤如下;
1)设定阈值TH1和阈值TH2;TH1表示最小程度的偏心故障对FI1的影响;TH2为偏心故障引起的γ的最大值;γ为除基波外其他谐波能量在整个频谱中的占比;FI1为故障特征值空间波形的基波;
2)判断所述永磁同步电机是否发生偏心故障;
若故障特征值空间分布中谐波分布情况FIk(t)满足公式4,则判定所述永磁同步电机发生偏心故障;
5.根据权利要求1或2所述的一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于,诊断所述永磁同步电机的偏心故障类型的方法为:
1)判断FI1(t)的值是否为常数;若FI1(t)为常数,则所述永磁同步电机的故障为静态偏心故障;若否,则转入步骤2;
2)判断FI1(t)的幅值是否为常数,且判断FI1(t)的相位是否随时间以同步速度变化;若FI1(t)的幅值为常数,且FI1(t)的相位随时间以同步速度变化,则所述永磁同步电机的故障为动态偏心故障;若否,则转入步骤3;
3)判断FI1(t)的幅值是否随时间变化;若FI1(t)的幅值随时间变化,则所述永磁同步电机的故障为混合偏心故障。
6.根据权利要求1或2所述的一种基于磁场分布监测的永磁同步电机偏心故障诊断方法,其特征在于,计算所述永磁同步电机的故障程度和/或偏心方向的主要方法为:
若所述永磁同步电机发生静态偏心故障或动态偏心故障,则故障程度FS如下所示:
式中,TΩ为同步机械周期;TΩ=pT;t为时间;FI1(τ)为故障特征值空间波形的基波;
若所述永磁同步电机发生静态偏心故障,则偏心方向FO如下所示:
式中,TΩ为同步机械周期;TΩ=pT;p为所述永磁同步电机的极对数;t为时间。
若所述永磁同步电机发生混合偏心故障,则将故障特征值空间波形的基波分解为静态部分FI1s和动态部分FI1r;静态部分FI1s和动态部分FI1r分别如下所示:
式中,TΩ为同步机械周期;TΩ=pT。
其中,分解得到的静态部分FI1s的故障程度和故障方向分别按照公式4、公式5计算;分解得到的动态部分FI1r故障程度按照公式4计算。
CN201811290972.3A 2018-10-31 2018-10-31 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法 Active CN109541461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811290972.3A CN109541461B (zh) 2018-10-31 2018-10-31 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811290972.3A CN109541461B (zh) 2018-10-31 2018-10-31 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法

Publications (2)

Publication Number Publication Date
CN109541461A true CN109541461A (zh) 2019-03-29
CN109541461B CN109541461B (zh) 2020-10-09

Family

ID=65845747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811290972.3A Active CN109541461B (zh) 2018-10-31 2018-10-31 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法

Country Status (1)

Country Link
CN (1) CN109541461B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814030A (zh) * 2019-04-01 2019-05-28 西北工业大学 一种同步发电机定转子气隙动态偏心故障的诊断方法
CN110501640A (zh) * 2019-07-10 2019-11-26 哈尔滨工业大学(威海) 一种基于气隙磁场直接测试检测永磁电机静态偏心的方法
CN110703091A (zh) * 2019-09-12 2020-01-17 哈尔滨工业大学(威海) 电动汽车用内置式永磁同步电机静态偏心故障检测方法
CN111983450A (zh) * 2020-08-18 2020-11-24 哈尔滨工业大学 一种基于埋入式探测线圈的电动汽车驱动电机故障诊断系统
CN112698206A (zh) * 2021-01-20 2021-04-23 哈尔滨工业大学(威海) 一种旋转电机偏心故障模拟机构及方法
CN112881910A (zh) * 2021-01-20 2021-06-01 哈尔滨工业大学(威海) 一种旋转永磁同步电机动态偏心故障检测方法
CN113094952A (zh) * 2021-04-06 2021-07-09 哈尔滨工业大学(威海) 一种基于杂散磁场的永磁电机静态偏心检测方法
CN114295979A (zh) * 2021-12-30 2022-04-08 哈尔滨工业大学(威海) 一种永磁同步电机混合偏心故障诊断方法
CN114690036A (zh) * 2022-03-30 2022-07-01 浙江大学 一种永磁同步电机局部退磁故障定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460866A (zh) * 2003-06-12 2003-12-10 国家磁浮交通工程技术研究中心 长定子铁芯电气性能测试装置
CN101566646A (zh) * 2008-04-25 2009-10-28 通用汽车环球科技运作公司 用于检测永磁同步电机中的不足相电流的方法和设备
CN103956954A (zh) * 2014-03-27 2014-07-30 广东美的制冷设备有限公司 永磁同步电机转子退磁的检测方法和检测装置
CN107167695A (zh) * 2017-06-08 2017-09-15 重庆大学 基于磁场分布监测的永磁同步电机匝间短路故障诊断方法
KR20180103384A (ko) * 2017-03-09 2018-09-19 엘지전자 주식회사 모터의 고장 진단 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460866A (zh) * 2003-06-12 2003-12-10 国家磁浮交通工程技术研究中心 长定子铁芯电气性能测试装置
CN101566646A (zh) * 2008-04-25 2009-10-28 通用汽车环球科技运作公司 用于检测永磁同步电机中的不足相电流的方法和设备
CN103956954A (zh) * 2014-03-27 2014-07-30 广东美的制冷设备有限公司 永磁同步电机转子退磁的检测方法和检测装置
KR20180103384A (ko) * 2017-03-09 2018-09-19 엘지전자 주식회사 모터의 고장 진단 방법
CN107167695A (zh) * 2017-06-08 2017-09-15 重庆大学 基于磁场分布监测的永磁同步电机匝间短路故障诊断方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814030A (zh) * 2019-04-01 2019-05-28 西北工业大学 一种同步发电机定转子气隙动态偏心故障的诊断方法
CN110501640A (zh) * 2019-07-10 2019-11-26 哈尔滨工业大学(威海) 一种基于气隙磁场直接测试检测永磁电机静态偏心的方法
CN110501640B (zh) * 2019-07-10 2021-08-17 哈尔滨工业大学(威海) 一种基于气隙磁场直接测试检测永磁电机静态偏心的方法
CN110703091A (zh) * 2019-09-12 2020-01-17 哈尔滨工业大学(威海) 电动汽车用内置式永磁同步电机静态偏心故障检测方法
CN111983450A (zh) * 2020-08-18 2020-11-24 哈尔滨工业大学 一种基于埋入式探测线圈的电动汽车驱动电机故障诊断系统
CN112698206B (zh) * 2021-01-20 2022-02-01 哈尔滨工业大学(威海) 一种旋转电机偏心故障模拟机构及方法
CN112698206A (zh) * 2021-01-20 2021-04-23 哈尔滨工业大学(威海) 一种旋转电机偏心故障模拟机构及方法
CN112881910A (zh) * 2021-01-20 2021-06-01 哈尔滨工业大学(威海) 一种旋转永磁同步电机动态偏心故障检测方法
CN113094952A (zh) * 2021-04-06 2021-07-09 哈尔滨工业大学(威海) 一种基于杂散磁场的永磁电机静态偏心检测方法
CN113094952B (zh) * 2021-04-06 2022-05-13 哈尔滨工业大学(威海) 一种基于杂散磁场的永磁电机静态偏心检测方法
CN114295979A (zh) * 2021-12-30 2022-04-08 哈尔滨工业大学(威海) 一种永磁同步电机混合偏心故障诊断方法
CN114690036A (zh) * 2022-03-30 2022-07-01 浙江大学 一种永磁同步电机局部退磁故障定位方法
CN114690036B (zh) * 2022-03-30 2024-03-26 浙江大学 一种永磁同步电机局部退磁故障定位方法

Also Published As

Publication number Publication date
CN109541461B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN109541461A (zh) 一种基于磁场分布监测的永磁同步电机偏心故障诊断方法
CN103926533B (zh) 永磁同步电机失磁故障在线诊断方法及系统
Da et al. A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis
US20130033215A1 (en) Apparatus and method for permanent magnet electric machine condition monitoring
Drif et al. Discriminating the simultaneous occurrence of three-phase induction motor rotor faults and mechanical load oscillations by the instantaneous active and reactive power media signature analyses
CN103248307B (zh) 感应电机调速系统的电流传感器故障诊断方法
CN107192947B (zh) 基于磁场监测的永磁同步电机故诊断方法
CN103823150B (zh) 多传感器联合的汽轮发电机转子匝间短路故障诊断方法
Mirimani et al. An online method for static eccentricity fault detection in axial flux machines
Mirimani et al. Static eccentricity fault detection in single-stator–single-rotor axial-flux permanent-magnet machines
CN107167695B (zh) 基于磁场分布监测的永磁同步电机匝间短路故障诊断方法
CN106772037B (zh) 基于双线圈的同步发电机转子绕组匝间短路诊断方法
CN101710162A (zh) 基于定子铁心振动的电机转子绕组匝间短路故障诊断方法
CN108680858B (zh) 用于监测永磁同步电机转子失磁故障的方法和系统
CN101977008A (zh) 双馈风电机组关键传感器故障的判断方法
CN103713235A (zh) 基于端部畸变效应的汽轮发电机转子匝间短路故障诊断方法
CN104569733A (zh) 一种确定电机励磁绕组匝间短路故障位置的方法
Ogidi et al. Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators
CN104764974A (zh) 一种无刷励磁发电机转子绕组匝间短路故障诊断方法
CN105891660B (zh) 一种发电机定子绕组匝间短路故障的检测方法
CN107783006A (zh) 水轮发电机转子绕组匝间短路故障检测方法
Jin et al. Drivetrain gearbox fault diagnosis: Vibration-and current-based approaches
CN109814030A (zh) 一种同步发电机定转子气隙动态偏心故障的诊断方法
CN101694508A (zh) 一种基于低次谐波轴电压信号的电机转子典型故障诊断方法
CN106501665B (zh) 基于检测线圈的水轮发电机转子绕组匝间短路诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant