CN109537388A - 适用于寒冷地区半刚性基层抗裂路面结构及施工方法 - Google Patents

适用于寒冷地区半刚性基层抗裂路面结构及施工方法 Download PDF

Info

Publication number
CN109537388A
CN109537388A CN201811455589.9A CN201811455589A CN109537388A CN 109537388 A CN109537388 A CN 109537388A CN 201811455589 A CN201811455589 A CN 201811455589A CN 109537388 A CN109537388 A CN 109537388A
Authority
CN
China
Prior art keywords
semi
rigid
basalt fibre
layer
fibre band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811455589.9A
Other languages
English (en)
Inventor
高江平
彭秋玉
阿不都沙拉木·买买提艾力
刘雯支
胡海波
王泽普
何媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201811455589.9A priority Critical patent/CN109537388A/zh
Publication of CN109537388A publication Critical patent/CN109537388A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C3/00Foundations for pavings
    • E01C3/06Methods or arrangements for protecting foundations from destructive influences of moisture, frost or vibration
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/32Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

本发明公开了一种适用于寒冷地区半刚性基层抗裂路面结构及施工方法,该结构包括在路基上从下至上依次铺设的半刚性底基层、半刚性基层和面层,半刚性底基层和半刚性基层之间铺设有第一透层,半刚性基层和面层之间铺设有防护层,半刚性基层内铺设有加强层且与其构筑为一体,加强层包括多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带,半刚性基层包括半刚性下基层和半刚性上基层;该方法包括步骤:一、半刚性底基层施工;二、第一透层的施工;三、半刚性基层和加强层的施工;四、防护层的施工;五、面层的施工。本发明通过玄武岩纤维带主动抵抗半刚性基层开裂,从而阻止或延缓反射裂缝的产生,具有更好的阻裂效果和经济效益。

Description

适用于寒冷地区半刚性基层抗裂路面结构及施工方法
技术领域
本发明属于半刚性基层抗裂路面施工技术领域,具体涉及一种适用于寒冷地区半刚性基层抗裂路面结构及施工方法。
背景技术
半刚性基层沥青路面是目前我国高等级公路路面结构的主要形式,具有高强度、良好平整度和抗疲劳性能好的特点,再加上其板体性好,利于施工机械化且工程造价低,为交通基础设施建设提供了有力的支持。然而,随着我国半刚性基层大量的应用,发现其存在严重的裂缝问题,并成为该结构的主要缺陷。半刚性材料由于其本身材料与结构的特性,对温度、湿度敏感性较强,因此,在强度形成及使用过程中,不可避免会因温度变化产生温度收缩裂缝和因含水率变化产生干燥收缩裂缝。半刚性材料的开裂往往会扩展到面层形成反射裂缝,而裂缝的存在不仅使车辆行驶质量下降,而且也破坏了路面结构整体性和连续性,并在一定程度上导致结构强度的削弱。我国北方地区因昼夜温差大、冬季时间长且寒冷,最冷月平均气温在零度以下且温差达到15℃的地区属于寒冷地区,半刚性基层沥青路面裂缝问题尤甚,温缩裂缝也表现得更为严重。因此,非常有必要对现有半刚性基层路面结构进行优化,以解决半刚性基层路面的裂缝问题,提高路面耐久性。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种适用于寒冷地区半刚性基层抗裂路面结构,其设计新颖合理,通过玄武岩纤维带主动抵抗半刚性基层开裂,从而阻止或延缓反射裂缝的产生,较常规的抗裂措施具有更好的阻裂效果和经济效益,便于推广使用。
为解决上述技术问题,本发明采用的技术方案是:适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:包括在路基上从下至上依次铺设的半刚性底基层、半刚性基层和面层,半刚性底基层和半刚性基层之间铺设有第一透层,半刚性基层和面层之间铺设有防护层,半刚性基层内铺设有加强层,所述加强层与半刚性基层构筑为一体,所述加强层包括多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带,半刚性基层包括半刚性下基层和铺设在半刚性下基层上的半刚性上基层。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层铺设在所述半刚性上基层内且与所述半刚性上基层构筑为一体。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层铺设在所述半刚性下基层内且与所述半刚性下基层构筑为一体。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层的层数为两层,两层所述加强层中的一层加强层铺设在所述半刚性下基层内且与所述半刚性下基层构筑为一体,两层所述加强层中的另一层加强层铺设在所述半刚性上基层内且与所述半刚性上基层构筑为一体。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述防护层包括铺设在半刚性基层上的第二透层和铺设在所述第二透层上的封层,第一透层和所述第二透层均为乳化沥青透层,所述封层为稀浆封层。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述面层包括在防护层上从下至上依次铺设的下面层、中面层和上面层,所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
上述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述玄武岩纤维带的厚度为0.2mm~0.5mm,玄武岩纤维带的宽度为2cm~3cm,玄武岩纤维带的数量每米宽度内不少于两条,相邻两条玄武岩纤维带之间的间距为10cm~30cm。
同时,本发明还公开了一种适用于寒冷地区半刚性基层抗裂路面的施工方法,其特征在于该方法包括以下步骤:
步骤一、半刚性底基层施工:对路基进行机械化处理施工,在路基上利用自卸汽车铺筑水泥稳定碎石,利用摊铺机对路基上的水泥稳定碎石进行摊铺,形成半刚性底基层;
步骤二、第一透层的施工:在半刚性底基层上浇洒乳化沥青,乳化沥青透入半刚性底基层,形成第一透层;
步骤三、半刚性基层和加强层的施工:根据现场施工设计,确定抗裂路面的着力层位置以及所需加强层的层数;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性下基层中时,在铺筑有第一透层的半刚性底基层上利用自卸汽车铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带并排系扣在预制的钢桁架上,将布带机置于摊铺机上,调节钢桁架高度和布带机高度,并预先拉紧玄武岩纤维带,使其保证平顺,且处于绷紧状态,利用摊铺机对第一透层上的水泥稳定碎石进行摊铺,形成半刚性下基层,同时利用布带机铺设多条玄武岩纤维带,使多条玄武岩纤维带位于半刚性下基层内,玄武岩纤维带铺设过程中时刻保持绷紧状态,玄武岩纤维带采用缝合方式搭接,两条玄武岩纤维带缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带形成加强层;然后,在铺筑有加强层的半刚性下基层上利用自卸汽车倾倒水泥稳定碎石,利用摊铺机对半刚性下基层上的水泥稳定碎石进行摊铺,形成半刚性上基层,半刚性上基层与半刚性下基层的厚度相等,半刚性上基层与半刚性下基层形成半刚性基层,所述加强层与半刚性基层构筑为一体且形成加筋半刚性基层;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性上基层中时,在铺筑有第一透层的半刚性底基层上利用自卸汽车铺筑水泥稳定碎石,利用摊铺机对铺筑有第一透层的半刚性底基层上的水泥稳定碎石进行摊铺,形成半刚性下基层;然后,在半刚性下基层上利用自卸汽车铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带并排系扣在预制的钢桁架上,将布带机置于摊铺机上,调节钢桁架高度和布带机高度,并预先拉紧玄武岩纤维带,使其保证平顺,且处于绷紧状态,利用摊铺机对半刚性下基层上的水泥稳定碎石进行摊铺,形成半刚性上基层,同时利用布带机铺设多条玄武岩纤维带,使多条玄武岩纤维带位于半刚性上基层内,玄武岩纤维带铺设过程中时刻保持绷紧状态,玄武岩纤维带采用缝合方式搭接,两条玄武岩纤维带缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带形成加强层,半刚性上基层与半刚性下基层的厚度相等,半刚性上基层与半刚性下基层形成半刚性基层,所述加强层与半刚性基层构筑为一体且形成加筋半刚性基层;
当加强层需要铺设两层时,在铺筑有第一透层的半刚性底基层上利用自卸汽车铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带并排系扣在预制的钢桁架上,将布带机置于摊铺机上,根据抗裂路面的第一着力层位于位于半刚性下基层高度位置,调节钢桁架高度和布带机高度,并预先拉紧玄武岩纤维带,使其保证平顺,且处于绷紧状态,利用摊铺机对第一透层上的水泥稳定碎石进行摊铺,形成半刚性下基层,同时利用布带机铺设多条玄武岩纤维带,使多条玄武岩纤维带位于半刚性下基层内,玄武岩纤维带铺设过程中时刻保持绷紧状态,玄武岩纤维带采用缝合方式搭接,两条玄武岩纤维带缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带形成一层加强层,该层加强层与半刚性下基层构筑为一体且形成加筋半刚性下基层;然后,在加筋半刚性下基层上利用自卸汽车铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带并排系扣在预制的钢桁架上,将布带机置于摊铺机上,根据抗裂路面的第二着力层位于位于半刚性上基层高度位置,调节钢桁架高度和布带机高度,并预先拉紧玄武岩纤维带,使其保证平顺,且处于绷紧状态,利用摊铺机对加筋半刚性下基层上的水泥稳定碎石进行摊铺,形成半刚性上基层,同时利用布带机铺设多条玄武岩纤维带,使多条玄武岩纤维带位于半刚性上基层内,玄武岩纤维带铺设过程中时刻保持绷紧状态,玄武岩纤维带采用缝合方式搭接,两条玄武岩纤维带缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带形成另一层加强层,该层加强层与半刚性上基层构筑为一体且形成加筋半刚性上基层,所述加筋半刚性上基层与所述加筋半刚性下基层的厚度相等,半刚性上基层与半刚性下基层形成半刚性基层,所述加筋半刚性上基层与所述加筋半刚性下基层构筑为一体且形成加筋半刚性基层;
步骤四、防护层的施工:在加筋半刚性基层上浇洒乳化沥青,透入加筋半刚性基层的乳化沥青,形成第二透层;再在第二透层上喷洒稀浆,形成封层,第二透层和封层构成防护层;
步骤五、面层的施工:在防护层上从下至上依次铺筑下面层、中面层和上面层,构筑面层,所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
上述的施工方法,其特征在于:步骤三中两条玄武岩纤维带缝合搭接位置处的搭接长度为15cm~20cm;步骤三中玄武岩纤维带的厚度为0.2mm~0.5mm,玄武岩纤维带的宽度为2cm~3cm,玄武岩纤维带的数量每米宽度内不少于两条,相邻两条玄武岩纤维带之间的间距为10cm~30cm。
上述的施工方法,其特征在于:所述玄武岩纤维带的厚度为0.3mm,玄武岩纤维带的宽度为2.5cm,厚度为0.3mm且宽度为2.5cm的玄武岩纤维带的极限拉应力为1731N,延伸率为4.1%;
根据公式计算加筋半刚性基层的抗拉回弹模量E、泊松比μ、温度收缩系数α和极限抗拉应力σ,其中,加筋半刚性基层的抗拉回弹模量E的单位为MPa,极限抗拉应力σ的单位为N,Eb为玄武岩纤维带的抗拉回弹模量,单位为MPa,Ec为半刚性基层的抗拉回弹模量,单位为MPa,Vb为玄武岩纤维带占加筋半刚性基层的体积分数,Vc为半刚性基层占加筋半刚性基层的体积分数,μb为玄武岩纤维带的泊松比,μc为半刚性基层的泊松比,αb为玄武岩纤维带的温度收缩系数,αc为半刚性基层的温度收缩系数,σb为玄武岩纤维带的极限拉应力,单位为N。
本发明与现有技术相比具有以下优点:
1、本发明采用的半刚性基层抗裂路面结构,根据抗裂路面的着力层高度位置,通过在半刚性基层中铺设一层或两层加强层,当半刚性基层中铺设一层加强层时,该加强层可根据抗裂路面的着力层高度位置位于半刚性上基层或半刚性下基层中;当半刚性基层中铺设两层加强层时,其中一层加强层可根据抗裂路面的第一着力层高度位置位于半刚性上基层中,其中另一层加强层可根据抗裂路面的第二着力层高度位置位于半刚性下基层中,高强度,平整度良好,抗疲劳性能好,板体性好,便于推广使用。
2、本发明采用的半刚性基层抗裂路面结构的加强层为间隔布设的多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带,玄武岩纤维材料强度较高,绝缘性好、质量较轻、抗疲劳性好,从源头上抵抗温度收缩裂缝的产生,即使运营后期不可避免的产生了裂缝,玄武岩纤维带仍会在一定程度上延缓裂缝的扩展速度,较常规的抗裂措施具有更好的阻裂效果和经济效益,可靠稳定,使用效果好。
3、本发明采用的方法,步骤简单,通过半刚性底基层施工、第一透层的施工、半刚性基层和加强层的施工、防护层的施工和面层的施工,实现半刚性基层抗裂路面结构施工,机械化施工可以保证工程质量,确保其发挥防裂阻裂作用,其中,半刚性基层和加强层的施工则根据抗裂路面的着力层高度位置,通过在半刚性基层中铺设一层或两层加强层,当半刚性基层中铺设一层加强层时,该加强层可根据抗裂路面的着力层高度位置位于半刚性上基层或半刚性下基层中;当半刚性基层中铺设两层加强层时,其中一层加强层可根据抗裂路面的第一着力层高度位置位于半刚性上基层中,其中另一层加强层可根据抗裂路面的第二着力层高度位置位于半刚性下基层中;加强层与半刚性上基层或半刚性下基层的结合时,通过将布带机置于摊铺机上,调节钢桁架高度和布带机高度,并预先拉紧玄武岩纤维带,使其保证平顺,且处于绷紧状态,使半刚性上基层和加强层,或者半刚性下基层和加强层同时铺设,形成加筋半刚性基层,经济实用,便于推广使用。
综上所述,本发明设计新颖合理,通过玄武岩纤维带主动抵抗半刚性基层开裂,从而阻止或延缓反射裂缝的产生,较常规的抗裂措施具有更好的阻裂效果和经济效益,便于推广使用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明铺设一层加强层且加强层位于半刚性上基层内的半刚性基层抗裂路面结构的结构示意图。
图2为本发明铺设一层加强层且加强层位于半刚性下基层内的半刚性基层抗裂路面结构的结构示意图。
图3为本发明铺设两层加强层的半刚性基层抗裂路面结构的结构示意图。
图4为本发明半刚性基层抗裂路面结构的施工示意图。
图5为本发明施工方法的流程框图。
附图标记说明:
1—面层; 2—防护层; 3—半刚性基层;
3-1—半刚性上基层; 3-2—半刚性下基层;
4—玄武岩纤维带; 5—透层; 6—半刚性底基层;
7—路基; 8—钢桁架; 9—布带机;
10—摊铺机; 11—自卸汽车。
具体实施方式
如图1至图3所示,本发明所述的适用于寒冷地区半刚性基层抗裂路面结构,包括在路基7上从下至上依次铺设的半刚性底基层6、半刚性基层3和面层1,半刚性底基层6和半刚性基层3之间铺设有第一透层5,半刚性基层3和面层1之间铺设有防护层2,半刚性基层3内铺设有加强层,所述加强层与半刚性基层3构筑为一体,所述加强层包括多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带4,半刚性基层3包括半刚性下基层3-2和铺设在半刚性下基层3-2上的半刚性上基层3-1。
需要说明的是,根据抗裂路面的着力层高度位置,通过在半刚性基层3中铺设一层或两层加强层,当半刚性基层3中铺设一层加强层时,如图1所示,所述加强层铺设在所述半刚性上基层3-1内且与所述半刚性上基层3-1构筑为一体,该加强层可根据抗裂路面的着力层高度位置位于半刚性上基层3-1中;或者如图2所示,所述加强层铺设在所述半刚性下基层3-2内且与所述半刚性下基层3-2构筑为一体,该加强层可根据抗裂路面的着力层高度位置位于半刚性下基层3-2中;当半刚性基层3中铺设两层加强层时,如图3所示,所述加强层的层数为两层,两层所述加强层中的一层加强层铺设在所述半刚性下基层3-2内且与所述半刚性下基层3-2构筑为一体,两层所述加强层中的另一层加强层铺设在所述半刚性上基层3-1内且与所述半刚性上基层3-1构筑为一体,其中一层加强层可根据抗裂路面的第一着力层高度位置位于半刚性上基层3-1中,其中另一层加强层可根据抗裂路面的第二着力层高度位置位于半刚性下基层3-2中,高强度,平整度良好,抗疲劳性能好,板体性好,加强层为间隔布设的多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带4,玄武岩纤维材料强度较高,绝缘性好、质量较轻、抗疲劳性好,从源头上抵抗温度收缩裂缝的产生,即使运营后期不可避免的产生了裂缝,玄武岩纤维带4仍会在一定程度上延缓裂缝的扩展速度,从而阻止或延缓反射裂缝的产生,较常规的抗裂措施具有更好的阻裂效果和经济效益。
本实施例中,所述防护层2包括铺设在半刚性基层3上的第二透层和铺设在所述第二透层上的封层,第一透层5和所述第二透层均为乳化沥青透层,所述封层为稀浆封层。
本实施例中,所述面层1包括在防护层2上从下至上依次铺设的下面层、中面层和上面层,所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
本实施例中,所述玄武岩纤维带4的厚度为0.2mm~0.5mm,玄武岩纤维带4的宽度为2cm~3cm,玄武岩纤维带4的数量每米宽度内不少于两条,相邻两条玄武岩纤维带4之间的间距为10cm~30cm。
实际使用中,根据既能达到较高的抗拉强度,又可以最大程度的控制成本,优选地,玄武岩纤维带4的厚度为0.3mm,玄武岩纤维带4的宽度为2.5cm。
如图4和图5所示一种适用于寒冷地区半刚性基层抗裂路面的施工方法,其特征在于:该施工方法包括以下步骤:
步骤一、半刚性底基层施工:对路基7进行机械化处理施工,在路基7上利用自卸汽车11铺筑水泥稳定碎石,利用摊铺机10对路基7上的水泥稳定碎石进行摊铺,形成半刚性底基层6;
步骤二、第一透层的施工:在半刚性底基层6上浇洒乳化沥青,乳化沥青透入半刚性底基层6,形成第一透层5;
步骤三、半刚性基层和加强层的施工:根据现场施工设计,确定抗裂路面的着力层位置以及所需加强层的层数;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性下基层3-2中时,在铺筑有第一透层5的半刚性底基层6上利用自卸汽车11铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带4并排系扣在预制的钢桁架8上,将布带机9置于摊铺机10上,调节钢桁架8高度和布带机9高度,并预先拉紧玄武岩纤维带4,使其保证平顺,且处于绷紧状态,利用摊铺机10对第一透层5上的水泥稳定碎石进行摊铺,形成半刚性下基层3-2,同时利用布带机9铺设多条玄武岩纤维带4,使多条玄武岩纤维带4位于半刚性下基层3-2内,玄武岩纤维带4铺设过程中时刻保持绷紧状态,玄武岩纤维带4采用缝合方式搭接,两条玄武岩纤维带4缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带4形成加强层;然后,在铺筑有加强层的半刚性下基层3-2上利用自卸汽车11倾倒水泥稳定碎石,利用摊铺机10对半刚性下基层3-2上的水泥稳定碎石进行摊铺,形成半刚性上基层3-1,半刚性上基层3-1与半刚性下基层3-2的厚度相等,半刚性上基层3-1与半刚性下基层3-2形成半刚性基层3,所述加强层与半刚性基层3构筑为一体且形成加筋半刚性基层;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性上基层3-1中时,在铺筑有第一透层5的半刚性底基层6上利用自卸汽车11铺筑水泥稳定碎石,利用摊铺机10对铺筑有第一透层5的半刚性底基层6上的水泥稳定碎石进行摊铺,形成半刚性下基层3-2;然后,在半刚性下基层3-2上利用自卸汽车11铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带4并排系扣在预制的钢桁架8上,将布带机9置于摊铺机10上,调节钢桁架8高度和布带机9高度,并预先拉紧玄武岩纤维带4,使其保证平顺,且处于绷紧状态,利用摊铺机10对半刚性下基层3-2上的水泥稳定碎石进行摊铺,形成半刚性上基层3-1,同时利用布带机9铺设多条玄武岩纤维带4,使多条玄武岩纤维带4位于半刚性上基层3-1内,玄武岩纤维带4铺设过程中时刻保持绷紧状态,玄武岩纤维带4采用缝合方式搭接,两条玄武岩纤维带4缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带4形成加强层,半刚性上基层3-1与半刚性下基层3-2的厚度相等,半刚性上基层3-1与半刚性下基层3-2形成半刚性基层3,所述加强层与半刚性基层3构筑为一体且形成加筋半刚性基层;
当加强层需要铺设两层时,在铺筑有第一透层5的半刚性底基层6上利用自卸汽车11铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带4并排系扣在预制的钢桁架8上,将布带机9置于摊铺机10上,根据抗裂路面的第一着力层位于位于半刚性下基层3-2高度位置,调节钢桁架8高度和布带机9高度,并预先拉紧玄武岩纤维带4,使其保证平顺,且处于绷紧状态,利用摊铺机10对第一透层5上的水泥稳定碎石进行摊铺,形成半刚性下基层3-2,同时利用布带机9铺设多条玄武岩纤维带4,使多条玄武岩纤维带4位于半刚性下基层3-2内,玄武岩纤维带4铺设过程中时刻保持绷紧状态,玄武岩纤维带4采用缝合方式搭接,两条玄武岩纤维带4缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带4形成一层加强层,该层加强层与半刚性下基层3-2构筑为一体且形成加筋半刚性下基层;然后,在加筋半刚性下基层上利用自卸汽车11铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带4并排系扣在预制的钢桁架8上,将布带机9置于摊铺机10上,根据抗裂路面的第二着力层位于位于半刚性上基层3-1高度位置,调节钢桁架8高度和布带机9高度,并预先拉紧玄武岩纤维带4,使其保证平顺,且处于绷紧状态,利用摊铺机10对加筋半刚性下基层上的水泥稳定碎石进行摊铺,形成半刚性上基层3-1,同时利用布带机9铺设多条玄武岩纤维带4,使多条玄武岩纤维带4位于半刚性上基层3-1内,玄武岩纤维带4铺设过程中时刻保持绷紧状态,玄武岩纤维带4采用缝合方式搭接,两条玄武岩纤维带4缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带4形成另一层加强层,该层加强层与半刚性上基层3-1构筑为一体且形成加筋半刚性上基层,所述加筋半刚性上基层与所述加筋半刚性下基层的厚度相等,半刚性上基层3-1与半刚性下基层3-2形成半刚性基层3,所述加筋半刚性上基层与所述加筋半刚性下基层构筑为一体且形成加筋半刚性基层;
本实施例中,步骤三中两条玄武岩纤维带4缝合搭接位置处的搭接长度为15cm~20cm;步骤三中玄武岩纤维带4的厚度为0.2mm~0.5mm,玄武岩纤维带4的宽度为2cm~3cm,玄武岩纤维带4的数量每米宽度内不少于两条,相邻两条玄武岩纤维带4之间的间距为10cm~30cm。
步骤四、防护层的施工:在加筋半刚性基层上浇洒乳化沥青,透入加筋半刚性基层的乳化沥青,形成第二透层;再在第二透层上喷洒稀浆,形成封层,第二透层和封层构成防护层2;
步骤五、面层的施工:在防护层2上从下至上依次铺筑下面层、中面层和上面层,构筑面层1,所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
本实施例中,优选地所述玄武岩纤维带4的厚度为0.3mm,玄武岩纤维带4的宽度为2.5cm,厚度为0.3mm且宽度为2.5cm的玄武岩纤维带4的极限拉应力为1731N,延伸率为4.1%;
根据公式计算加筋半刚性基层的抗拉回弹模量E、泊松比μ、温度收缩系数α和极限抗拉应力σ,其中,加筋半刚性基层的抗拉回弹模量E的单位为MPa,极限抗拉应力σ的单位为N,Eb为玄武岩纤维带4的抗拉回弹模量,单位为MPa,Ec为半刚性基层3的抗拉回弹模量,单位为MPa,Vb为玄武岩纤维带4占加筋半刚性基层的体积分数,Vc为半刚性基层3占加筋半刚性基层的体积分数,μb为玄武岩纤维带4的泊松比,μc为半刚性基层3的泊松比,αb为玄武岩纤维带4的温度收缩系数,αc为半刚性基层3的温度收缩系数,σb为玄武岩纤维带4的极限拉应力,单位为N。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1.适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:包括在路基(7)上从下至上依次铺设的半刚性底基层(6)、半刚性基层(3)和面层(1),半刚性底基层(6)和半刚性基层(3)之间铺设有第一透层(5),半刚性基层(3)和面层(1)之间铺设有防护层(2),半刚性基层(3)内铺设有加强层,所述加强层与半刚性基层(3)构筑为一体,所述加强层包括多条沿路面长度方向相平行且等间距铺设的玄武岩纤维带(4),半刚性基层(3)包括半刚性下基层(3-2)和铺设在半刚性下基层(3-2)上的半刚性上基层(3-1)。
2.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层铺设在所述半刚性上基层(3-1)内且与所述半刚性上基层(3-1)构筑为一体。
3.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层铺设在所述半刚性下基层(3-2)内且与所述半刚性下基层(3-2)构筑为一体。
4.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述加强层的层数为两层,两层所述加强层中的一层加强层铺设在所述半刚性下基层(3-2)内且与所述半刚性下基层(3-2)构筑为一体,两层所述加强层中的另一层加强层铺设在所述半刚性上基层(3-1)内且与所述半刚性上基层(3-1)构筑为一体。
5.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述防护层(2)包括铺设在半刚性基层(3)上的第二透层和铺设在所述第二透层上的封层,第一透层(5)和所述第二透层均为乳化沥青透层,所述封层为稀浆封层。
6.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述面层(1)包括在防护层(2)上从下至上依次铺设的下面层、中面层和上面层,所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
7.按照权利要求1所述的适用于寒冷地区半刚性基层抗裂路面结构,其特征在于:所述玄武岩纤维带(4)的厚度为0.2mm~0.5mm,玄武岩纤维带(4)的宽度为2cm~3cm,玄武岩纤维带(4)的数量每米宽度内不少于两条,相邻两条玄武岩纤维带(4)之间的间距为10cm~30cm。
8.一种利用如权利要求1所述结构进行适用于寒冷地区半刚性基层抗裂路面的施工方法,其特征在于:该施工方法包括以下步骤:
步骤一、半刚性底基层施工:对路基(7)进行机械化处理施工,在路基(7)上利用自卸汽车(11)铺筑水泥稳定碎石,利用摊铺机(10)对路基(7)上的水泥稳定碎石进行摊铺,形成半刚性底基层(6);
步骤二、第一透层的施工:在半刚性底基层(6)上浇洒乳化沥青,乳化沥青透入半刚性底基层(6),形成第一透层(5);
步骤三、半刚性基层和加强层的施工:根据现场施工设计,确定抗裂路面的着力层位置以及所需加强层的层数;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性下基层(3-2)中时,在铺筑有第一透层(5)的半刚性底基层(6)上利用自卸汽车(11)铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带(4)并排系扣在预制的钢桁架(8)上,将布带机(9)置于摊铺机(10)上,调节钢桁架(8)高度和布带机(9)高度,并预先拉紧玄武岩纤维带(4),使其保证平顺,且处于绷紧状态,利用摊铺机(10)对第一透层(5)上的水泥稳定碎石进行摊铺,形成半刚性下基层(3-2),同时利用布带机(9)铺设多条玄武岩纤维带(4),使多条玄武岩纤维带(4)位于半刚性下基层(3-2)内,玄武岩纤维带(4)铺设过程中时刻保持绷紧状态,玄武岩纤维带(4)采用缝合方式搭接,两条玄武岩纤维带(4)缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带(4)形成加强层;然后,在铺筑有加强层的半刚性下基层(3-2)上利用自卸汽车(11)倾倒水泥稳定碎石,利用摊铺机(10)对半刚性下基层(3-2)上的水泥稳定碎石进行摊铺,形成半刚性上基层(3-1),半刚性上基层(3-1)与半刚性下基层(3-2)的厚度相等,半刚性上基层(3-1)与半刚性下基层(3-2)形成半刚性基层(3),所述加强层与半刚性基层(3)构筑为一体且形成加筋半刚性基层;
当加强层需要铺设一层且根据抗裂路面的着力层高度位置确定加强层位于半刚性上基层(3-1)中时,在铺筑有第一透层(5)的半刚性底基层(6)上利用自卸汽车(11)铺筑水泥稳定碎石,利用摊铺机(10)对铺筑有第一透层(5)的半刚性底基层(6)上的水泥稳定碎石进行摊铺,形成半刚性下基层(3-2);然后,在半刚性下基层(3-2)上利用自卸汽车(11)铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带(4)并排系扣在预制的钢桁架(8)上,将布带机(9)置于摊铺机(10)上,调节钢桁架(8)高度和布带机(9)高度,并预先拉紧玄武岩纤维带(4),使其保证平顺,且处于绷紧状态,利用摊铺机(10)对半刚性下基层(3-2)上的水泥稳定碎石进行摊铺,形成半刚性上基层(3-1),同时利用布带机(9)铺设多条玄武岩纤维带(4),使多条玄武岩纤维带(4)位于半刚性上基层(3-1)内,玄武岩纤维带(4)铺设过程中时刻保持绷紧状态,玄武岩纤维带(4)采用缝合方式搭接,两条玄武岩纤维带(4)缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带(4)形成加强层,半刚性上基层(3-1)与半刚性下基层(3-2)的厚度相等,半刚性上基层(3-1)与半刚性下基层(3-2)形成半刚性基层(3),所述加强层与半刚性基层(3)构筑为一体且形成加筋半刚性基层;
当加强层需要铺设两层时,在铺筑有第一透层(5)的半刚性底基层(6)上利用自卸汽车(11)铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带(4)并排系扣在预制的钢桁架(8)上,将布带机(9)置于摊铺机(10)上,根据抗裂路面的第一着力层位于位于半刚性下基层(3-2)高度位置,调节钢桁架(8)高度和布带机(9)高度,并预先拉紧玄武岩纤维带(4),使其保证平顺,且处于绷紧状态,利用摊铺机(10)对第一透层(5)上的水泥稳定碎石进行摊铺,形成半刚性下基层(3-2),同时利用布带机(9)铺设多条玄武岩纤维带(4),使多条玄武岩纤维带(4)位于半刚性下基层(3-2)内,玄武岩纤维带(4)铺设过程中时刻保持绷紧状态,玄武岩纤维带(4)采用缝合方式搭接,两条玄武岩纤维带(4)缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带(4)形成一层加强层,该层加强层与半刚性下基层(3-2)构筑为一体且形成加筋半刚性下基层;然后,在加筋半刚性下基层上利用自卸汽车(11)铺筑水泥稳定碎石,在铺设路面起始段时,预先将多条玄武岩纤维带(4)并排系扣在预制的钢桁架(8)上,将布带机(9)置于摊铺机(10)上,根据抗裂路面的第二着力层位于位于半刚性上基层(3-1)高度位置,调节钢桁架(8)高度和布带机(9)高度,并预先拉紧玄武岩纤维带(4),使其保证平顺,且处于绷紧状态,利用摊铺机(10)对加筋半刚性下基层上的水泥稳定碎石进行摊铺,形成半刚性上基层(3-1),同时利用布带机(9)铺设多条玄武岩纤维带(4),使多条玄武岩纤维带(4)位于半刚性上基层(3-1)内,玄武岩纤维带(4)铺设过程中时刻保持绷紧状态,玄武岩纤维带(4)采用缝合方式搭接,两条玄武岩纤维带(4)缝合搭接位置处插入钢钉固定,并排的多条玄武岩纤维带(4)形成另一层加强层,该层加强层与半刚性上基层(3-1)构筑为一体且形成加筋半刚性上基层,所述加筋半刚性上基层与所述加筋半刚性下基层的厚度相等,半刚性上基层(3-1)与半刚性下基层(3-2)形成半刚性基层(3),所述加筋半刚性上基层与所述加筋半刚性下基层构筑为一体且形成加筋半刚性基层;
步骤四、防护层的施工:在加筋半刚性基层上浇洒乳化沥青,透入加筋半刚性基层的乳化沥青,形成第二透层;再在第二透层上喷洒稀浆,形成封层,第二透层和封层构成防护层(2);
步骤五、面层的施工:在防护层(2)上从下至上依次铺筑下面层、中面层和上面层,构筑面层(1),所述下面层为ATB-25型沥青混合料下面层,所述中面层为AC-20型沥青混合料中面层,所述上面层为SMA-13型沥青混合料上面层。
9.按照权利要求8所述的施工方法,其特征在于:步骤三中两条玄武岩纤维带(4)缝合搭接位置处的搭接长度为15cm~20cm;步骤三中玄武岩纤维带(4)的厚度为0.2mm~0.5mm,玄武岩纤维带(4)的宽度为2cm~3cm,玄武岩纤维带(4)的数量每米宽度内不少于两条,相邻两条玄武岩纤维带(4)之间的间距为10cm~30cm。
10.按照权利要求9所述的施工方法,其特征在于:所述玄武岩纤维带(4)的厚度为0.3mm,玄武岩纤维带(4)的宽度为2.5cm,厚度为0.3mm且宽度为2.5cm的玄武岩纤维带(4)的极限拉应力为1731N,延伸率为4.1%;
根据公式计算加筋半刚性基层的抗拉回弹模量E、泊松比μ、温度收缩系数α和极限抗拉应力σ,其中,加筋半刚性基层的抗拉回弹模量E的单位为MPa,极限抗拉应力σ的单位为N,Eb为玄武岩纤维带(4)的抗拉回弹模量,单位为MPa,Ec为半刚性基层(3)的抗拉回弹模量,单位为MPa,Vb为玄武岩纤维带(4)占加筋半刚性基层的体积分数,Vc为半刚性基层(3)占加筋半刚性基层的体积分数,μb为玄武岩纤维带(4)的泊松比,μc为半刚性基层(3)的泊松比,αb为玄武岩纤维带(4)的温度收缩系数,αc为半刚性基层(3)的温度收缩系数,σb为玄武岩纤维带(4)的极限拉应力,单位为N。
CN201811455589.9A 2018-11-30 2018-11-30 适用于寒冷地区半刚性基层抗裂路面结构及施工方法 Pending CN109537388A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811455589.9A CN109537388A (zh) 2018-11-30 2018-11-30 适用于寒冷地区半刚性基层抗裂路面结构及施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811455589.9A CN109537388A (zh) 2018-11-30 2018-11-30 适用于寒冷地区半刚性基层抗裂路面结构及施工方法

Publications (1)

Publication Number Publication Date
CN109537388A true CN109537388A (zh) 2019-03-29

Family

ID=65852466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811455589.9A Pending CN109537388A (zh) 2018-11-30 2018-11-30 适用于寒冷地区半刚性基层抗裂路面结构及施工方法

Country Status (1)

Country Link
CN (1) CN109537388A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306401A (zh) * 2019-07-05 2019-10-08 张贵霖 高寒地区半刚性抗裂路面施工方法
CN111549607A (zh) * 2020-04-21 2020-08-18 北京智华通科技有限公司 一种环保型高性能长寿命路面结构及施工方法
CN113622248A (zh) * 2021-09-16 2021-11-09 雨发建设集团有限公司 一种单向纤维防裂基层结构和施工方法
CN114045729A (zh) * 2021-11-23 2022-02-15 中交一公局第一工程有限公司 低温地区水泥稳定粒料基层防离析减少裂缝施工方法
CN114315241A (zh) * 2021-11-24 2022-04-12 江苏东交智控科技集团股份有限公司 半刚性基层材料及施工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001743A (zh) * 2004-07-27 2007-07-18 曼努埃尔·托里斯马丁内斯 纤维条多重铺设头及用于铺设纤维条的方法
CN101768914A (zh) * 2010-01-25 2010-07-07 重庆鹏方路面工程技术研究院有限公司 用于半刚性基层沥青路面结构转换与性能恢复的路面结构
CN201627128U (zh) * 2009-12-11 2010-11-10 张洪柱 塑料复合土工格栅
CN201738210U (zh) * 2010-03-16 2011-02-09 长安大学 一种经济耐久型沥青路面倒装结构
CN103243626A (zh) * 2013-05-23 2013-08-14 交通运输部公路科学研究所 一种适用于重载交通的半刚性基层沥青路面耐久性结构
CN204174494U (zh) * 2014-07-01 2015-02-25 长沙理工大学 一种新型倒装式沥青路面结构
CN205529880U (zh) * 2016-01-25 2016-08-31 邓燕堂 铺设玻璃纤维网的装置
CN107761502A (zh) * 2017-11-06 2018-03-06 扬州大学 一种长寿命沥青路面结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001743A (zh) * 2004-07-27 2007-07-18 曼努埃尔·托里斯马丁内斯 纤维条多重铺设头及用于铺设纤维条的方法
CN201627128U (zh) * 2009-12-11 2010-11-10 张洪柱 塑料复合土工格栅
CN101768914A (zh) * 2010-01-25 2010-07-07 重庆鹏方路面工程技术研究院有限公司 用于半刚性基层沥青路面结构转换与性能恢复的路面结构
CN201738210U (zh) * 2010-03-16 2011-02-09 长安大学 一种经济耐久型沥青路面倒装结构
CN103243626A (zh) * 2013-05-23 2013-08-14 交通运输部公路科学研究所 一种适用于重载交通的半刚性基层沥青路面耐久性结构
CN204174494U (zh) * 2014-07-01 2015-02-25 长沙理工大学 一种新型倒装式沥青路面结构
CN205529880U (zh) * 2016-01-25 2016-08-31 邓燕堂 铺设玻璃纤维网的装置
CN107761502A (zh) * 2017-11-06 2018-03-06 扬州大学 一种长寿命沥青路面结构

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
刘兵飞等: "功能梯度形状记忆合金材料的热力学行为", 《南京航空航天大学学报》 *
张新旺: "软纤维在半刚性基层材料中的抗裂机理研究", 《公路》 *
彭红卫等: "湖南省高速公路沥青路面裂缝病害调查与原因分析", 《公路工程》 *
罗福午等: "《土木工程质量缺陷事故分析及处理》", 27 February 2009 *
蔺俊巧: "聚酯玄武岩纤维布防止半刚性基层反射裂缝应用研究", 《公路交通科技》 *
顾兴宇等: "玄武岩纤维筋与钢筋在路面应用中的分析比较", 《公路》 *
黄晓明: "<路土工合成材料应用原理>", 30 November 2001 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306401A (zh) * 2019-07-05 2019-10-08 张贵霖 高寒地区半刚性抗裂路面施工方法
CN111549607A (zh) * 2020-04-21 2020-08-18 北京智华通科技有限公司 一种环保型高性能长寿命路面结构及施工方法
CN113622248A (zh) * 2021-09-16 2021-11-09 雨发建设集团有限公司 一种单向纤维防裂基层结构和施工方法
CN114045729A (zh) * 2021-11-23 2022-02-15 中交一公局第一工程有限公司 低温地区水泥稳定粒料基层防离析减少裂缝施工方法
CN114045729B (zh) * 2021-11-23 2023-03-31 中交一公局第一工程有限公司 低温地区水泥稳定粒料基层防离析减少裂缝施工方法
CN114315241A (zh) * 2021-11-24 2022-04-12 江苏东交智控科技集团股份有限公司 半刚性基层材料及施工工艺
CN114315241B (zh) * 2021-11-24 2023-01-20 江苏东交智控科技集团股份有限公司 半刚性基层材料及施工工艺

Similar Documents

Publication Publication Date Title
CN109537388A (zh) 适用于寒冷地区半刚性基层抗裂路面结构及施工方法
CN109763397A (zh) 嵌合结构沥青路面及施工方法
CN105887586A (zh) 中低速磁悬浮交通工程低置线路双线地段端刺式承轨梁节间限位结构
CN113215907B (zh) 一种城市道路平交口旧砼路面沥青加铺结构及其施工方法
CN107165022B (zh) 一种高寒区公路拓宽加筋大厚度底基层施工方法
CN103215875A (zh) 一种基于不均匀沉降的抗疲劳沥青路面
US4909662A (en) Roadway and method of construction
CN105951535B (zh) 中低速磁悬浮交通工程低置线路单线地段承轨梁节间限位结构
CN106801369B (zh) 一种刚柔基层双斜坡过渡结构及其施工方法
CN110306401A (zh) 高寒地区半刚性抗裂路面施工方法
Shukla et al. Functions and installation of paving geosynthetics
CN105926380A (zh) 中低速磁悬浮交通工程低置线路单线地段端刺式承轨梁节间限位结构
CN107558324B (zh) 一种有轨电车与道路平交口的钢纤维砼路面及其施工工艺
CN105178132B (zh) 一种解决路面加铺前刚柔搭接的方法及结构
CN209669625U (zh) 混凝土路面加铺沥青纵缝处理构造
RU2394959C1 (ru) Конструкция дорожной одежды
RU2318947C2 (ru) Способ устройства дорожного покрытия
LU505061B1 (en) Semi rigid base anti-crack pavement structure and construction method suitable for cold regions
JP2604476B2 (ja) スラブ軌道の構築方法
CN205603974U (zh) 中低速磁悬浮交通工程低置线路单线地段承轨梁节间限位结构
CN113089410A (zh) 用于高速公路预制梁场路面永临结构转换的沥青路面结构
CN209703228U (zh) 嵌合式沥青路面结构
CN207958892U (zh) 一种适用于长大隧道内耐久超薄沥青路面结构
CN108301306B (zh) 半路半桥结构
CN206448126U (zh) 一种刚柔基层稳定双斜坡过渡结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329

RJ01 Rejection of invention patent application after publication