CN109537268A - 一种弹性导电氨纶布料及其制备和应用 - Google Patents

一种弹性导电氨纶布料及其制备和应用 Download PDF

Info

Publication number
CN109537268A
CN109537268A CN201811209550.9A CN201811209550A CN109537268A CN 109537268 A CN109537268 A CN 109537268A CN 201811209550 A CN201811209550 A CN 201811209550A CN 109537268 A CN109537268 A CN 109537268A
Authority
CN
China
Prior art keywords
cloth
spandex cloth
elastic conduction
spandex
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811209550.9A
Other languages
English (en)
Inventor
刘天西
封其春
张超
沈斯崎
郭和乐
李倩倩
刘思良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201811209550.9A priority Critical patent/CN109537268A/zh
Publication of CN109537268A publication Critical patent/CN109537268A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Medical Uses (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明涉及一种弹性导电氨纶布料及其制备和应用,负载碳纳米管的氨纶布料,制备:氨纶布料浸泡于CNT的分散液中制得高弹性导电氨纶布料。本发明采用的TPE具有良好的可拉伸性能和抗洗涤性能;CNT导电性能优越;以及SEBS可以促使CNT分散和在氨纶布料上粘附CNT,在拉伸过程中,可通过拉伸错位继续构成导电通路。本发明布料可作为可穿戴器件,很好的膝盖弯曲响应。

Description

一种弹性导电氨纶布料及其制备和应用
技术领域
本发明属于功能性纺织品及其制备和应用领域,特别涉及一种弹性导电氨纶布料及其制备和应用。
背景技术
近年来可穿戴柔性电子设备由于其对人体皮肤良好的生物相容性和稳定的监测能力而引起了极大的关注。应变传感器是电子设备的基本组成部分,制备新型应变传感器对于可穿戴电子设备的发展至关重要。此外,应变传感器在生物电子医学中也发挥着越来越重要的作用,生物电子医学可以监测各种身体信号,包括物理,化学和生物信号。有许多因素影响着应变传感器性能,其中传感材料的结构决定了灵敏度,拉伸性,响应时间,长期稳定性和耐久性。因此,有许多先进的制造技术和材料被用于制备具有微/纳米复杂结构的应变传感器;并且由于材料本身性质和器件的结构,传感器具有优良的电学,机械,光学和化学性质,可以传输复杂的应变信号。
特别是碳纳米管被广泛研究用于应变传感。研究表明,碳纳米管的导电性优良,具有较高的长径比,非常适合应用于应变传感。然而,碳纳米管的分散和粘附在可拉伸布上仍然非常具有挑战性。监测人体运动需要较大的形变传感器,一般认为传感器形变在100%以上可以用于监测人体膝盖,肘部等关节的运动过程。此外舒适性和抗洗涤性能也是传感器的重要性质。
氨纶属于聚氨酯类氨纶布料,由于弹性和力学性能优异,又被称为弹性氨纶布料,被广泛的应用于制造服装。氨纶服装具有优点:(1)由于氨纶弹性性能优越,但价格高昂的特点,多在织物中混用5-30%的比例,织物的价格会具有50%以上的弹性。如果选用纬编织物,由于结构的因素,弹性可以达到100%以上。(2)氨纶织物一般采用复合纱线技术合成,对身体的适应性较好,无明显的压迫感。(3)氨纶织物由于采用了复合纱线技术,在外观上和常用氨纶布料先比较无明显差别,且价格接近,易于被市场接受。
目前,主要有三种开发织物传感器的方法:第一种是用传统的纺织工艺制造织物传感器,例如将导电纤维编织到绝缘弹性纤维中,织成织物传感器。第二种是化学法制备织物传感器,即化学处理织物,例如金属化,涂层,丝网印刷,化学气相沉积等。这种方法可以直接合成织物传感器;第三种方法是将传感元件和织物组装制造织物传感器,例如嵌入,粘合和缝合。由于第一种和第三种方法制备困难,难以被商业化,目前织物传感器通常以第二种方法一步法制备。该过程简单,低成本且易于商业化。它现在被广泛用于研究合成智能服装。
发明内容
本发明所要解决的技术问题是提供一种弹性导电氨纶布料及其制备和应用,克服现有技制备工艺复杂,不利于商业化,该发明一步法制备出弹性导电布料,该发明的弹性导电氨纶布料具有较大的形变,能够很好的模拟人体大规模运动,同时兼具舒适性和抗洗涤性能,用于拉伸传感器,该弹性导电氨纶布料中,利用氨纶布料良好的可拉伸性能和无毒,CNT导电性,SEBS可以促使CNT很好的分散和粘附在氨纶布料上,在拉伸过程中,可通过拉伸错位继续构成导电通路,本发明可以作为可穿戴器件,很好的对膝盖弯曲变化响应并模拟得出一系列相应的工作曲线。
本发明的一种弹性导电氨纶布料,所述为负载碳纳米管的氨纶布料。
氢化苯乙烯-丁二烯嵌段共聚物SEBS促使碳纳米管负载氨纶布料。
所述碳纳米管的负载量为1-2wt%。
本发明的一种弹性导电氨纶布料的制备方法,包括:
(1)将氢化苯乙烯-丁二烯嵌段共聚物SEBS和溶剂混合,得到SEBS分散液;然后将碳纳米管CNT分散于SEBS分散液中,得到碳纳米管分散液;
(2)将氨纶布料浸泡碳纳米管分散液,即得弹性导电氨纶布料。
上述制备方法的优选方式如下:
所述步骤(1)中溶剂为环己烷。
所述步骤(1)中溶剂和SEBS、CNT的质量比为1g:100-500mg:100-500mg。
所述步骤(1)中溶剂和SEBS、CNT的质量比为1g:300mg:300mg。
所述步骤(2)中浸泡具体为:浸泡3-5min后取出晾干,再浸泡,反复2-5次后,用乙醇洗涤。
本发明的一种所述弹性导电氨纶布料的应用。
本发明的一种基于弹性导电氨纶布料的拉伸传感器,所述弹性导电氨纶布料与铜片、导电胶和环氧胶组装成拉伸传感器,其中将浸粘了导电银胶的铜片与弹性导电氨纶布相连接,然后使用环氧胶进一步固定链接处,制成拉伸传感器件。
本发明提供一种所述基于弹性导电氨纶布料的拉伸传感器的制备方法,包括:
将弹性导电氨纶布料两端剪断制得线段M3;
将线段M3的两端分别插入沾有导电胶的铜片,制得线段M4;
再将线段M4两端用环氧胶固定,即得拉伸传感器。
本发明还提供一种所述基于弹性导电氨纶布料的拉伸传感器的应用。
有益效果
本发明工艺简单,直接采用氨纶布料浸泡碳纳米管分散液,分散液中的SEBS可以促使CNT很好的分散和粘附在氨纶布料上,在拉伸过程中,可通过拉伸错位继续构成导电通路;
本发明的弹性导电氨纶布料具有较好的导电性能(图2),并且可以很好的对不同应变响应、对不同拉伸速率响应(图4),以及实时响应性(图5),并具有良好的动态耐久性(图6);
本发明属于一步法制备织物传感器,操作过程简单,低成本和易于商业化;
本发明可以作为可穿戴器件,很好的可以很好的模拟人体腕部的弯曲动作(图8)。
附图说明
图1是实施例1中制得的基于不同碳纳米管含量的弹性氨纶布料材料的外形图;其中根据SEBS和CNT的用量,氨纶布料分别被命名为SEBS-x-CNT-y,其中x为SEBS的用量mg; y为CNT的用量mg;如SEBS-50-CNT-50,SEBS量为50mg,CNT量为50mg;
图2是实施例1中制得的基于弹性导电氨纶布料材料的导电性变化图;其中插图为根据渗流理论拟合的方程;
图3是实施例2中制得的基于弹性导电氨纶布料材料组装的应变传感器的相对应变-相对电阻变化图和计算出相应的GF;
图4是实施例2中制得的基于弹性导电氨纶布料材料组装的应变传感器,在不同应变下的电阻变化图(A)和不同拉伸频率下的电阻变化图(B);
图5中的A和B是实施例2中制得的基于弹性导电氨纶布料材料组装的应变传感器的实时响应时间图;
图6是实施例2中制得的基于弹性导电氨纶布料材料组装的应变传感器在速率为200mm/min,应变在0%-100%之间的电阻变化图;
图7中的(A)和(B)是实施例3中制得的基于弹性导电氨纶布料材料组装的应变传感器安装在人体膝盖上的外形图;
图8为传感器拟合膝盖运动的工作曲线;
图9中是实施例4中制得的基于弹性导电氨纶布料材料在600rpm搅拌速度下的水中外形图(A);实施例4中制得的基于弹性导电氨纶布料材料在600rpm搅拌速度下搅拌24h后的外形图(B);实施例4中制得的基于弹性导电氨纶布料材料在600rpm搅拌速度下搅拌24h 后,拉伸的外形图(C)。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。 SEBS(SEBS G1651),Kraton,USA.),CNT(Nanjing XFNANO Materials TECH Co.,Ltd.)
实施例1
弹性导电氨纶布料制备方法,步骤:
1)将环己烷与SEBS混合,制得分散液M1;
2)将不同量的CNT分散于M1中,制得分散液M2;
3)将氨纶布料浸泡于M2中,5分钟后去出晾干,反复3后用乙醇洗涤3次。得到图1;
4)检测上述图1中的布料的导电性,得到图2。
图1和图2进行分析说明:
图1为随着SEBS和CNT用量的增多,氨纶布料逐渐变黑,表明CNT逐渐负载到氨纶布料上,而不含有SEBS的CNT分散液无法通过浸泡法将CNT负载到氨纶布料上,表明SEBS 不但是CNT的分散剂还是CNT的胶粘剂。
图2为随着CNT用量的增多,氨纶布料的电导率的变化;但电导率并不是随着CNT用量的增多逐渐升高,而是有一个突变点;插图为据此数据结合渗流理论计算拟合的方程,表明CNT和SEBS用量均为300mg时,电导率最优,以下所有用于氨纶导电布料均为此用量。
图2的插图为根据渗流理论拟合的方程;根据渗流理论的两个公式(1)和(2),推算出最佳的SEBS和CNT的用量均为300mg。其中
0=σ0X(P-Pc)t公式(l)
logσ=logσ0+tXlog(P-Pc)公式(2)
σ为在氨纶织物中的CNT电导率,也是比例因子;P是CNT的占导电氨纶布料的质量比, Pc是渗流理论阈值,t是关键因子。关键因子t值反应了氨纶布料中导电网络的维度。一般而言,t值为1.1-1.3属于二维导电网络,1.6-2.0属于三维导电网络。通过拟合公式计算,本发明的导电氨纶布料的t值为1.83,所以氨纶布料的导电机理属于三维导电网络模型。
实施例2
1)将弹性导电氨纶布料(氨纶导电布料和CNT的用量均为300mg)两端剪断制得长度为1cm长的线段M3;
2)将线段M3两端分别插入沾有导电胶的铜片,制得线段M4;
3)将线段M4两端用环氧胶固定,制得拉伸传感器M5;
4)将器件M5接入到数字源表和万能材料试验机联用设备中,控制拉伸速率为200mm/min,拉伸应变为100%,得到图3电阻与时间变化图,并据此计算出相应的GF值,可以看出本发明弹性导电氨纶布料具有良好的传感灵敏度;
控制拉伸速率为200mm/min,将拉伸应变在0%,20%,40%,60%,80%和100%之间变化,得到图4A电阻与不同应变变化曲线,可以看出本发明的弹性导电氨纶布料可以很好的对不同应变响应;
控制拉伸应变在100%,拉伸速率在50%s-1,100%s-1,200%s-1,30%s-1和400%s-1之间变化,得到图4B可以看出本发明的弹性导电氨纶布料可以很好的对不同拉伸速率响应;
控制拉伸应变在100%,拉伸速率在500mm/min,得到图5A和5B可以看出本发明的弹性导电氨纶布料具有良好实时响应性;控制拉伸应变在100%,拉伸速率在200mm/min,循环往复10000次,得到图6可以看出本发明的弹性导电氨纶布料具有良好动态耐久性。
实施例3
将器件M5接入到数字源表和身体膝盖皮肤上(如图7A和7B所示),通过控制腕部得到一系列工作曲线,得到图8,可以看出本发明的弹性导电氨纶布料可以很好的模拟人体腕部的弯曲动作。
实施例4
将弹性导电氨纶布料M3加入到600rpm搅拌速率下的水中,得到图9A;24h后检测水的和氨纶布料上的黑色CNT脱落情况,分别得到图9B和9C。
本发明提供了一种具有高可拉伸性能的织物应变传感器,制备方法简单,无需特殊的工艺后处理。使用SEBS作为CNT的表面活性剂和粘合剂,赋予氨纶织物优异的传感性能。此传感器的最大应变范围为100%,完全符合监测人体大变形运动的需要。此外,氨纶织物应变传感器具有高耐久性和稳定性。并且氨纶织物应变传感器可以直接用于服装编织,以及大形变和微妙的人体运动检测,例如关节弯曲和呼吸监测,表明它可用于在衣服上生产可穿戴电子产品,可真正实现人体运动的实时检测。因此本发明的可穿戴电子设备具有巨大的潜在市场。
表1(和现有技术性能比较)
1.Tian,H.;Shu,Y.;Cui,Y.L.;Mi,W.T.;Yang,Y.;Xie,D.;Ren,T.L.ScalableFabrication of High-Performance and Flexible Graphene StrainSensors.Nanoscale 2014,6,699–705.
2.Jiang,L.;Fan,Z.Design of Advanced Porous Graphene Materials:FromGraphene Nanomesh to 3D Architectures.Nanoscale 2014,6,1922–1945.
3.Hempel,M.;Nezich,D.;Kong,J.;Hofmann,M.A Novel Class of StrainGauges Based on Layered Percolative Films of 2D Materials.Nano Lett.2012,12,5714–5718.
4.Xiao,X.;Yuan,L.;Zhong,J.;Ding,T.;Liu,Y.;Cai,Z.;Rong,Y.;Han,H.;Zhou,J.;Wang,Z.L.High-Strain Sensors Based on ZnO Nanowire/polystyrene HybridizedFlexible Films.Adv.Mater.2011,23,5440–5444.
5.Yan,C.;Wang,J.;Kang,W.;Cui,M.;Wang,X.;Foo,C.Y.;Chee,K.J.;Lee,P.S.Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper forStrain Sensors.Adv.Mater.2014,26,2022–2027.
6.Zhao,J.;Wang,G.;Yang,R.;Lu,X.;Cheng,M.;He,C.;Xie,G.;Meng,J.;Shi,D.;Zhang,G.Tunable Piezoresistivity of Nanographene Films for Strain Sensing.ACSNano 2015,9,1622–1629.
7.Bae,S.H.;Lee,Y.;Sharma,B.K.;Lee,H.J.;Kim,J.H.;Ahn,J.H.Graphene-Based Transparent Strain Sensor. Carbon 2013,51,236–242.
8.Wang,Y.;Yang,R.;Shi,Z.;Zhang,L.;Shi,D.;Wang,E.;Zhang,G.Super-Elastic Graphene Ripples for Flexible Strain Sensors.ACS Nano 2011,5,3645–3650.
9.Yan,C.;Wang,J.;Kang,W.;Cui,M.;Wang,X.;Foo,C.Y.;Chee,K.J.;Lee,P.S.Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper forStrain Sensors.AdvMater.2014,26,2022–2027.
10.Yang,Z.;Pang,Y.;Han,X.L.;Yang,Y.Y.;Ling,J.;Jian,M.Q.;Zhang,Y.Y.;Yang,Y.;Ren,T.L.Graphene Textile Strain Sensor with NegativeResistanceVariation for Human MotionDetection.ACS Nano 2018,12,9, 9134-9141。

Claims (10)

1.一种弹性导电氨纶布料,其特征在于,所述为负载碳纳米管的氨纶布料。
2.根据权利要求1所述布料,其特征在于,氢化苯乙烯-丁二烯嵌段共聚物SEBS促使碳纳米管负载氨纶布料,碳纳米管的负载量为1-2wt%。
3.一种弹性导电氨纶布料的制备方法,包括:
(1)将氢化苯乙烯-丁二烯嵌段共聚物SEBS和溶剂混合,得到SEBS分散液;然后将碳纳米管CNT分散于SEBS分散液中,得到碳纳米管分散液;
(2)将氨纶布料浸泡碳纳米管分散液,即得弹性导电氨纶布料。
4.根据权利要求3所述制备方法,其特征在于,所述步骤(1)中溶剂和SEBS、CNT的质量比为1g:100-500mg:100-500mg。
5.根据权利要求3所述制备方法,其特征在于,所述步骤(2)中浸泡具体为:浸泡3-5min后取出晾干,再浸泡,反复2-5次后,用乙醇洗涤。
6.一种权利要求3所述方法制备的弹性导电氨纶布料。
7.一种权利要求1所述弹性导电氨纶布料的应用。
8.一种基于弹性导电氨纶布料的拉伸传感器,其特征在于,权利要求1所述弹性导电氨纶布料与铜片、导电胶和环氧胶组装成拉伸传感器。
9.一种权利要求8所述基于弹性导电氨纶布料的拉伸传感器的制备方法,包括:
将弹性导电氨纶布料两端剪断制得线段M3;
将线段M3的两端分别插入沾有导电胶的铜片,制得线段M4;
再将线段M4两端用环氧胶固定,即得拉伸传感器。
10.一种权利要求8所述基于弹性导电氨纶布料的拉伸传感器的应用。
CN201811209550.9A 2018-10-17 2018-10-17 一种弹性导电氨纶布料及其制备和应用 Pending CN109537268A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811209550.9A CN109537268A (zh) 2018-10-17 2018-10-17 一种弹性导电氨纶布料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811209550.9A CN109537268A (zh) 2018-10-17 2018-10-17 一种弹性导电氨纶布料及其制备和应用

Publications (1)

Publication Number Publication Date
CN109537268A true CN109537268A (zh) 2019-03-29

Family

ID=65843855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811209550.9A Pending CN109537268A (zh) 2018-10-17 2018-10-17 一种弹性导电氨纶布料及其制备和应用

Country Status (1)

Country Link
CN (1) CN109537268A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041558A (zh) * 2019-04-04 2019-07-23 东华大学 一种蜂窝状微结构弹性导电聚氨酯海绵及其制备和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985761A (zh) * 2006-12-14 2007-06-27 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
JP2014525994A (ja) * 2011-11-11 2014-10-02 イオイズ・コーポレーション カーボンナノチューブ蓄熱織物及びその製造方法
US20150274924A1 (en) * 2014-04-01 2015-10-01 Council Of Scientific & Industrial Research Electrostatic dissipative foams and process for the preparation thereof
CN105470003A (zh) * 2016-01-12 2016-04-06 东华大学 一种三维碳纳米管/纺织纤维可拉伸电极材料的制备方法
CN105898981A (zh) * 2016-04-01 2016-08-24 合肥工业大学 一种基于导电织物的可拉伸电极及其制备方法
CN107190510A (zh) * 2017-06-22 2017-09-22 西安工程大学 基于碳纳米管的高导热柔性发热丝的制备方法
CN107915857A (zh) * 2017-11-20 2018-04-17 华南理工大学 一种柔性导电超疏水涂层及其制备方法
CN108385370A (zh) * 2018-01-19 2018-08-10 东华大学 一种碳纳米管/聚氨酯弹性导电纤维及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985761A (zh) * 2006-12-14 2007-06-27 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
JP2014525994A (ja) * 2011-11-11 2014-10-02 イオイズ・コーポレーション カーボンナノチューブ蓄熱織物及びその製造方法
US20150274924A1 (en) * 2014-04-01 2015-10-01 Council Of Scientific & Industrial Research Electrostatic dissipative foams and process for the preparation thereof
CN105470003A (zh) * 2016-01-12 2016-04-06 东华大学 一种三维碳纳米管/纺织纤维可拉伸电极材料的制备方法
CN105898981A (zh) * 2016-04-01 2016-08-24 合肥工业大学 一种基于导电织物的可拉伸电极及其制备方法
CN107190510A (zh) * 2017-06-22 2017-09-22 西安工程大学 基于碳纳米管的高导热柔性发热丝的制备方法
CN107915857A (zh) * 2017-11-20 2018-04-17 华南理工大学 一种柔性导电超疏水涂层及其制备方法
CN108385370A (zh) * 2018-01-19 2018-08-10 东华大学 一种碳纳米管/聚氨酯弹性导电纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIN CHEN 等: "Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing", 《COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041558A (zh) * 2019-04-04 2019-07-23 东华大学 一种蜂窝状微结构弹性导电聚氨酯海绵及其制备和应用

Similar Documents

Publication Publication Date Title
Wang et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection
Huang et al. Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles
Lu et al. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors
Zheng et al. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit
Chen et al. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping
Liu et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications
Zhang et al. Textile‐only capacitive sensors for facile fabric integration without compromise of wearability
Sun et al. A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range
Jiang et al. Ultrawide sensing range and highly sensitive flexible pressure sensor based on a percolative thin film with a knoll-like microstructured surface
CN109307565A (zh) 一种可感应压力的柔性电子皮肤及其制备方法
Chang et al. Wearable nanofibrous tactile sensors with fast response and wireless communication
Jiang et al. Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid
Liu et al. All textile-based robust pressure sensors for smart garments
CN106932119A (zh) 一种印刷式织物基柔性温度传感器
Sun et al. Wearable and washable textile-based strain sensors via a single-step, environment-friendly method
Yang et al. Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity
Zhu et al. A high-performance textile pressure sensor based on carbon black/carbon nanotube-polyurethane coated fabrics with porous structure for monitoring human motion
Lin et al. Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?
Tang et al. Biomass-derived multifunctional 3D film framed by carbonized loofah toward flexible strain sensors and triboelectric nanogenerators
Zhang et al. Facile fabrication of silicone rubber composite foam with dual conductive networks and tunable porosity for intelligent sensing
Wang et al. Flexible temperature sensor based on RGO/CNTs@ PBT melting blown nonwoven fabric
Zhao et al. Highly stretchable and sensitive strain sensor based on Ti3C2-coated electrospinning TPU film for human motion detection
Li et al. Macromolecule relaxation directed 3D nanofiber architecture in stretchable fibrous mats for wearable multifunctional sensors
Liu et al. 0D to 2D carbon-based materials in flexible strain sensors: recent advances and perspectives
Zou et al. Scalable fabrication of an MXene/cotton/spandex yarn for intelligent wearable applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190329