CN109522586A - 一种基于场协同理论优化换热器肋片结构的方法 - Google Patents

一种基于场协同理论优化换热器肋片结构的方法 Download PDF

Info

Publication number
CN109522586A
CN109522586A CN201811088248.2A CN201811088248A CN109522586A CN 109522586 A CN109522586 A CN 109522586A CN 201811088248 A CN201811088248 A CN 201811088248A CN 109522586 A CN109522586 A CN 109522586A
Authority
CN
China
Prior art keywords
heat exchanger
field
heat
fin
enthalpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811088248.2A
Other languages
English (en)
Other versions
CN109522586B (zh
Inventor
尤学
尤学一
曹为学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811088248.2A priority Critical patent/CN109522586B/zh
Publication of CN109522586A publication Critical patent/CN109522586A/zh
Application granted granted Critical
Publication of CN109522586B publication Critical patent/CN109522586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了一种基于场协同理论优化换热器肋片结构的方法包括以下步骤:步骤一、采用数值模拟方法计算得到换热器内部冷热流体的速度场等结果;步骤二、采用数值模拟方法得到换热器内部焓值(温度)场分布;步骤三、耦合上述两步骤中等到的速度场和焓值(温度)场,计算流动过程中的速度矢量与换热过程中焓值梯度场法向矢量之间的夹角β;步骤四、根据得到的β值的大小,评价不同换热器肋片形式之间换热能力的大小。采用该方法对冷凝式换热器肋片结构进行优化,只要从数值模拟和理论方面进行分析,即可实现度换热器肋片结构的优化,方法简单、成本低且可靠。

Description

一种基于场协同理论优化换热器肋片结构的方法
技术领域
本发明涉及优化换热器肋片结构的方法,尤其涉及基于场协同理论优化换热器肋片结构的方法。
背景技术
换热器作为一种重要的工业设备,广泛应用于化工、石油、动力、冶炼等多个领域。由于上个世纪八十年代世界范围内的能源危机,世界各国均在努力开发新能源,研究高效节能新技术。换热器作为一种能量交换和传递设备,采用各种形式的肋片强化换热效率一直是换热器研究领域的重点工作,关于换热器肋片的结构形式多种多样,如针型肋、环形肋等。现有的换热器肋片形式优化方法中,主要集中于采用实验测试,数值模拟等方法。而从换热器的换热原理方面直接进行优化设计的方法,相对较少。
现有的针对换热器肋片优化的实验测试方法,需反复铸造不同结构的换热器,导致实验周期较长、成本较高、且劳动强度大;而数值模拟方法主要基于计算流体力学原理对换热器运行工况进行模拟分析,理论优化空间较小、难度大,虽操作简单,但优化设计方向随机性太大,不能很好的根据研究目的,对换热器肋片进行有针对性的优化。
发明内容
本发明的目的在于克服已有技术的缺点,提供了一种方法简单、成本低,且可靠的基于场协同理论优化换热器肋片结构的方法。
为了实现优化目标,采用的技术方案是:
本发明的一种基于场协同理论优化换热器肋片结构的方法,包括以下步骤:
步骤1:针对换热器内部流体的流动过程,采用数值模拟的方法,得到换热器内部流体的速度边界层厚度、温度边界层厚度和浓度边界层厚度;
步骤2:针对换热器内部流体的换热过程,根据步骤1得到的速度边界层厚度,温度边界层厚度和浓度边界层厚度,得到换热器内部温度梯度场和水蒸气浓度场耦合之后的焓值梯度场,其中若无冷凝换热过程,所得到的焓值梯度场分布为温度梯度场;
步骤3:将上述得到的流体的流动速度场和换热器内部的焓值梯度场进行耦合,得到其中流动速度场中速度矢量与换热过程中焓值梯度场的法向矢量之间的夹角β;
步骤4:根据得到的β值的大小,评价不同换热器肋片形式之间换热能力的大小,其中一种换热器肋片形式下的β值越小,说明该肋片换热能力越强;反之,则越弱。
本发明提供的换热器肋片形式优化方法,只要从数值模拟和理论方面进行分析,方法简单、成本低且可靠。
附图说明
图1是换热器肋片壁面场协同原理图;
图2是流体流过肋片壁面时边界层的脱体原理;
图3是圆柱形肋片壁面速度云图和焓梯度矢量合成图;
图4是椭圆柱形肋片壁面速度云图和焓梯度矢量合成图;
图5是圆柱形和椭圆柱形肋片壁面Nu数对比图。
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供了一种基于场协同理论优化换热器肋片结构形式的方法,并在下述内容中提供一较佳实施案例,但并不用以限制本发明。凡是在本发明的原则之内,所作的任何修改、等同替换、改进,均应包含在本发明的保护范围之内。
在常规换热器肋片的换热过程中,肋片换热壁面存在一个速度分布场和温度分布场,当换热过程存在质量交换时,会在换热器肋片的壁面周围形成一个水蒸气的浓度分布场。
本发明采用换热器内的焓值梯度场和速度场之间的协同关系,提出一种基于场协同理论优化换热器肋片结构的方法,包括以下步骤:
步骤1:针对换热器内部流体的流动过程,采用数值模拟的方法,得到换热器内部流体的速度边界层厚度、温度边界层厚度和浓度边界层厚度等结果。
数值模拟方法可以采用现有方法,如参见西安交通大学出版社出版的“数值传热学(第二版)”,陶文铨编著教材。
数值模拟的分析结果如下:选择冷凝式换热器内部肋片为研究对象,以二维模型中流体外掠单根圆管流动的边界层问题为例进行分析,同时将换热介质分别定义为:热流体为烟气,冷流体为水,换热壁面为圆管壁面。
换热器内部热流体在肋片壁面流动时,会形成速度边界层,所述速度边界层经数值模拟后,得到结果如图1所示。其中U为来流烟气速度,T为来流烟气温度,C为来流烟气中水蒸气浓度,所述来流烟气温度高于圆管壁面温度Tw,所述来流速度高于壁面速度Uw,所述来流烟气中的水蒸气浓度也高于壁面水蒸气浓度Cw。δu为速度边界层厚度,δt为温度边界层厚度,δc为浓度边界层厚度。
其中,所述速度、温度和浓度边界层厚度是指换热器内从肋片表面处(此处温度为Tw,速度为Uw,浓度为Cw)开始,沿各自法线方向计算至与速度、温度和浓度与来流烟气速度U,来流烟气温度T,来流烟气中水蒸气浓度C相等时的距离。
所述三种边界层厚度均与流动的雷诺数、自由流的状态、物面粗糙度、物面形状和延展范围有关系。
步骤2:针对换热器内部流体的换热过程,根据步骤1得到的速度边界层厚度,温度边界层厚度和浓度边界层厚度,得到换热器内部温度梯度场和水蒸气浓度场耦合之后的焓值梯度场。其中若无冷凝换热过程,所得到的焓值梯度场分布为温度梯度场。
换热器内部温度梯度场和水蒸气浓度场耦合方法如下:
提取步骤1中得到的速度边界层厚度、温度浓度边界层厚度和浓度边界层厚度内的模拟结果数值,其中所述浓度边界层厚度此时即为水蒸气浓度边界层厚度。通过下述公式得到换热器内部温度梯度场和水蒸气浓度场耦合后的焓值梯度场的分布:
式中,h为1kg干烟气中的焓值和此时烟气中存在的d kg水蒸气的焓值的总和。cp,g为干烟气的平均定压比热,单位为kJ/kg,取值可以参见石油工业出版社出版的“天然气工程手册”。cp,w为水蒸气的定压比热,单位为kJ/kg,取值可以参见高等教育出版社出版的“传热学(第四版)”,杨世铭,陶文铨编著教材。t为换热器内部的烟气温度,单位为℃。cp,g·t为干烟气的焓值,单位为kJ/kg。2500为水蒸气的温度t为0时的汽化潜热,单位为kJ/kg,该值可以参见高等教育出版社出版的“传热学(第四版)”,杨世铭,陶文铨编著教材。d为单位质量干烟气中所含有的水蒸气质量,单位为kg/kg。
步骤3:将上述得到的流体的流动速度场和换热器内部的焓值梯度场进行耦合,得到其中流动速度场中速度矢量与换热过程中焓值梯度场的法向矢量之间的夹角β。
流动速度场中速度矢量与换热过程中焓值梯度场的法向矢量之间的夹角β获得方法可以采用现有方法得到,具体分为两种情况:
第一种情况:换热肋片壁面无冷凝现象发生,β值求解方法如下:
(a)首先对肋片壁面附近的温度梯度场和速度场进行分析,肋片壁面的换热无量纲努赛尔数Nu数和壁面附近流体的雷诺数Re数、流体普朗特Pr数,垂直于换热壁面的坐标以及流体的无量纲速度场和无量纲温度梯度场呈现如下关系:
(b)β值可以采用以下方法中的任意一种方法求解得到:
方法1:通过数值模拟结果,可计算得到Nuh,Re数,Pr数,的大小,在经过理论计算求的cosβ值的大小,进一步得到β值的大小。具体计算方法也可参考西安交通大学出版社:数值传热学(第二版),陶文铨编著教材。
方法2:在数值模拟结果中,对流动速度场中速度矢量与换热过程中温度值梯度场的法向矢量首先进行标记,再采用现有角度测量仪器进行测量,得到β值的大小。
方法3:在数值计算软件中,通过编写相关后处理UDF文件,直接得到β值的大小。
第二种情况:换热肋片壁面发生冷凝现象,β值求解方法如下:
(a)肋片壁面换热无量纲努赛尔数Nuh和壁面附近流体的雷诺数Re数、流体普朗特Pr数,垂直于换热壁面的坐标以及流体的无量纲速度场和无量纲焓度梯度场呈现如下关系:
(b)β值可以采用以下方法中的任意一种方法求解得到:
方法1:通过数值模拟结果,可计算得到Nuh,Re数,Pr数,的大小,在经过理论计算求的cosβ值的大小,进一步得到β值的大小。具体计算方法也可参考西安交通大学出版社:数值传热学(第二版),陶文铨编著教材。
方法2:在数值模拟结果中,对流动速度场中速度矢量与换热过程中焓值梯度场的法向矢量首先进行标记,再采用现有角度测量仪器进行测量,得到β值的大小。
方法3:在数值计算软件中,通过编写相关后处理UDF文件,直接得到β值的大小。
步骤4:根据得到的β值的大小,评价不同换热器肋片形式之间换热能力的大小。其中一种换热器肋片形式下的β值越小,说明该肋片换热能力越强;反之,则越弱。
对比不同肋片结构模拟结果,获得β值,通过比较不同的β值,可获得较优的肋片结构。
实施例1
在本实施例中,步骤1和步骤2与具体实施方式中的步骤1和步骤2相同;
步骤3:
根据步骤1和步骤2中数值模拟结果和场协同理论分析,根据步骤3中的方法2直接求得β值大小。
步骤4:
这里针对圆柱形和椭圆柱形肋片的模拟结果进行分析,流体在肋片壁面的流动现象如图2所示,其中虚线表示圆柱形肋片,实线表示椭圆柱形肋片。来流流体流经肋片时,首先与肋片迎风点接触(γ=0°处,γ值为肋片壁面上某点与肋片轴心的连线和肋片水平线之间的夹角),该点也称为滞止点。流体在该点位置处发生停滞,然后分为上下两部分区域进行流动。随着流体的流动,流体首先会在壁面附近形成以贴壁流动,然后会在壁面尾部处发生绕流脱体,脱体后流体还会发生回流的现象。由于脱体现象的发生,也会使得肋片壁面换热能力发生变化。
圆柱形肋片壁面的β角的形成和大小变化如图3所示。在圆柱形肋片的滞止点处(γ=0°),焓值梯度矢量和速度等值线是保持垂直关系的,速度矢量和焓值梯度场法向矢量之间的夹角接近0°值,cosβ值约为1,说明此处的场协同换热能力最强。而后随着γ角度的增加至流体脱体点位置(约γ=145°),焓值梯度矢量和速度矢量之间的夹角逐渐增加,这将导致肋片壁面局部换热能力Nu随γ角度值开始减小。而在流体脱体后(γ>145°),流体流动紊流程度变高,流体速度矢量和焓值梯度矢量之间的关系也变得较为复杂,此区域影响换热能力的主要影响因素变为流体的Re数。
而对于椭圆柱形肋片,其壁面β角的形成和大小变化如图4所示。同圆柱形肋片相似,肋片滞止点附近换热能力最强;随着γ角度的增加,换热能力逐渐下降;随着脱体现象的发生,换热能力再度增强。首先,在滞止点(γ=0°)附近,由于椭圆柱形肋片换热面积大于椭圆柱肋片,使得椭圆柱形肋片在该区域的换热能力高于圆柱形肋片。其次,随着γ角度的增加,椭圆柱壁面两侧流体速度高于圆柱形肋片,使得该区域内椭圆柱壁面的换热能力也高于圆柱形肋片。最后,在脱体现象发生后,椭圆柱肋片回流现象发生面积大于圆柱形肋片,使得换热能力也高于圆柱形肋片。
综上可知,根据椭圆柱形和圆柱形肋片壁面附近β角大小,可知椭圆柱肋片换热能力优于圆柱形肋片。针对以烟气冷凝式换热器模型为例,当热流体烟气Pr数为0.62,粘性系数v为93.61×10-6m2/s,导热系数λ为7.42×10-2W/(m·K),对不同入口烟气流动速度工况下,圆柱形和椭圆柱形肋片壁面的Nu数进行统计计算,得到不同入口烟气流动速度下,肋片壁面Nu数的计算结果如图5所示。可知随着入口烟气速度的增加,两种肋片壁面的Nu数均逐步增加,但椭圆柱形肋片壁面Nu数始终高于圆柱形肋片。计算发现,在入口速度由1m/s逐步增加到10m/s时,椭圆柱形肋片的Nu数比圆柱形肋片高处12.6%。

Claims (1)

1.一种基于场协同理论优化换热器肋片结构的方法,其特征在于包括以下步骤:
步骤1:针对换热器内部流体的流动过程,采用数值模拟的方法,得到换热器内部流体的速度边界层厚度、温度边界层厚度和浓度边界层厚度;
步骤2:针对换热器内部流体的换热过程,根据步骤1得到的速度边界层厚度,温度边界层厚度和浓度边界层厚度,得到换热器内部温度梯度场和水蒸气浓度场耦合之后的焓值梯度场,其中若无冷凝换热过程,所得到的焓值梯度场分布为温度梯度场;
步骤3:将上述得到的流体的流动速度场和换热器内部的焓值梯度场进行耦合,得到其中流动速度场中速度矢量与换热过程中焓值梯度场的法向矢量之间的夹角β;
步骤4:根据得到的β值的大小,评价不同换热器肋片形式之间换热能力的大小,其中一种换热器肋片形式下的β值越小,说明该肋片换热能力越强;反之,则越弱。
CN201811088248.2A 2018-09-18 2018-09-18 一种基于场协同理论优化换热器肋片结构的方法 Active CN109522586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811088248.2A CN109522586B (zh) 2018-09-18 2018-09-18 一种基于场协同理论优化换热器肋片结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811088248.2A CN109522586B (zh) 2018-09-18 2018-09-18 一种基于场协同理论优化换热器肋片结构的方法

Publications (2)

Publication Number Publication Date
CN109522586A true CN109522586A (zh) 2019-03-26
CN109522586B CN109522586B (zh) 2023-04-18

Family

ID=65771060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811088248.2A Active CN109522586B (zh) 2018-09-18 2018-09-18 一种基于场协同理论优化换热器肋片结构的方法

Country Status (1)

Country Link
CN (1) CN109522586B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112948970A (zh) * 2021-03-01 2021-06-11 西北工业大学 一种基于球凸肋片的螺旋蒸发管结构设计方法
CN113742999A (zh) * 2021-08-12 2021-12-03 中国船舶重工集团公司第七一九研究所 印刷电路板式换热器设计方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100305911A1 (en) * 2009-05-27 2010-12-02 King Fahd University Of Petroleum & Minerals Method for modeling fluid flow over porous blocks
CN104820748A (zh) * 2015-05-07 2015-08-05 北京宇航系统工程研究所 一种运载火箭大气层内飞行段舱段温度场分布确定方法
CN107292001A (zh) * 2017-06-06 2017-10-24 北京航空航天大学 考虑边界层燃烧放热效应的可压缩壁函数计算方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100305911A1 (en) * 2009-05-27 2010-12-02 King Fahd University Of Petroleum & Minerals Method for modeling fluid flow over porous blocks
CN104820748A (zh) * 2015-05-07 2015-08-05 北京宇航系统工程研究所 一种运载火箭大气层内飞行段舱段温度场分布确定方法
CN107292001A (zh) * 2017-06-06 2017-10-24 北京航空航天大学 考虑边界层燃烧放热效应的可压缩壁函数计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEIXUE CAO: "Effects of Wall Fins Patterns on the Flue Gas Performance of Condensing Heat Exchanger" *
秦萌;尤学一;: "波纹穿圆孔翅片管换热器换热特性的数值模拟" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112948970A (zh) * 2021-03-01 2021-06-11 西北工业大学 一种基于球凸肋片的螺旋蒸发管结构设计方法
CN113742999A (zh) * 2021-08-12 2021-12-03 中国船舶重工集团公司第七一九研究所 印刷电路板式换热器设计方法及装置
CN113742999B (zh) * 2021-08-12 2023-09-26 中国船舶重工集团公司第七一九研究所 印刷电路板式换热器设计方法及装置

Also Published As

Publication number Publication date
CN109522586B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Meyer et al. A turbulent jet in crossflow analysed with proper orthogonal decomposition
Duan et al. Numerical study of laminar flow and heat transfer characteristics in the fin side of the intermittent wavy finned flat tube heat exchanger
CN111832201B (zh) 液态金属螺旋管蒸汽发生器两侧冷却与蒸发耦合计算方法
Mondal et al. Effects of aspect ratio on unsteady solutions through curved duct flow
Hu et al. Local heat transfer behavior and its impact on a single-row, annularly finned tube heat exchanger
CN109522586A (zh) 一种基于场协同理论优化换热器肋片结构的方法
Yu et al. Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP
Zhang et al. Flow and heat transfer characteristics around egg-shaped tube
Pardhi et al. Performance improvement of double pipe heat exchanger by using turbulator
Herpe et al. Numerical investigation of local entropy production rate of a finned oval tube with vortex generators
CN109522644A (zh) 一种强化换热表面综合性能评价方法
CN110008579A (zh) 垂直翅片管式热交换器的设计方法
Song et al. Experimental study and analysis of a novel multi-media plate heat exchanger
CN204115547U (zh) 冷凝器用换热管
Liu et al. Study on particles distribution characteristics through a circulation fluidized bed with the spiral flow generator
Bohdal et al. Analysis of heat transfer coefficient during refrigerant condensation in vertical pipe minichannel
Kim et al. An experimental investigation on the airside performance of fin-and-tube heat exchangers having nonsymmetrical slit fins
Kanungo Numerical analysis to optimize the heat transfer rate of tube-in-tube helical coil heat exchanger
Zhao et al. Study on the heat transfer coefficient of direct air-cooled condenser
Zhang et al. Analysis of flow and heat transfer characteristics around oval-shaped cylinder
Han et al. A CFD Study of Deposition Characteristics of Particles in Three-dimensional Heat Transfer Channel with Dimple-type Roughness Elements
Huang et al. Influence of radiating tube type on heat dissipation of assembled radiators
ZHANG et al. Investigations of axial conduction effect on local heat transfer performance in PCHE
Lasode et al. EFFECTS OF GEOMETRIC PARAMETERS ON ENTROPY GENERATION IN FIRE-TUBE STEAM BOILER’S HEAT EXCHANGER
Çalışkan et al. EXERGETIC ASPECTS OF HEAT EXCHANGERS.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant