CN109540970B - 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法 - Google Patents

一种ZnO纳米柱/SnO2薄膜探测器以及制备方法 Download PDF

Info

Publication number
CN109540970B
CN109540970B CN201811488035.9A CN201811488035A CN109540970B CN 109540970 B CN109540970 B CN 109540970B CN 201811488035 A CN201811488035 A CN 201811488035A CN 109540970 B CN109540970 B CN 109540970B
Authority
CN
China
Prior art keywords
sno
column
zno
detector
zno nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811488035.9A
Other languages
English (en)
Other versions
CN109540970A (zh
Inventor
杨为家
陈柏桦
刘志豪
刘俊杰
刘铭全
何鑫
梁萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Eighth Engineering Bureau Testing Technology Co ltd
Original Assignee
China Construction Eighth Engineering Bureau Testing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Eighth Engineering Bureau Testing Technology Co ltd filed Critical China Construction Eighth Engineering Bureau Testing Technology Co ltd
Priority to CN201811488035.9A priority Critical patent/CN109540970B/zh
Publication of CN109540970A publication Critical patent/CN109540970A/zh
Application granted granted Critical
Publication of CN109540970B publication Critical patent/CN109540970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供一种ZnO纳米柱/SnO2薄膜探测器以及制备方法,该探测器从下至上依次包括衬底层、SnO2薄膜层、嵌入SnO2薄膜层的ZnO纳米柱,以及包覆在SnO2薄膜层、ZnO纳米柱上的Pt量子点和设置在两端的电极,该探测器的响应时间为5‑10s,能够同时对乙醇、CO、NO气体进行探测,探测极限为5‑10ppm。本发明适用范围广,可以在多种衬底上制备ZnO纳米柱/SnO2薄膜探测器,本发明制备的探测器同时含有ZnO和SnO2两种有效探测材料体系,具有双波段选择性光探测或同时对两种特殊的气体进行选择性检测;该探测器同时包含有ZnO纳米柱阵列和SnO2多孔薄膜,有利于提高探测的灵敏度。

Description

一种ZnO纳米柱/SnO2薄膜探测器以及制备方法
技术领域
本发明涉及探测器技术领域,尤其是一种ZnO纳米柱/SnO2薄膜探测器以及制备方法。
背景技术
由于ZnO、SnO2、TiO2等氧化物属于半导体材料具有优异的物理和化学性能,其在电子信息器件、发光器件、光催化降解、催化反应、太阳能电池、锂电池等领域发挥重要作用。因此,氧化物半导体材料是目前材料领域的一个研究重点和热点。
传感器是当前电子器件重要发展的一个关键领域。ZnO和SnO2具有成本较低、性能突出的特点,ZnO在常温下禁带宽度为3.37eV,为直接带隙半导体,对紫外光的吸收系数大,可以充分的吸收紫外光;而且其载流子迁移率很高,高的电子迁移率有助于具有更大的电导和快速的电荷分离;同时它的激子束缚能很大,约为60meV,具有优良的光电性质,除此之外,由于其独特且优良的介电和压电等特性,在光电探测和气敏传感等领域得到了广泛的研究。
研究表明,ZnO在工作温度为200℃以上时对NO2有较好的选择性和较高的灵敏度,可探测ppb级的NO2气体,然而,高的工作温度限制了气敏元件对易燃易爆气体的检测,同时,在高温工作环境中,金属氧化物晶面会产生扩散和烧结效应,从而影响传感器稳定性。
目前,气敏传感器主要是基于SnO2薄膜材料,可对H2、CO、NO2、C2H2、H2S、NH3、CH4、天然气等还原性、可燃性和有毒气体进行全面检测。然而,SnO2气敏传感器的工作温度较高,且性能不稳定,而且通常只能针对某一种气体进行高效选择性探测。实际探测过程中,为了提高有毒有害气体检测的种类,通常需要安装多个探测报警器,这样导致成本的增加,进一步提高了探测成本。因此,发展具有多功能的气敏探测器是十分必要的。
发明内容
针对现有技术的不足,本发明提供一种ZnO纳米柱/SnO2薄膜探测器以及制备方法,本发明制备工艺简单,制备成本低,并且本发明制备的探测器可同时检测多种气体。
本发明的技术方案为:一种ZnO纳米柱/SnO2薄膜探测器的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,将0.1-0.3质量份数的氯化亚锡、0.2-0.6质量份数的醋酸钠、0.04-0.8质量份数的氯化锌、为0.1-0.2质量份数的聚乙二醇(PEG,分子量2000-6000),20-40体积份数的乙二醇为混合,在温度为60-80℃下使用磁力搅拌机搅拌60-120min,使SnCl2、ZnCl2和聚乙二醇完全溶解到乙二醇当中,获得均匀混合的前驱体溶液;
S2)、前驱体薄膜的制备,将干净的衬底放到加热垫板上,在温度为200-300℃的条件下,使用喷枪在衬底上均匀喷涂20-40s,获得前驱体薄膜;
S3)、高温烧结,将步骤S2)制备的前驱体薄膜转移到箱式炉当中,以每分钟5-10℃的升温速率加热至500-900℃,并保温60-120min,然后自然降温到室温;在快速升温过程中,氯化亚锡、ZnCl2与醋酸钠或者聚乙二醇一起反应,分解成SnO2、ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱,经过高温煅烧,获得了ZnO纳米柱嵌入SnO2的复合薄膜;
S4)、制备电极,使用掩膜板和电子束蒸发在复合薄膜上蒸镀刷形金属电极,之后,在300-400℃下进行合金化处理,改善电极和复合薄膜的接触特性,由此获得结构完整的ZnO纳米柱/SnO2薄膜探测器。
进一步的,步骤S2)中,所述的衬底为蓝宝石、硅片、金属、玻璃、石英中的任意一种,衬底尺寸为2cm×2cm-8cm×8cm。
进一步的,步骤S3)、在制备电极前,采用喷金仪喷涂5-15s,在复合薄膜上生长2-20nm的Pt量子点。
本发明还提供一种基于新型ZnO纳米柱/SnO2薄膜探测器,从下至上依次包括衬底层、SnO2薄膜层、嵌入SnO2薄膜层的ZnO纳米柱,以及包覆在SnO2薄膜层、ZnO纳米柱上的Pt量子点和设置在两端的电极。
进一步的,所述的ZnO纳米柱/SnO2薄膜探测器的响应时间为5-10s。
进一步的,所述的ZnO纳米柱/SnO2薄膜探测器能够同时探测乙醇、氢气、丙酮、CO气体,探测极限为5-10ppm。
进一步的,所述的ZnO纳米柱/SnO2薄膜探测器对紫外光的探测小于250nm。
进一步的,所述的衬底层为蓝宝石、硅片、金属、玻璃、石英中的任意一种,其尺寸为2cm×2cm-8cm×8cm。
进一步的,所述的ZnO纳米柱的直径为300-360nm。
进一步的,所述的SnO2薄膜层的厚度为500-5500nm。
进一步的,所述的Pt量子点的直径为2-20nm。
本发明的有益效果为:
1、本发明适用范围广,可以硅片、金属、导电玻璃等多种衬底上制备新型ZnO纳米柱/SnO2薄膜探测器;
2、本发明制备的新型ZnO纳米柱/SnO2薄膜探测器同时含有ZnO和SnO2两种有效探测材料体系,具有双波段选择性光探测或同时对两种特殊的气体进行选择性检测;
3、本发明制备新型ZnO纳米柱/SnO2薄膜探测器同时包含有ZnO纳米柱阵列和SnO2多孔薄膜,有利于提高探测的灵敏度。
附图说明
图1为本发明实施例1制备的高温烧结后的新型ZnO纳米柱/SnO2薄膜探测器的低倍扫描电子显微镜(SEM);
图2为本发明实施例1制备的新型ZnO纳米柱/SnO2薄膜探测器的高倍SEM;
图3为本发明实施例1制备的新型ZnO纳米柱/SnO2薄膜探测器的结构示意图。
图中,1-衬底层,2- SnO2薄膜层,3- ZnO纳米柱,4-Pt量子点,5-电极。
实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例
一种ZnO纳米柱/SnO2薄膜探测器的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,将0.16g的氯化亚锡、0.3g的醋酸钠、0.08g的氯化锌、为0.2g的聚乙二醇(PEG,分子量2000-6000),40mL的乙二醇为混合,在温度为80℃下使用磁力搅拌机搅拌60min,使SnCl2、ZnCl2和聚乙二醇完全溶解到乙二醇当中,获得均匀混合的前驱体溶液;
S2)、前驱体薄膜的制备,将干净的玻璃衬底放到加热垫板上,在温度为250℃的条件下,使用喷枪在衬底上均匀喷涂20s,获得前驱体薄膜,其中,喷枪的压力为2KG,衬底的尺寸为2cm×2cm;
S3)、高温烧结,将步骤S2)制备的前驱体薄膜转移到箱式炉当中,以每分钟10℃的升温速率加热至600℃,并保温60min,然后自然降温到室温;在快速升温过程中,氯化亚锡、ZnCl2与醋酸钠或者聚乙二醇一起反应,分解成SnO2、ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱,经过高温煅烧,获得了ZnO纳米柱嵌入SnO2的复合薄膜;
S4)、用喷金仪喷涂10s,在复合薄膜上生长2-10nm的Pt量子点;
S5)、制备电极,使用掩膜板和电子束蒸发在复合薄膜上蒸镀刷形金属电极,之后,在300℃下进行合金化处理,改善电极和复合薄膜的接触特性,由此获得结构完整的ZnO纳米柱/SnO2薄膜探测器。
图1是本实施例制备的高温烧结后的新型ZnO纳米柱/SnO2薄膜探测器的低倍SEM图,从图中可以清楚的观察到薄膜的表面密密麻麻布满了白色的纳米颗粒,图2是本实施例制备的新型ZnO纳米柱/SnO2薄膜探测器的高倍SEM图;进一步的高倍显微照片显示,低倍下看到的白色纳米颗粒是纳米柱,纳米柱的直径大部分落在300-360nm区间,此外,SnO2薄膜上还有较多的纳米级孔洞暴露在薄膜的表面。
实施例
一种ZnO纳米柱/SnO2薄膜探测器的制备方法,包括以下步骤:
S1)、前驱体溶液的制备,将0.2g的氯化亚锡、0.4g的醋酸钠、0.4g的氯化锌、为0.2g的聚乙二醇(PEG,分子量6000),30mL的乙二醇为混合,在温度为80℃下使用磁力搅拌机搅拌80min,使SnCl2、ZnCl2和聚乙二醇完全溶解到乙二醇当中,获得均匀混合的前驱体溶液;
S2)、前驱体薄膜的制备,将干净的蓝宝石衬底放到加热垫板上,在温度为300℃的条件下,使用喷枪在衬底上均匀喷涂20s,获得前驱体薄膜,其中,喷枪的压力为2KG,衬底的尺寸为2cm×2cm;
S3)、高温烧结,将步骤S2)制备的前驱体薄膜转移到箱式炉当中,以每分钟10℃的升温速率加热至700℃,并保温60min,然后自然降温到室温;在快速升温过程中,氯化亚锡、ZnCl2与醋酸钠或者聚乙二醇一起反应,分解成SnO2、ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱,经过高温煅烧,获得了ZnO纳米柱嵌入SnO2的复合薄膜;
S4)、用喷金仪喷涂10s,在复合薄膜上生长2-10nm的Pt量子点;
S5)、制备电极,使用掩膜板和电子束蒸发在复合薄膜上蒸镀刷形金属电极,之后,在300℃下进行合金化处理,改善电极和复合薄膜的接触特性,由此获得结构完整的ZnO纳米柱/SnO2薄膜探测器。
实施例
本实施例提供一种ZnO纳米柱/SnO2薄膜探测器,如图3所示,从下至上依次包括衬底层1、SnO2薄膜层2、嵌入SnO2薄膜层2的ZnO纳米柱3,以及包覆在SnO2薄膜层2、ZnO纳米柱3上的Pt量子点和4设置在两端的电极5,所述的ZnO纳米柱/SnO2薄膜探测器的响应时间为5-10s,所述的ZnO纳米柱/SnO2薄膜探测器能够同时对乙醇、CO、NO气体进行探测,探测极限为5-10ppm。
进一步的,所述的ZnO纳米柱/SnO2薄膜探测器对紫外光的探测小于250nm。
进一步的,所述的衬底层1为蓝宝石、硅片、金属、玻璃、石英中的任意一种。
进一步的,所述的ZnO纳米柱3的直径为300-360nm。
进一步的,所述的SnO2薄膜层2的厚度为500-5500nm。
进一步的,所述的Pt量子点4的直径为2-20nm。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

1.一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于,包括以下步骤:
S1)、前驱体溶液的制备,将0.1-0.3质量份数的氯化亚锡、0.2-0.6质量份数的醋酸钠、0.04-0.8质量份数的氯化锌、0.1-0.2质量份数的分子量为2000-6000的聚乙二醇,20-40体积份数的乙二醇混合,在温度为60-80℃下使用磁力搅拌机搅拌60-120min,使SnCl2、ZnCl2和聚乙二醇完全溶解到乙二醇当中,获得均匀混合的前驱体溶液;
S2)、前驱体薄膜的制备,将干净的衬底放到加热垫板上,在温度为200-300℃的条件下,使用喷枪在衬底上均匀喷涂20-40s,获得前驱体薄膜;
S3)、高温烧结,将步骤S2)制备的前驱体薄膜转移到箱式炉当中,以每分钟5-10℃的升温速率加热至500-900℃,并保温60-120min,然后自然降温到室温;在快速升温过程中,氯化亚锡、ZnCl2与醋酸钠一起反应,分解成SnO2、ZnO、氯化氢、水、二氧化碳,氯化氢、水、二氧化碳挥发出来形成孔洞;由于ZnCl2速率较快,因而形成了长度较短的纳米柱,经过高温煅烧,获得了ZnO纳米柱嵌入SnO2的复合薄膜;
在制备电极前,采用喷金仪喷涂5-15s,在复合薄膜上生长2-20nm的Pt量子点;
S4)、制备电极,使用掩膜板和电子束蒸发在复合薄膜上蒸镀刷形金属电极,之后,在300-400℃下进行合金化处理,改善电极和复合薄膜的接触特性,由此获得结构完整的ZnO纳米柱/SnO2薄膜探测器;
所述的ZnO纳米柱/SnO2薄膜探测器能够同时对乙醇、氢气、丙酮、CO气体进行探测,探测极限为5-10ppm。
2.根据权利要求1所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:步骤S2)中,所述的衬底为蓝宝石、硅片、金属、玻璃、石英中的任意一种,衬底尺寸为2cm×2cm-8cm×8cm。
3.根据权利要求1所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:所述的探测器从下至上依次包括衬底层、SnO2薄膜层、嵌入SnO2薄膜层的ZnO纳米柱,以及包覆在SnO2薄膜层、ZnO纳米柱上的Pt量子点和设置在两端的电极。
4.根据权利要求3所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:所述的ZnO纳米柱/SnO2薄膜探测器的响应时间为5-10s。
5.根据权利要求4所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:所述的ZnO纳米柱/SnO2薄膜探测器对紫外光的探测小于250nm。
6.根据权利要求3所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:所述的ZnO纳米柱的直径为300-360nm。
7.根据权利要求3所述的一种ZnO纳米柱/SnO2薄膜探测器的制备方法,其特征在于:所述的SnO2薄膜层的厚度为500-5500nm。
CN201811488035.9A 2018-12-06 2018-12-06 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法 Active CN109540970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811488035.9A CN109540970B (zh) 2018-12-06 2018-12-06 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811488035.9A CN109540970B (zh) 2018-12-06 2018-12-06 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法

Publications (2)

Publication Number Publication Date
CN109540970A CN109540970A (zh) 2019-03-29
CN109540970B true CN109540970B (zh) 2024-03-19

Family

ID=65854120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811488035.9A Active CN109540970B (zh) 2018-12-06 2018-12-06 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法

Country Status (1)

Country Link
CN (1) CN109540970B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909185B (zh) * 2021-01-18 2022-08-26 西安工业大学 一种基于量子点和高分子聚合物的光导器件的制备方法
CN112945377B (zh) * 2021-02-01 2022-08-30 河北工业大学 一种基于等离子激元的深紫外光电探测器
CN113916945A (zh) * 2021-10-06 2022-01-11 吉林大学 一种基于SnO2-ZnO多孔分等级结构敏感材料的气体传感器、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344546A (ja) * 1989-07-13 1991-02-26 Mitsubishi Electric Corp ガス絶縁電気機器内部異常検出方法
KR20120059038A (ko) * 2010-11-30 2012-06-08 고려대학교 산학협력단 p형 산화물 반도체 나노섬을 코팅한 n형 산화물 반도체 나노선 가스 센서 및 그 제조 방법
CN104607216A (zh) * 2014-12-31 2015-05-13 华东理工大学 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170052162A1 (en) * 2015-08-21 2017-02-23 The Regents Of The University Of California Devices and methods for detecting halogenated organic compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344546A (ja) * 1989-07-13 1991-02-26 Mitsubishi Electric Corp ガス絶縁電気機器内部異常検出方法
KR20120059038A (ko) * 2010-11-30 2012-06-08 고려대학교 산학협력단 p형 산화물 반도체 나노섬을 코팅한 n형 산화물 반도체 나노선 가스 센서 및 그 제조 방법
CN104607216A (zh) * 2014-12-31 2015-05-13 华东理工大学 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing;Zhiyong Zhang et al.;《Sensors and Actuators B: Chemical》;714-727 *
近室温紫外光增感SnO_2-ZnO薄膜型乙醇传感器的研究;许婧;于英硕;张轶群;孙鉴波;刘凤敏;卢革宇;;计测技术(S1);142-144 *

Also Published As

Publication number Publication date
CN109540970A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Gomaa et al. Gas sensing performance of sprayed NiO thin films toward NO2 gas
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
Gurav et al. Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios
Jaiswal et al. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films
CN109540970B (zh) 一种ZnO纳米柱/SnO2薄膜探测器以及制备方法
Kar et al. One-dimensional ZnO nanostructure arrays: Synthesis and characterization
Mehrabian et al. UV detecting properties of hydrothermal synthesized ZnO nanorods
Bagheri et al. Highly sensitive and selective ethanol sensor based on Sm2O3-loaded flower-like ZnO nanostructure
Park et al. Light-activated gas sensing of Bi2O3-core/ZnO-shell nanobelt gas sensors
Kumar et al. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network
Peng et al. Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature
Duan et al. Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement
Gunasekaran et al. Fluorine doped ZnO thin film as acetaldehyde sensor
Young et al. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell
Yeh et al. Enhanced room-temperature NO2 gas sensing with TeO2/SnO2 brush-and bead-like nanowire hybrid structures
Liu et al. Fabrication and CO sensing properties of mesostructured ZnO gas sensors
Hsu et al. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates
Haunsbhavi et al. Pseudo n-type behaviour of nickel oxide thin film at room temperature towards ammonia sensing
Mohamed et al. Hierarchically assembled tin-doped zinc oxide nanorods using low-temperature immersion route for low temperature ethanol sensing
Devi et al. Enhanced room temperature ammonia gas sensing properties of Al-doped ZnO nanostructured thin films
Shen et al. Ethanol sensing properties of TeO2 thin films prepared by non-hydrolytic sol–gel process
Suganthi et al. Manganese (Mn2+) doped hexagonal prismatic zinc oxide (ZnO) nanostructures for chemiresistive NO2 sensor
Joshi et al. SnO2–Co3O4 pores composites for CO2 gas sensing at low operating temperature
Lin et al. Photochemically-activated p-type CuGaO2 thin films for highly-stable room-temperature gas sensors
Sathya et al. Effect of zirconium doping on ZnO nanostructured thin films and the enhanced ammonia gas sensing activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240202

Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Applicant after: Shenzhen Wanzhida Enterprise Management Co.,Ltd.

Country or region after: China

Address before: 529020, No. 22, Dongcheng village, Pengjiang District, Guangdong, Jiangmen

Applicant before: WUYI University

Country or region before: China

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240221

Address after: 202, 2nd Floor, Building 1, No. 73 Changhong West Road, Xilu Street, Fangshan District, Beijing, 100000 RMB

Applicant after: China Construction Eighth Engineering Bureau Testing Technology Co.,Ltd.

Country or region after: China

Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000

Applicant before: Shenzhen Wanzhida Enterprise Management Co.,Ltd.

Country or region before: China

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant