CN109508673A - 一种基于棒状像素的交通场景障碍检测与识别方法 - Google Patents

一种基于棒状像素的交通场景障碍检测与识别方法 Download PDF

Info

Publication number
CN109508673A
CN109508673A CN201811347863.0A CN201811347863A CN109508673A CN 109508673 A CN109508673 A CN 109508673A CN 201811347863 A CN201811347863 A CN 201811347863A CN 109508673 A CN109508673 A CN 109508673A
Authority
CN
China
Prior art keywords
layer
barrier
traffic scene
disparity map
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811347863.0A
Other languages
English (en)
Inventor
连静
孔令超
郑伟娜
王彬彬
周雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811347863.0A priority Critical patent/CN109508673A/zh
Publication of CN109508673A publication Critical patent/CN109508673A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Abstract

本发明公开了一种基于棒状像素的交通场景障碍检测与识别方法,包括以下步骤:基于棒状像素对交通场景障碍物进行检测;构建卷积神经网络模型,并对障碍物进行识别。本发明采用基于局部最优的视差求取方法,实现了对交通场景中的障碍物进行棒状像素提取,检测出障碍物的位置,并利用卷积神经网络对交通场景障碍物进行识别。提高了交通场景的可解析性。本发明构造的网络模型,采用批规范化层加快了网络的收敛速度,提高了模型的泛化能力,并一定程度上改善了识别精确率。添加激活函数层减少了网络训练过程中的梯度消失问题。运用丢弃层有效地防止了过拟合,提高网络的性能。同时提高了交通场景障碍物识别的实时性。

Description

一种基于棒状像素的交通场景障碍检测与识别方法
技术领域
本发明涉及计算机视觉和深度学习领域,具体涉及一种基于棒状像素的交通场景障碍检测与识别方法。
背景技术
近几年,汽车行业正在向着智能化的方向发展,智能化要实现的目标是能够使得汽车具备人类感知外界环境的能力,在一定情况下代替或者帮助驾驶员做出决策。障碍物检测作为环境感知的基础,已经广泛应用于智能汽车和汽车辅助驾驶系统等领域。双目立体视觉系统可以提供较为丰富的场景信息,是智能车进行障碍物检测的重要方式。但目前的基于双目立体视觉系统的障碍物检测算法功能比较单一,导致交通场景的可解析性差。
为了提高可解析性,人们在障碍物识别中,加入了支持向量机(SVM)或AdaBoost算法(通过迭代弱分类器而产生最终的强分类器的算法)等浅层的学习方法。但这些方法对大规模训练样本难以实施,同时也不能解决多分类问题。随着高性能计算硬件和大数据的快速发展,卷积神经网络的优势在不断凸显,被广泛的应用于图像识别等领域,但目前未见将卷积神经网络用于障碍物检测识别的相关报道。
发明内容
为了克服上述现有技术的不足,本发明要提出一种既具有较好的交通场景可解析性,又能适应大规模训练样本并解决多分类问题的基于棒状像素的交通场景障碍检测与识别方法。
为实现上述目的,本发明的技术方案如下:一种基于棒状像素的交通场景障碍检测与识别方法,包括以下步骤:
A、基于棒状像素对交通场景障碍物进行检测
A1、构建视差空间
通过车载双目立体视觉系统获取包含交通场景的左右两幅图像,然后采用半全局立体匹配算法(semi-global stereo matching,SGM)对包含交通场景的左右两幅图像进行立体匹配,得到包含场景三维信息的视差图。所述的双目立体视觉系统包括安装在汽车上的左右两个摄像机。
A2、地面估计
在交通场景中,将所有的交通元素分为两类平面:一类是地面,用水平平面表示;另一类是车辆、树木和行人这类垂直于地面的物体,用垂直平面表示。对步骤A1得到的视差图进行处理,把视差图中每一行的相同视差值累加起来构建V-视差图。由于处于同一距离的地面在水平方向具有相同的视差值,加之视差图中距离人眼视角越近,视差值越大,所以V-视差图中的地面为一条从左上到右下的倾斜直线。利用Hough直线变换检测V-视差图中的倾斜直线,并映射到视差图中,进而根据V-视差图中得到的倾斜直线方程滤除地面,完成地面估计。V-视差图中的倾斜直线方程如下:
式中,b是双目立体视觉系统中两个摄像机之间的基线距离,d是视差值,f是摄像机焦距,θ是摄像机主光轴方向与地面夹角,v是图像列坐标,h是世界坐标下的垂直距离。
A3、棒状像素提取
首先通过占位网格法计算出图像每一列的自由区域,进而找出地面与障碍物的交点;然后使用隶属度函数对图像每一列上的每个像素进行划分,当隶属度函数值为正时表示障碍物,为负时为除了障碍物以外的背景,进而将障碍物的高度分割出来。一旦计算出每一列的自由区域和高度,就可以直接提取出棒状像素。隶属度函数的公式如下:
式中,Mu,v(d)是视差值d对应的隶属度函数值,u是图像的横坐标,v是图像的列坐标,d是视差值,是图像横坐标下前景物体的视差图,ΔDu是视差阈值参数。ΔDu定义如下:
式中,是图像横坐标下前景物体的视差图,fd是深度z对应的视差,zu是图像横坐标下对应的深度值,ΔZu是图像横坐标下对应的深度值偏差。
A4、检测障碍物
首先对视差图基于棒状像素表示的交通场景的障碍物所在区域的每一列的相同视差值累加起来,构建表示障碍物区域的U视差图,得到障碍物在U视差图中的左右边界的列坐标。然后根据障碍物的高度,标记出障碍物的位置。
B、构建卷积神经网络模型,并对障碍物进行识别
B1、构建卷积神经网络模型
卷积神经网络模型由四部分组成,前三部分为卷积网络,最后一部分是全连接网络。第一部分由一个卷积层、一个批规范化(BN)层、一个激活函数(ReLU)层和一个最大池化层组成。卷积层的卷积核的大小为3×3,步长为1×1,卷积后的特征图数量为96。最大池化层的池化核大小为2×2,步长为2×2。输入图像的尺寸大小是224×224×3,经过卷积层之后输出的尺寸大小是224×224×96,经过最大池化层输出的尺寸大小是112×112×96。第二部分由一个卷积层、一个批规范化(BN)层、一个激活函数(ReLU)层和一个最大池化层组成。经过卷积层和最大池化层输出的尺寸大小是56×56×96。第三部分由三个卷积层、三个批规范化(BN)层、三个激活函数(ReLU)层和一个最大池化层组成。经过卷积层和最大池化层输出的尺寸大小是28×28×96。最后一部分由三个全连接层、两个激活函数(ReLU)层、两个丢弃(Dropout)层和一个softmax层组成。把第三部分输出的尺寸扁平为长度为75264的一维向量,首先连接含4096个隐含点的第一层全连接层,输出向量为4096的一维向量。然后连接含4096个隐含点的第二层全连接层,输出向量为4096的一维向量。然后连接含10个隐含点的第三层全连接层,输出向量为10的一维向量。第一层和第二层全连接层之后连接激活层和丢弃层,丢弃层中的丢弃率设置为0.5。最后经过softmax层输出类别概率。
B2、障碍物识别
B21、对卷积神经网络模型进行训练,即把步骤A得到的包含车辆或者行人的检测结果裁剪出来,做成训练样本,输入到卷积神经网络模型中;
B22、经过权重初始化过程,初始化网络模型中卷积层的权重和偏置;
B23、采用前向传播算法和反向传播算法,在训练集上迭代,训练出最优的卷积神经网络模型参数;
B24、卷积神经网络模型训练完之后,选取最优的卷积神经网络模型参数用于障碍物识别,最终输出交通场景障碍物的类别。前向传播算法的计算公式如下:
式中,P'x=k是k类的真实概率分布,x为像素点,Px=k为第k类的概率,L是损失值,N为小批量图像中的像素总数。反向传播算法的计算公式如下:
Wt+1=Wt+Vt+1 (5)
式中,Vt+1是当前权重的更新值,Vt是先前权重的更新值,μ是动量,α是学习率,Wt+1是当前的权重矩阵,Wt是先前的权重矩阵,是负梯度。
与现有技术相比,本发明具有以下有益效果:
1、本发明采用基于局部最优的视差求取方法,实现了对交通场景中的障碍物进行棒状像素提取,检测出障碍物的位置,并利用卷积神经网络对交通场景障碍物进行识别,既提高了交通场景的可解析性,同时又适应了大规模训练样本并解决了多分类问题。
2、本发明构造的网络模型,采用批规范化层加快了网络的收敛速度,提高了模型的泛化能力,并一定程度上改善了识别精确率。添加激活函数层减少了网络训练过程中的梯度消失问题。运用丢弃层有效地防止了过拟合,提高网络的性能。同时提高了交通场景障碍物识别的实时性。
附图说明
图1是本发明的流程图。
图2是棒状像素提取之后的结果图。
图3是交通场景障碍物检测结果图。
图4是卷积神经网络结构图。
图5是交通场景障碍物识别结果图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
如图1所示,一种基于棒状像素和卷积神经网络的交通场景障碍检测与识别方法,包括以下步骤:
A、基于棒状像素对交通场景障碍物进行检测
A1、构建视差空间
通过车载双目立体视觉系统获取包含交通场景的左右两幅图像,然后采用半全局立体匹配算法(semi-global stereo matching,SGM)对包含交通场景的左右两幅图像进行立体匹配,构建视差空间;
A2、地面估计
在交通场景中,将所有的交通元素分为两类平面:一类是地面,用水平平面表示;另一类是车辆、树木和行人这类垂直于地面的物体,用垂直平面表示。对步骤A1得到的视差图进行处理,把视差图中每一行的相同视差值累加起来构建V-视差图。由于处于同一距离的地面在水平方向具有相同的视差值,加之视差图中距离人眼视角越近,视差值越大,所以V-视差图中的地面为一条从左上到右下的倾斜直线。利用Hough直线变换检测V-视差图中的倾斜直线,并映射到视差图中,进而根据V-视差图中得到的倾斜直线方程滤除地面,完成地面估计,得到视差图。V-视差图中的倾斜直线公式如下:
式中,b是双目立体视觉系统中两个摄像机之间的基线距离,d是视差值,f是摄像机焦距,θ是摄像机主光轴方向与地面夹角,v是图像列坐标,h是世界坐标下的垂直距离。
A3、棒状像素提取
首先通过占位网格法计算出图像每一列的自由区域,进而找出地面与障碍物的交点;然后使用隶属度函数对图像每一列上的每个像素进行划分,当隶属度函数值为正时表示障碍物,为负时表示除了障碍物以外的背景,进而将障碍物的高度分割出来。一旦计算出每一列的自由区域和高度,就可以直接提取出如图2所示棒状像素。隶属度函数的公式如下:
式中,Mu,v(d)是视差值d对应的隶属度函数值,u是图像的横坐标,v是图像的列坐标,d是视差值,是图像横坐标下前景物体的视差图,ΔDu是给定的一个视差阈值参数。ΔDu定义如下:
式中,是图像横坐标下前景物体的视差图,fd是深度z对应的视差,zu是图像横坐标下对应的深度值,ΔZu是图像横坐标下对应的深度值偏差。
A4、检测障碍物
首先对视差图基于棒状像素表示的交通场景的障碍物所在区域的每一列的相同视差值累加起来,构建表示障碍物区域的U视差图,得到障碍物在U视差图中的左右边界的列坐标。然后根据障碍物的高度,标记出障碍物的位置。得到的结果如图3所示;
B、构建卷积神经网络模型,并对障碍物进行识别
B1、构建如图4所示的卷积神经网络模型
卷积神经网络模型从上往下,分别是卷积神经网络模型的输入和卷积神经网络模型的结构。卷积神经网络模型的输入尺寸大小是224×224×3,卷积神经网络模型网络模型的结构由四部分组成,前三部分卷积网络,最后一部分是全连接网络。第一部分由一个卷积层、一个批规范化(BN)层、一个激活函数(ReLU)层和一个最大池化层组成。第二部分也是由一个卷积层、一个批规范化(BN)层、一个激活函数(ReLU)层和一个最大池化层组成。第三部分由三个卷积层、三个批规范化(BN)层、三个激活函数(ReLU)层和一个最大池化层组成。最后一部分由三个全连接层、两个激活函数(ReLU)层、两个Dropout层和一个softmax层组成。
B2、障碍物识别
B21、对卷积神经网络模型进行训练,即把步骤A得到的包含车辆或者行人的检测结果裁剪出来,做成训练样本,输入到卷积神经网络模型中;
B22、经过权重初始化过程,初始化网络模型中卷积层的权重和偏置;
B23、采用前向传播算法和反向传播算法,在训练集上迭代,训练出最优的卷积神经网络模型参数;
B24、卷积神经网络模型训练完之后,选取最优的卷积神经网络模型参数用于障碍物识别,最终输出的结果如图5所示。前向传播算法的计算公式如下:
式中,P'x=k是k类的真实概率分布,x为像素点,Px=k为第k类的概率,L是损失值,N为小批量图像中的像素总数。反向传播算法的计算公式如下:
Wt+1=Wt+Vt+1 (5)
式中,Vt+1是当前权重的更新值,Vt是先前权重的更新值,μ是动量,α是学习率,Wt+1是当前的权重矩阵,Wt是先前的权重矩阵,是负梯度。
本发明不局限于本实施例,任何在本发明披露的技术范围内的等同构思或者改变,均列为本发明的保护范围。

Claims (1)

1.一种基于棒状像素的交通场景障碍检测与识别方法,包括以下步骤:
A、基于棒状像素对交通场景障碍物进行检测
A1、构建视差空间
通过车载双目立体视觉系统获取包含交通场景的左右两幅图像,然后采用半全局立体匹配算法对包含交通场景的左右两幅图像进行立体匹配,得到包含场景三维信息的视差图;所述的双目立体视觉系统包括安装在汽车上的左右两个摄像机;
A2、地面估计
在交通场景中,将所有的交通元素分为两类平面:一类是地面,用水平平面表示;另一类是车辆、树木和行人这类垂直于地面的物体,用垂直平面表示;对步骤A1得到的视差图进行处理,把视差图中每一行的相同视差值累加起来构建V-视差图;由于处于同一距离的地面在水平方向具有相同的视差值,加之视差图中距离人眼视角越近,视差值越大,所以V-视差图中的地面为一条从左上到右下的倾斜直线;利用Hough直线变换检测V-视差图中的倾斜直线,并映射到视差图中,进而根据V-视差图中得到的倾斜直线方程滤除地面,完成地面估计;V-视差图中的倾斜直线方程如下:
式中,b是双目立体视觉系统中两个摄像机之间的基线距离,d是视差值,f是摄像机焦距,θ是摄像机主光轴方向与地面夹角,v是图像列坐标,h是世界坐标下的垂直距离;
A3、棒状像素提取
首先通过占位网格法计算出图像每一列的自由区域,进而找出地面与障碍物的交点;然后使用隶属度函数对图像每一列上的每个像素进行划分,当隶属度函数值为正时表示障碍物,为负时为除了障碍物以外的背景,进而将障碍物的高度分割出来;计算出每一列的自由区域和高度,直接提取出棒状像素;隶属度函数的公式如下:
式中,Mu,v(d)是视差值d对应的隶属度函数值,u是图像的横坐标,v是图像的列坐标,d是视差值,是图像横坐标下前景物体的视差图,ΔDu是视差阈值参数;ΔDu定义如下:
式中,是图像横坐标下前景物体的视差图,fd是深度z对应的视差,zu是图像横坐标下对应的深度值,ΔZu是图像横坐标下对应的深度值偏差;
A4、检测障碍物
首先对视差图基于棒状像素表示的交通场景的障碍物所在区域的每一列的相同视差值累加起来,构建表示障碍物区域的U视差图,得到障碍物在U视差图中的左右边界的列坐标;然后根据障碍物的高度,标记出障碍物的位置;
B、构建卷积神经网络模型,并对障碍物进行识别
B1、构建卷积神经网络模型
卷积神经网络模型由四部分组成,前三部分为卷积网络,最后一部分是全连接网络;第一部分由一个卷积层、一个批规范化层、一个激活函数层和一个最大池化层组成;卷积层的卷积核的大小为3×3,步长为1×1,卷积后的特征图数量为96;最大池化层的池化核大小为2×2,步长为2×2;输入图像的尺寸大小是224×224×3,经过卷积层之后输出的尺寸大小是224×224×96,经过最大池化层输出的尺寸大小是112×112×96;第二部分由一个卷积层、一个批规范化层、一个激活函数层和一个最大池化层组成;经过卷积层和最大池化层输出的尺寸大小是56×56×96;第三部分由三个卷积层、三个批规范化层、三个激活函数层和一个最大池化层组成;经过卷积层和最大池化层输出的尺寸大小是28×28×96;最后一部分由三个全连接层、两个激活函数层、两个丢弃层和一个softmax层组成;把第三部分输出的尺寸扁平为长度为75264的一维向量,首先连接含4096个隐含点的第一层全连接层,输出向量为4096的一维向量;然后连接含4096个隐含点的第二层全连接层,输出向量为4096的一维向量;然后连接含10个隐含点的第三层全连接层,输出向量为10的一维向量;第一层和第二层全连接层之后连接激活层和丢弃层,丢弃层中的丢弃率设置为0.5;最后经过softmax层输出类别概率;
B2、障碍物识别
B21、对卷积神经网络模型进行训练,即把步骤A得到的包含车辆或者行人的检测结果裁剪出来,做成训练样本,输入到卷积神经网络模型中;
B22、经过权重初始化过程,初始化网络模型中卷积层的权重和偏置;
B23、采用前向传播算法和反向传播算法,在训练集上迭代,训练出最优的卷积神经网络模型参数;
B24、卷积神经网络模型训练完之后,选取最优的卷积神经网络模型参数用于障碍物识别,最终输出交通场景障碍物的类别;前向传播算法的计算公式如下:
式中,P'x=k是k类的真实概率分布,x为像素点,Px=k为第k类的概率,L是损失值,N为小批量图像中的像素总数;反向传播算法的计算公式如下:
Wt+1=Wt+Vt+1(5)
式中,Vt+1是当前权重的更新值,Vt是先前权重的更新值,μ是动量,α是学习率,Wt+1是当前的权重矩阵,Wt是先前的权重矩阵,是负梯度。
CN201811347863.0A 2018-11-13 2018-11-13 一种基于棒状像素的交通场景障碍检测与识别方法 Pending CN109508673A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811347863.0A CN109508673A (zh) 2018-11-13 2018-11-13 一种基于棒状像素的交通场景障碍检测与识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811347863.0A CN109508673A (zh) 2018-11-13 2018-11-13 一种基于棒状像素的交通场景障碍检测与识别方法

Publications (1)

Publication Number Publication Date
CN109508673A true CN109508673A (zh) 2019-03-22

Family

ID=65748264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811347863.0A Pending CN109508673A (zh) 2018-11-13 2018-11-13 一种基于棒状像素的交通场景障碍检测与识别方法

Country Status (1)

Country Link
CN (1) CN109508673A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906479A (zh) * 2021-01-22 2021-06-04 成都纵横自动化技术股份有限公司 一种无人机辅助降落方法及其系统
JP2021536071A (ja) * 2019-06-27 2021-12-23 センスタイム グループ リミテッド 障害物検出方法、知的運転制御方法、装置、媒体、及び機器
JP2022039921A (ja) * 2020-08-27 2022-03-10 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド 目標検出方法及び装置、コンピュータシステム並びに可読記憶媒体
CN115116038A (zh) * 2022-08-30 2022-09-27 北京中科慧眼科技有限公司 基于双目视觉的障碍物识别方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177236A (zh) * 2011-12-22 2013-06-26 株式会社理光 道路区域检测方法和装置、分道线检测方法和装置
CN105550665A (zh) * 2016-01-15 2016-05-04 北京理工大学 一种基于双目视觉的无人驾驶汽车可通区域检测方法
CN105740802A (zh) * 2016-01-28 2016-07-06 北京中科慧眼科技有限公司 基于视差图的障碍物检测方法和装置及汽车驾驶辅助系统
CN106096493A (zh) * 2015-05-01 2016-11-09 通用汽车环球科技运作有限责任公司 使用深度学习的棒状像素估计和道路场景分割
CN106599832A (zh) * 2016-12-09 2017-04-26 重庆邮电大学 一种基于卷积神经网络的多类障碍物检测与识别方法
CN107169956A (zh) * 2017-04-28 2017-09-15 西安工程大学 基于卷积神经网络的色织物疵点检测方法
CN108009592A (zh) * 2017-12-15 2018-05-08 云南大学 一种糖尿病性视网膜图像自动分类方法
CN108734713A (zh) * 2018-05-18 2018-11-02 大连理工大学 一种基于多特征图的交通图像语义分割方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177236A (zh) * 2011-12-22 2013-06-26 株式会社理光 道路区域检测方法和装置、分道线检测方法和装置
CN106096493A (zh) * 2015-05-01 2016-11-09 通用汽车环球科技运作有限责任公司 使用深度学习的棒状像素估计和道路场景分割
CN105550665A (zh) * 2016-01-15 2016-05-04 北京理工大学 一种基于双目视觉的无人驾驶汽车可通区域检测方法
CN105740802A (zh) * 2016-01-28 2016-07-06 北京中科慧眼科技有限公司 基于视差图的障碍物检测方法和装置及汽车驾驶辅助系统
CN106599832A (zh) * 2016-12-09 2017-04-26 重庆邮电大学 一种基于卷积神经网络的多类障碍物检测与识别方法
CN107169956A (zh) * 2017-04-28 2017-09-15 西安工程大学 基于卷积神经网络的色织物疵点检测方法
CN108009592A (zh) * 2017-12-15 2018-05-08 云南大学 一种糖尿病性视网膜图像自动分类方法
CN108734713A (zh) * 2018-05-18 2018-11-02 大连理工大学 一种基于多特征图的交通图像语义分割方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HERNAN BADINO ET AL: "Stereo-based Free Space Computation in Complex Traffic Scenarios", 《2008 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION》 *
SEBASTIAN RAMOS ET AL.: "Detecting Unexpected Obstacles for Self-Driving Cars:Fusing Deep Learning and Geometric Modeling", 《2017 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)》 *
白中浩 等: "基于Stixel-world及特征融合的双目立体视觉行人检测", 《仪器仪表学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021536071A (ja) * 2019-06-27 2021-12-23 センスタイム グループ リミテッド 障害物検出方法、知的運転制御方法、装置、媒体、及び機器
JP2022039921A (ja) * 2020-08-27 2022-03-10 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド 目標検出方法及び装置、コンピュータシステム並びに可読記憶媒体
JP7079358B2 (ja) 2020-08-27 2022-06-01 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド 目標検出方法及び装置、コンピュータシステム並びに可読記憶媒体
CN112906479A (zh) * 2021-01-22 2021-06-04 成都纵横自动化技术股份有限公司 一种无人机辅助降落方法及其系统
CN112906479B (zh) * 2021-01-22 2024-01-26 成都纵横自动化技术股份有限公司 一种无人机辅助降落方法及其系统
CN115116038A (zh) * 2022-08-30 2022-09-27 北京中科慧眼科技有限公司 基于双目视觉的障碍物识别方法和系统

Similar Documents

Publication Publication Date Title
CN110942449B (zh) 一种基于激光与视觉融合的车辆检测方法
CN105866790B (zh) 一种考虑激光发射强度的激光雷达障碍物识别方法及系统
CN108648161B (zh) 非对称核卷积神经网络的双目视觉障碍物检测系统及方法
CN109508673A (zh) 一种基于棒状像素的交通场景障碍检测与识别方法
CN109460709A (zh) 基于rgb和d信息融合的rtg视觉障碍物检测的方法
CN104541302B (zh) 距离提示对象分割系统和方法
CN104700414B (zh) 一种基于车载双目相机的前方道路行人快速测距方法
CN109048926A (zh) 一种基于立体视觉的机器人智能避障系统及方法
CN106156723B (zh) 一种基于视觉的路口精定位方法
CN110738121A (zh) 一种前方车辆检测方法及检测系统
CN107481315A (zh) 一种基于Harris‑SIFT‑BRIEF算法的单目视觉三维环境重建方法
CN113111887B (zh) 一种基于相机和激光雷达信息融合的语义分割方法及系统
CN109726627A (zh) 一种神经网络模型训练及通用接地线的检测方法
CN111832655A (zh) 一种基于特征金字塔网络的多尺度三维目标检测方法
CN112801074B (zh) 一种基于交通摄像头的深度图估计方法
CN113506318B (zh) 一种车载边缘场景下的三维目标感知方法
CN111998862B (zh) 一种基于bnn的稠密双目slam方法
CN110231013A (zh) 一种基于双目视觉的车前行人检测与人车距离获取方法
CN115049700A (zh) 一种目标检测方法及装置
CN115032651A (zh) 一种基于激光雷达与机器视觉融合的目标检测方法
CN110533720A (zh) 基于联合约束的语义slam系统及方法
CN106446785A (zh) 基于双目视觉的可行道路检测方法
CN111524233A (zh) 一种静态场景动态目标的三维重建方法
CN112115889B (zh) 基于视觉的智能车运动目标检测方法
CN114495064A (zh) 一种基于单目深度估计的车辆周围障碍物预警方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190322

WD01 Invention patent application deemed withdrawn after publication