CN109508671A - 一种基于弱监督学习的视频异常事件检测系统及其方法 - Google Patents

一种基于弱监督学习的视频异常事件检测系统及其方法 Download PDF

Info

Publication number
CN109508671A
CN109508671A CN201811345314.XA CN201811345314A CN109508671A CN 109508671 A CN109508671 A CN 109508671A CN 201811345314 A CN201811345314 A CN 201811345314A CN 109508671 A CN109508671 A CN 109508671A
Authority
CN
China
Prior art keywords
video
behavior
behavior example
score
weakly supervised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811345314.XA
Other languages
English (en)
Other versions
CN109508671B (zh
Inventor
安欣赏
李楠楠
张世雄
张子尧
李革
张伟民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Instritute Of Intelligent Video Audio Technology Longgang Shenzhen
Original Assignee
Instritute Of Intelligent Video Audio Technology Longgang Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instritute Of Intelligent Video Audio Technology Longgang Shenzhen filed Critical Instritute Of Intelligent Video Audio Technology Longgang Shenzhen
Priority to CN201811345314.XA priority Critical patent/CN109508671B/zh
Publication of CN109508671A publication Critical patent/CN109508671A/zh
Application granted granted Critical
Publication of CN109508671B publication Critical patent/CN109508671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/41Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/44Event detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)

Abstract

本发明公布了一种基于弱监督学习的视频异常事件检测系统及其方法,该方法基于深度学习框架,把弱监督视频异常事件检测问题表述成一个多实例学习模型;对于一个视频序列,将其划分为多个行为实例,对每个行为实例采用深度网络模型提取多层次外形‑运动联合表述特征,同时构建正常/异常行为分类器对行为实例进行打分,从而实现给定视频中异常事件检测任务。本发明的方法,只需要弱标注的样本即可进行模型构建,从而节省了大量的人力劳动和时间成本,对于日常生活中常见的异常事件有较高的检测精度。在目前公布的测试数据集上,取得了领先的检测水平。

Description

一种基于弱监督学习的视频异常事件检测系统及其方法
技术领域
本发明涉及视频行为分析技术领域,具体涉及到一种基于弱监督学习的视频异常事件检测系统及其方法,该方法采用深度学习框架,设计一种弱监督学习策略来训练视频行为正常\异常分类器,在此基础上完成视频行为异常事件检测。
背景技术
视频行为异常事件检测是计算机视觉领域长期以来的一个研究热点。随着我国城市中高清监控摄像头的越来越普及,随之产生的海量的监控视频给视频操作人员带来了繁重的工作负担。同时现有的视频行为检测技术不能及时地发现正在发生的异常事件(例如:暴恐犯罪事件),进而提醒工作人员阻止事态的进一步发展,把可能的损失最小化。当前视频行为异常事件检测方法主要基于以下假设:与经常出现的行为模式不同的模式即为异常行为模式。从这个假设出发,现有的方法通常由正常行为数据来构建正常行为模型,用此模型对视频中出现的模式进行打分,得分低的模式被检测为异常行为模式。由于日常生活中正常行为事件的模式多种多样,再加上视频拍摄场景和拍摄角度不同带来的行为表现形式上的变化,使得很难对所有的正常行为构建统一的模型。另外,在现实的生活中,人们对异常行为模式总是有一定的先验,比如:打架、抢劫等事件总是被视为异常事件,而不需要预先和正常事件进行比较再做判断。本发明提出的方法直接从现实中海量的监控视频出发,通过少量的标注(只标注视频是否含有异常事件而不需要给出异常事件的起止时间点)来构建正常/异常事件分类器,从而实现对测试视频中含有的异常事件进行检测和定位。
发明内容
本发明的目的是提供一种基于弱监督学习的视频异常事件检测系统。
本发明的另一目的是提供一种基于弱监督学习的视频异常事件检测方法,通过在海量弱标注视频数据集上(只标注视频是否含有异常事件而没有指出异常事件起止的时间位置)应用弱监督学习方法来构造正常/异常事件分类器,从而实现对于给定的待测视频,自动完成判定其中是否含有异常事件和定位异常事件发生的时间轴位置。
本发明提出的方法与现有的方法相比有两点主要的改进:1.)本发明的方法是基于弱监督学习框架,相比于传统的基于强监督学习的方法,此方法只需要对数据集进行若标注即可(只标注视频是否含有异常事件),从未节省了大量的人工标注成本和劳动时间;2.)本发明提出的模型是基于正常/异常两类样本来构建的,相比于目前只关注于正常样本的模型构建方法,引入了对异常事件的先验信息,从而使模型对于日常常见的异常事件具有更加准确地判定。
本发明的原理是:1.)把弱监督视频异常事件检测问题表述成一个多实例学习模型。每个实例对应于视频序列中的一个视频片段,多个实例构成一个实例包,对应于一个视频序列。多实例学习的任务即是建立实例包中多个实例间的偏序关系;2.)通过加入实例得分平滑性约束来确保同一个视频序列中相邻的视频片段得分是平滑地连续变化的,符合行为事件发展变化连续性原理,而加入实例得分稀疏性约束来确保只有少量的实例取得较大的得分值,符合异常事件是少量的、偶发的性质。
本发明提供的技术方案如下:
一种基于弱监督学习的视频异常事件检测系统,其特征在于,包括视频片段层次结构深度特征提取模块、行为实例包弱监督学习模块以及行为实例异常得分损失函数约束模块;其中:
所述的视频片段层次结构深度特征提取模块,用于对指定长度的视频片段也即行为实例,提取多个层次的RGB图像-光流图像联合表述特征;
所述的行为实例包弱监督学习模块,用于将包含多个行为实例的视频序列作为一个整体,只使用正常/异常的视频标签,进行弱监督学习;
所述的行为实例异常得分损失函数约束模块,用于约束行为实例得分符合视频事件连续性、异常事件偶发性的性质,来指导异常事件评分网络更加有效地进行学习。
所述视频片段层次结构深度特征提取模块具体包括:RGB图像-光流图像深度特征提取网络,用于提取行为实例在指定的划分层次上外形-运动信息的联合表述特征;行为实例多层次结构划分模块,用于对行为实例进行多个层次的结构划分,提取从粗到细多个粒度上的外形-运动信息联合表述特征;
所述行为实例包弱监督学习模块具体包括:正/负样本行为实例包设置,即把一段视频作为一个行为实例包,一段视频包含多个行为实例,根据其类别标签分别作为正样本行为实例包,包含异常事件和负样本行为实例包,负样本行为实例包只包含正常事件。构建行为实例包用于实现弱监督学习中的偏序学习;行为实例异常事件分类网络,即构建一个多层次深度神经网络模型对行为实例进行异常度评分,若为异常,则期望输出值为1,若为正常,则期望输出值为0。
本发明提出的弱监督视频异常事件检测方法包括三个部分:对输入视频进行划分,得到行为实例,进而构成行为实例包;利用深度学习模型对行为实例进行特征提取;构建行为实例正常/异常得分模型,由行为实例得分偏序性、稀疏性和连续性约束构造损失函数,从而对模型进行优化求解。从一段视频输入到异常事件检测结果输出包括以下若干步骤:
1)对输入视频进行均匀划分,每段包括若干帧,构成一个行为实例。一个视频序列所有的行为实例构成一个整体,称之为实例包;
2)利用深度学习模型对每个行为实例提取外形和运动联合表述层次结构特征;
3)把联合表述特征输入到正常/异常事件分类网络,得到行为实例得分。根据设定的得分阈值,得到异常事件检测结果。
与现有技术相比,本发明的有益效果是:
利用本发明提供的技术方案,在对视频中存在的异常事件进行检测时,采用了一种半监督学习的模式。相比于传统的基于强监督的异常事件检测方法,节省了大量的人力劳动和时间成本来进行样本的精确标注;同时,本发明中提出的模型是对正常/异常事件进行建模,相比于传统的只基于正常事件建模的方法,对现实中常见的异常事件具有一定的先验信息,因而提高了异常事件检测的准确率。
下面结合附图,通过实施例子对本发明进一步说明如下:
附图说明
图1为本发明的流程图;
图2为本发明所提出模型的网络结构图;
图3为视频片段层次划分结构图;
附图中:
1—异常事件视频,2—异常行为实例包,3—正常事件视频,4—正常行为实例包,5—特征提取深度网络模型,6—正常/异常事件分类模型,7—隐含层一,8—隐含层二,9—隐含层三,10—事件行为分类得分,11—视频片段零级划分,12—视频片段1级划分,13—视频片段2级划分,14—视频片段3级划分。
具体实施方式
图2为本发明所提出模型的网络结构图,如图2所示,本实施例系统包含:特征提取深度网络模型5,正常/异常事件分类模型6,隐含层一7,隐含层二8,隐含层三9。
图3为视频片段层次划分结构图,如图3所示,本实施例包含:视频片段零级划分11,视频片段1级划分12,视频片段2级划分13,视频片段3级划分14。
图1为本发明的流程图,其中s1—s3依次对应于具体实施步骤1)—3)。一种基于弱监督学习的视频异常事件检测方法,整体操作流程现分述如下:
1)输入视频划分成片段,构建行为实包S1:给定一段视频,把它均匀地划分为若干段,每段包含32帧图像。每段视频构成一个行为实例,对于包含异常事件的视频1,此行为实例记为Ia,而对于正常事件视频3,此行为实例记为In。由Ia构成的集合称之为异常行为实例包,记为Ga2,由In构成的集合称之为正常行为实例包,记为Gn4;
2)对行为实例提取外形和运动联合表述层次化深度特征S2:在训练阶段,由深度网络模型5提取Ia或者In的深度表述特征用于训练正常/异常事件分类器6。以下依Ia的处理过程为例进行说明,In的处理过程与之相同。首先提取Ia中每帧图像的光流信息,得到相应的光流图像,记为Po,而原始RGB图像记为Pc。这里Po和Pc均代表图像序列。把Po和Pc按照不同的层次进行划分,共计4个层次,分别对应保留整段的零级层次11,划分为2段的1级层次12,划分为4段的2级层次13,划分为8段的3级层次14。对每个层次分别提取各段的光流图像和RGB图像联合表述特征,对各段特征进行平均求和作为该层次的表述特征。记深度网络模型为Mf,记第i(i=0,1,2,3)个层次第j(j=1,2,…,2i)段视频为Vi j。具体操作过程为:对于Vi j,从其对应的Pc中随机抽取一帧RGB图像输入Mf,计算RGB特征Fc;同时把其对应的Po全部输入Mf,计算光流特征Fo,把Fc和Fo联结起来得到Vi j的联合表述特征第i个层次的表述特征Fi采用如式(1)所示方式计算:
则行为实例Ia的表述特征采用如式(2)所示方式计算:
式(2)中Fi为第i个层次的表述特征。
在训练阶段,行为实例由标签数据可以分为Ia或者In,而在测试阶段,没有标签数据,行为实例统称为I。深度网络模型Mf在实际实施中取为VGG-16模型(Simonyan K.andZisserman A.2014.Very Deep Convolutional Networks for Large Scale ImageRecognition.ArXiv(2014).https://doi.org/arXiv:1409.1556);
3)构建正常/异常事件分类模型,对视频片断打分,得出异常事件检测结果S3:把输入到正常/异常事件分类模型MI(图2中6),得到异常事件分类得分S(图2中10)。模型MI包括三个隐含层神经元,分别为:包含1024个神经元隐含层一7,包含512个神经元隐含层二8,包含128个神经元隐含层三9。设定得分阈值Ts=0.5,若S≥Ts,则判定对应的行为实例I为异常事件。MI训练时的损失函数设置如式(3)所示:
在式(3)中,第一项为行为实例包Gn和Ga之间的偏序约束,即要求Ga中行为实例最大得分要大于Gn中行为实例最大得分,其中为Gn中第i个行为实例得分,为Ga中第j个行为实例得分;第二项约束为视频序列中相邻行为实例得分连贯性约束;第三项约束为视频序列中异常行为实例分布稀疏性约束。λ1和λ2为权重调整系数,分别取0.3。综合第二项和第三项约束反映了异常事件在视频中稀疏分布以及视频事件连续变化发展的特性。
以上即为本发明提出的一种基于弱监督学习的视频异常事件检测方法的具体实施方案。此实施例实在异常事件数据集UCSD(1)上进行的,并用目前公认的评价标准AUC(Area Under Curve)对实验结果进行了评估证明本发明提出的方法都达到了目前领先的检测精度。本发明提出的方法与现有方法在UCSD(1)上的检测结果比较如表1所示。
表1检测结果比较表
表1以及说明书中方括号内的标号为下列方括号中所对应参考文献。例如:Sparse[1]方括号内的1表示参考文献[1]中所提及的方法。
参考文献:
[1]Y.Cong,J.Yuan,and J.Liu,“Sparse reconstruction cost for abnormalevent detection,”in Proceedings of IEEE Conference on Computer Vision andPattern Recognition,2011,pp.3449–3456.
[2]V.Mahadevan,W.Li,V.Bhalodia,and N.Vasconcelos,“Anomaly detectionin crowded scenes,”in Proceedings of IEEE Conference on Computer Vision andPattern Recognition,2010,pp.1975–1981.
[3]D.Xu,E.Ricci,Y.Yan,J.Song,and N.Sebe,“Learning deeprepresentations of appearance and motion for anomalous event detection,”inProceedings of British Machine Vision Conference,2015,pp.1–12.
[4]M.Hasan,J.Choi,J.Neumann,A.K.Roy-Chowdhury,and L.S.Davis,“Learningtemporal regularity in video sequences,”in Proceedings of IEEE Conference onComputer Vision and Pattern Recognition,2016,pp.733–742.
[5]M.Ravanbakhsh,M.Nabi,E.Sangineto,L.Marcenaro,C.Regazzoni,andN.Sebe,“Abnormal event detection in videos using generative adversarialnets,”in Proceedings of International Conference on Image Processing,2017,pp.1–5.
需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (7)

1.一种基于弱监督学习的视频异常事件检测系统,其特征在于,包括视频片段层次结构深度特征提取模块、行为实例包弱监督学习模块以及行为实例异常得分损失函数约束模块;其中:
所述的视频片段层次结构深度特征提取模块,用于对指定长度的视频片段也即行为实例,提取多个层次的RGB图像-光流图像联合表述特征;
所述的行为实例包弱监督学习模块,用于将包含多个行为实例的视频序列作为一个整体,只使用正常/异常的视频标签,进行弱监督学习;
所述的行为实例异常得分损失函数约束模块,用于约束行为实例得分符合视频事件连续性、异常事件偶发性的性质,来指导异常事件评分网络更加有效地进行学习。
2.根据权利要求1所述的基于弱监督学习的视频异常事件检测系统,其特征是,所述视频片段层次结构深度特征提取模块具体包括:
RGB图像-光流图像深度特征提取网络,用于提取行为实例在指定的划分层次上外形-运动信息的联合表述特征;
行为实例多层次结构划分模块,用于对行为实例进行多个层次的结构划分,提取从粗到细多个粒度上的外形-运动信息联合表述特征。
3.根据权利要求1所述的基于弱监督学习的视频异常事件检测系统,其特征是,所述行为实例包弱监督学习模块具体包括:
正/负样本行为实例包设置,即把一段视频作为一个行为实例包,根据其类别标签分别作为正样本行为实例包和负样本行为实例包,构建行为实例包用于实现弱监督学习中的偏序学习;
行为实例异常事件分类网络,即构建一个多层次深度神经网络模型对行为实例进行异常度评分,若为异常,则期望输出值为1,若为正常,则期望输出值为0。
4.根据权利要求1所述的基于弱监督学习的视频异常事件检测系统,其特征在于,所述行为实例异常得分损失函数约束模块具体包括:
正/负样本行为实例包异常事件得分偏序约束模块,即要求正样本包中行为实例最大得分要大于负样本包中行为实例最大得分,以保证训练样本在异常事件得分分布上的一致性;
时间上连续的行为实例异常得分平滑性约束模块,即要求同一视频序列中相邻的行为实例间的异常得分差异要尽量的小,以保证视频事件连续发展的性质;
高异常得分行为实例稀疏性约束模块,即要求给定的一段视频序列中,取得高异常得分的行为实例的数量要尽量的少,以保证视频中异常事件偶发性的性质。
这三个约束可用式(4)表述:
在式(3)中,第一项为正样本行为实例包Gn和负样本行为实例包Ga之间的偏序约束,即要求Ga中行为实例最大得分要大于Gn中行为实例最大得分,其中为Gn中第i个行为实例得分,为Ga中第j个行为实例得分;第二项约束 为视频序列中相邻行为实例得分连贯性约束;第三项约束为视频序列中异常行为实例分布稀疏性约束,λ1和λ2为权重调整系数,分别取0.3。综合第二项和第三项约束反映了异常事件在视频中稀疏分布以及视频事件连续变化发展的特性。
5.一种基于弱监督学习的视频异常事件检测方法,应用权利要求1-4任意一项检测系统,其特征在于,包括以下步骤:
步骤1:对输入视频进行划分,构建行为实例包;
步骤2:利用深度网络模型提取行为实例的多层次外形-运动信息联合表述特征;
步骤3:把联合表述特征输入到异常事件分类网络,得到行为实例得分。根据设定的得分阈值,得到异常事件检测结果。
6.根据权利要求5所述的一种基于弱监督学习的视频异常事件检测方法,其特征在于:所述的步骤1:对输入视频进行均匀划分,每段包括若干帧,构成一个行为实例,一个视频序列所有的行为实例构成一个整体,称之为实例包。
7.根据权利要求5所述的一种基于弱监督学习的视频异常事件检测方法,其特征在于:所述的步骤2:利用深度学习模型对每个行为实例提取外形和运动联合表述层次结构特征。
CN201811345314.XA 2018-11-13 2018-11-13 一种基于弱监督学习的视频异常事件检测系统及其方法 Active CN109508671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811345314.XA CN109508671B (zh) 2018-11-13 2018-11-13 一种基于弱监督学习的视频异常事件检测系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811345314.XA CN109508671B (zh) 2018-11-13 2018-11-13 一种基于弱监督学习的视频异常事件检测系统及其方法

Publications (2)

Publication Number Publication Date
CN109508671A true CN109508671A (zh) 2019-03-22
CN109508671B CN109508671B (zh) 2023-06-06

Family

ID=65748237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811345314.XA Active CN109508671B (zh) 2018-11-13 2018-11-13 一种基于弱监督学习的视频异常事件检测系统及其方法

Country Status (1)

Country Link
CN (1) CN109508671B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070023A (zh) * 2019-04-16 2019-07-30 上海极链网络科技有限公司 一种基于运动顺序性回归的自监督学习方法及装置
CN110378233A (zh) * 2019-06-20 2019-10-25 上海交通大学 一种基于人群行为先验知识的双分支异常检测方法
CN111626102A (zh) * 2020-04-13 2020-09-04 上海交通大学 基于视频弱标记的双模态迭代去噪异常检测方法及终端
CN111832625A (zh) * 2020-06-18 2020-10-27 中国医学科学院肿瘤医院 一种基于弱监督学习的全扫描图像分析方法和系统
CN112069884A (zh) * 2020-07-28 2020-12-11 中国传媒大学 一种暴力视频分类方法、系统和存储介质
CN112215083A (zh) * 2020-09-17 2021-01-12 中国科学院沈阳应用生态研究所 一种基于异常变化建模的多地理视频自适应事件探测方法
CN112329614A (zh) * 2020-11-04 2021-02-05 湖北工业大学 一种异常事件检测方法及系统
CN112487961A (zh) * 2020-11-27 2021-03-12 鹏城实验室 一种交通事故检测方法、存储介质及设备
CN113159003A (zh) * 2021-05-27 2021-07-23 中国银行股份有限公司 银行网点异常监控方法及装置
CN113516032A (zh) * 2021-04-29 2021-10-19 中国科学院西安光学精密机械研究所 基于时域注意力的弱监督监控视频异常行为检测方法
CN113762178A (zh) * 2021-09-13 2021-12-07 合肥工业大学 一种背景抑制采样的弱监督异常事件时间定位方法
CN114092856A (zh) * 2021-11-18 2022-02-25 西安交通大学 对抗与注意力联合机制的视频弱监督异常检测系统及方法
CN116665310A (zh) * 2023-07-28 2023-08-29 中日友好医院(中日友好临床医学研究所) 基于弱监督学习的抽动障碍识别和分类方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134532A1 (en) * 2010-06-08 2012-05-31 Gorilla Technology Inc. Abnormal behavior detection system and method using automatic classification of multiple features
CN103839080A (zh) * 2014-03-25 2014-06-04 上海交通大学 基于测度查询熵的视频流异常事件检测方法
CN105608446A (zh) * 2016-02-02 2016-05-25 北京大学深圳研究生院 一种视频流异常事件的检测方法及装置
CN106022244A (zh) * 2016-05-16 2016-10-12 广东工业大学 基于递归神经网络建模的无监督人群异常监测及定位方法
US20180189610A1 (en) * 2015-08-24 2018-07-05 Carl Zeiss Industrielle Messtechnik Gmbh Active machine learning for training an event classification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134532A1 (en) * 2010-06-08 2012-05-31 Gorilla Technology Inc. Abnormal behavior detection system and method using automatic classification of multiple features
CN103839080A (zh) * 2014-03-25 2014-06-04 上海交通大学 基于测度查询熵的视频流异常事件检测方法
US20180189610A1 (en) * 2015-08-24 2018-07-05 Carl Zeiss Industrielle Messtechnik Gmbh Active machine learning for training an event classification
CN105608446A (zh) * 2016-02-02 2016-05-25 北京大学深圳研究生院 一种视频流异常事件的检测方法及装置
CN106022244A (zh) * 2016-05-16 2016-10-12 广东工业大学 基于递归神经网络建模的无监督人群异常监测及定位方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110070023B (zh) * 2019-04-16 2020-06-16 上海极链网络科技有限公司 一种基于运动顺序性回归的自监督学习方法及装置
CN110070023A (zh) * 2019-04-16 2019-07-30 上海极链网络科技有限公司 一种基于运动顺序性回归的自监督学习方法及装置
CN110378233A (zh) * 2019-06-20 2019-10-25 上海交通大学 一种基于人群行为先验知识的双分支异常检测方法
CN111626102B (zh) * 2020-04-13 2022-04-26 上海交通大学 基于视频弱标记的双模态迭代去噪异常检测方法及终端
CN111626102A (zh) * 2020-04-13 2020-09-04 上海交通大学 基于视频弱标记的双模态迭代去噪异常检测方法及终端
CN111832625A (zh) * 2020-06-18 2020-10-27 中国医学科学院肿瘤医院 一种基于弱监督学习的全扫描图像分析方法和系统
CN112069884A (zh) * 2020-07-28 2020-12-11 中国传媒大学 一种暴力视频分类方法、系统和存储介质
CN112069884B (zh) * 2020-07-28 2024-03-12 中国传媒大学 一种暴力视频分类方法、系统和存储介质
CN112215083A (zh) * 2020-09-17 2021-01-12 中国科学院沈阳应用生态研究所 一种基于异常变化建模的多地理视频自适应事件探测方法
CN112215083B (zh) * 2020-09-17 2021-11-09 中国科学院沈阳应用生态研究所 一种基于异常变化建模的多地理视频自适应事件探测方法
CN112329614A (zh) * 2020-11-04 2021-02-05 湖北工业大学 一种异常事件检测方法及系统
CN112487961A (zh) * 2020-11-27 2021-03-12 鹏城实验室 一种交通事故检测方法、存储介质及设备
CN113516032A (zh) * 2021-04-29 2021-10-19 中国科学院西安光学精密机械研究所 基于时域注意力的弱监督监控视频异常行为检测方法
CN113516032B (zh) * 2021-04-29 2023-04-18 中国科学院西安光学精密机械研究所 基于时域注意力的弱监督监控视频异常行为检测方法
CN113159003A (zh) * 2021-05-27 2021-07-23 中国银行股份有限公司 银行网点异常监控方法及装置
CN113762178A (zh) * 2021-09-13 2021-12-07 合肥工业大学 一种背景抑制采样的弱监督异常事件时间定位方法
CN113762178B (zh) * 2021-09-13 2024-07-12 合肥工业大学 一种背景抑制采样的弱监督异常事件时间定位方法
CN114092856A (zh) * 2021-11-18 2022-02-25 西安交通大学 对抗与注意力联合机制的视频弱监督异常检测系统及方法
CN114092856B (zh) * 2021-11-18 2024-02-06 西安交通大学 对抗与注意力联合机制的视频弱监督异常检测系统及方法
CN116665310A (zh) * 2023-07-28 2023-08-29 中日友好医院(中日友好临床医学研究所) 基于弱监督学习的抽动障碍识别和分类方法及系统
CN116665310B (zh) * 2023-07-28 2023-11-03 中日友好医院(中日友好临床医学研究所) 基于弱监督学习的抽动障碍识别和分类方法及系统

Also Published As

Publication number Publication date
CN109508671B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN109508671A (zh) 一种基于弱监督学习的视频异常事件检测系统及其方法
CN108921051B (zh) 基于循环神经网络注意力模型的行人属性识别网络及技术
CN111723654B (zh) 基于背景建模、YOLOv3与自优化的高空抛物检测方法及装置
CN103324937B (zh) 标注目标的方法和装置
CN109614921B (zh) 一种基于对抗生成网络的半监督学习的细胞分割方法
CN108600865B (zh) 一种基于超像素分割的视频摘要生成方法
CN105590099B (zh) 一种基于改进卷积神经网络的多人行为识别方法
CN109978918A (zh) 一种轨迹追踪方法、装置和存储介质
CN108491766B (zh) 一种端到端的基于深度决策森林的人群计数方法
WO2017000300A1 (en) Methods and systems for social relation identification
CN105227907B (zh) 基于视频的无监督异常事件实时检测方法
CN107155360A (zh) 用于对象检测的多层聚合
CN105096300B (zh) 对象检测方法和设备
CN110826453A (zh) 一种通过提取人体关节点坐标的行为识别方法
KR101183105B1 (ko) 자동 구름 정보 산출방법
CN105243356B (zh) 一种建立行人检测模型的方法及装置及行人检测方法
GB2501542A (en) Abnormal behaviour detection in video or image surveillance data
CN104680193B (zh) 基于快速相似性网络融合算法的在线目标分类方法与系统
EP3467712B1 (en) Methods and systems for processing image data
CN103810500A (zh) 一种基于有监督学习概率主题模型的地点图像识别方法
CN109919246A (zh) 基于自适应特征聚类和多重损失融合的行人重识别方法
Jenrette et al. Shark detection and classification with machine learning
CN114492634B (zh) 一种细粒度装备图片分类识别方法及系统
KR101675692B1 (ko) 구조 학습 기반의 군중 행동 인식 방법 및 장치
Liu et al. Design of face detection and tracking system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant