CN109508634B - 基于迁移学习的船舶类型识别方法及系统 - Google Patents
基于迁移学习的船舶类型识别方法及系统 Download PDFInfo
- Publication number
- CN109508634B CN109508634B CN201811162674.6A CN201811162674A CN109508634B CN 109508634 B CN109508634 B CN 109508634B CN 201811162674 A CN201811162674 A CN 201811162674A CN 109508634 B CN109508634 B CN 109508634B
- Authority
- CN
- China
- Prior art keywords
- image
- ship
- normalization
- learning model
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013526 transfer learning Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000010606 normalization Methods 0.000 claims abstract description 42
- 238000013508 migration Methods 0.000 claims abstract description 24
- 230000005012 migration Effects 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000012549 training Methods 0.000 claims abstract description 15
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 14
- 238000002372 labelling Methods 0.000 claims abstract description 12
- 210000002569 neuron Anatomy 0.000 claims description 21
- 238000011176 pooling Methods 0.000 claims description 13
- 238000010276 construction Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000006870 function Effects 0.000 description 9
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811162674.6A CN109508634B (zh) | 2018-09-30 | 2018-09-30 | 基于迁移学习的船舶类型识别方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811162674.6A CN109508634B (zh) | 2018-09-30 | 2018-09-30 | 基于迁移学习的船舶类型识别方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109508634A CN109508634A (zh) | 2019-03-22 |
CN109508634B true CN109508634B (zh) | 2020-10-30 |
Family
ID=65746316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811162674.6A Active CN109508634B (zh) | 2018-09-30 | 2018-09-30 | 基于迁移学习的船舶类型识别方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109508634B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110033045A (zh) * | 2019-04-17 | 2019-07-19 | 内蒙古工业大学 | 一种训练识别图像雾化的方法和装置 |
CN110210536A (zh) * | 2019-05-22 | 2019-09-06 | 北京邮电大学 | 一种光互连系统的物理损伤诊断方法及装置 |
CN110348357B (zh) * | 2019-07-03 | 2022-10-11 | 昆明理工大学 | 一种基于深度卷积神经网络的快速目标检测方法 |
CN110633353B (zh) * | 2019-07-29 | 2020-05-19 | 南京莱斯网信技术研究院有限公司 | 一种基于集成学习的船舶类型仿冒监测方法 |
CN110569844B (zh) * | 2019-08-26 | 2022-02-08 | 中国人民解放军91550部队 | 基于深度学习的船舶识别方法及系统 |
CN110610207B (zh) * | 2019-09-10 | 2022-11-25 | 重庆邮电大学 | 一种基于迁移学习的小样本sar图像舰船分类方法 |
CN110660478A (zh) * | 2019-09-18 | 2020-01-07 | 西安交通大学 | 一种基于迁移学习的癌症图像预测判别方法和系统 |
CN111652352B (zh) * | 2020-05-13 | 2023-08-04 | 北京航天自动控制研究所 | 一种针对迁移学习的神经网络模型输入通道整合方法 |
CN111738325B (zh) * | 2020-06-16 | 2024-05-17 | 北京百度网讯科技有限公司 | 图像识别方法、装置、设备以及存储介质 |
CN114007050A (zh) * | 2021-10-14 | 2022-02-01 | 桂林电子科技大学 | 一种基于北斗通信的目标识别图像传输方法 |
CN114239688B (zh) * | 2021-11-23 | 2022-08-02 | 中南大学 | 船只目标识别方法、计算机装置及程序产品、存储介质 |
CN118013647B (zh) * | 2024-03-22 | 2024-09-10 | 江南大学 | 基于迁移学习的船体外形设计代理辅助优化方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145903A (zh) * | 2017-04-28 | 2017-09-08 | 武汉理工大学 | 一种基于卷积神经网络图片特征提取的船舶类型识别方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8014590B2 (en) * | 2005-12-07 | 2011-09-06 | Drvision Technologies Llc | Method of directed pattern enhancement for flexible recognition |
-
2018
- 2018-09-30 CN CN201811162674.6A patent/CN109508634B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145903A (zh) * | 2017-04-28 | 2017-09-08 | 武汉理工大学 | 一种基于卷积神经网络图片特征提取的船舶类型识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109508634A (zh) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109508634B (zh) | 基于迁移学习的船舶类型识别方法及系统 | |
CN110674714B (zh) | 基于迁移学习的人脸和人脸关键点联合检测方法 | |
CN104463209B (zh) | 一种基于bp神经网络的pcb板上数字代码识别方法 | |
CN113705769B (zh) | 一种神经网络训练方法以及装置 | |
CN110837870B (zh) | 基于主动学习的声呐图像目标识别方法 | |
CN111191583B (zh) | 基于卷积神经网络的空间目标识别系统及方法 | |
CN112085735A (zh) | 一种基于自适应锚框的铝材质图像缺陷检测方法 | |
CN111507993A (zh) | 一种基于生成对抗网络的图像分割方法、装置及存储介质 | |
CN109523013B (zh) | 基于浅层卷积神经网络的空气颗粒物污染程度估计方法 | |
CN110335290A (zh) | 基于注意力机制的孪生候选区域生成网络目标跟踪方法 | |
CN108985268B (zh) | 基于深度迁移学习的归纳式雷达高分辨距离像识别方法 | |
CN107451616A (zh) | 基于深度半监督迁移学习的多光谱遥感图像地物分类方法 | |
CN110263819A (zh) | 一种用于贝类图像的目标检测方法及装置 | |
CN109753878B (zh) | 一种恶劣天气下的成像识别方法及系统 | |
CN108805222A (zh) | 一种基于arm平台的深度学习数字手写体识别方法 | |
CN111127360B (zh) | 一种基于自动编码器的灰度图像迁移学习方法 | |
US11568212B2 (en) | Techniques for understanding how trained neural networks operate | |
CN107977683A (zh) | 基于卷积特征提取和机器学习的联合sar目标识别方法 | |
CN111104831B (zh) | 一种视觉追踪方法、装置、计算机设备以及介质 | |
CN109086653A (zh) | 手写模型训练方法、手写字识别方法、装置、设备及介质 | |
CN116110022B (zh) | 基于响应知识蒸馏的轻量化交通标志检测方法及系统 | |
US11695898B2 (en) | Video processing using a spectral decomposition layer | |
CN113850783B (zh) | 一种海面船舶检测方法及系统 | |
CN110298394A (zh) | 一种图像识别方法和相关装置 | |
CN111079837A (zh) | 一种用于二维灰度图像检测识别分类的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Method and system of ship type recognition based on Transfer Learning Effective date of registration: 20220624 Granted publication date: 20201030 Pledgee: China Minsheng Banking Corp Shanghai branch Pledgor: SHANGHAI YINGJUE TECHNOLOGY CO.,LTD. Registration number: Y2022310000083 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Date of cancellation: 20230728 Granted publication date: 20201030 Pledgee: China Minsheng Banking Corp Shanghai branch Pledgor: SHANGHAI YINGJUE TECHNOLOGY CO.,LTD. Registration number: Y2022310000083 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Method and System for Ship Type Recognition Based on Transfer Learning Effective date of registration: 20230801 Granted publication date: 20201030 Pledgee: China Minsheng Banking Corp Shanghai branch Pledgor: SHANGHAI YINGJUE TECHNOLOGY CO.,LTD. Registration number: Y2023310000419 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20201030 Pledgee: China Minsheng Banking Corp Shanghai branch Pledgor: SHANGHAI YINGJUE TECHNOLOGY CO.,LTD. Registration number: Y2023310000419 |