CN109487703B - A function-separated self-resetting shock-absorbing bridge and its installation method - Google Patents
A function-separated self-resetting shock-absorbing bridge and its installation method Download PDFInfo
- Publication number
- CN109487703B CN109487703B CN201910033131.2A CN201910033131A CN109487703B CN 109487703 B CN109487703 B CN 109487703B CN 201910033131 A CN201910033131 A CN 201910033131A CN 109487703 B CN109487703 B CN 109487703B
- Authority
- CN
- China
- Prior art keywords
- self
- dissipating
- resetting
- bridge
- resetting energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000009434 installation Methods 0.000 title abstract description 7
- 238000013016 damping Methods 0.000 claims abstract description 34
- 230000001133 acceleration Effects 0.000 claims abstract description 29
- 230000035939 shock Effects 0.000 claims abstract description 15
- 230000009471 action Effects 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 230000021715 photosynthesis, light harvesting Effects 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 239000010935 stainless steel Substances 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000011150 reinforced concrete Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000008602 contraction Effects 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/02—Piers; Abutments ; Protecting same against drifting ice
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/04—Bearings; Hinges
- E01D19/041—Elastomeric bearings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种功能分离式自复位减震桥梁及安装方法,包括桥台、桥墩、主梁及桥台、桥墩处竖向支承主梁的滑动支座和连接主梁的水平自复位耗能减震体系。所述自复位耗能减震体系由自复位耗能阻尼器和加速度相关型锁定装置串联组成,在串联部位设置串联定位装置并固定于主梁底部,通过连接构件将自复位耗能减震体系与桥台、桥墩及主梁铰接;自复位耗能减震体系轴线与主梁轴线呈一定角度布置;加速度相关型锁定装置能够适应桥梁正常运营时的温度变形,地震发生时被瞬间激活,自复位耗能阻尼器开始工作;滑动支座和自复位耗能减震体系实现了竖向和水平向的功能分离。该发明能够有效限制地震作用下墩梁相对位移,减小桥墩地震损伤,确保桥梁结构震后恢复通车。
A function-separated self-resetting shock-absorbing bridge and its installation method, including an abutment, a bridge pier, a main girder, an abutment, a sliding support for vertically supporting the main girder at the pier, and a horizontal self-resetting energy-dissipating shock-absorbing system connecting the main girder . The self-resetting energy-dissipating shock-absorbing system is composed of a self-resetting energy-dissipating damper and an acceleration-related locking device connected in series. A serial positioning device is arranged at the series connection and fixed at the bottom of the main beam. The self-resetting energy-dissipating shock-absorbing system is connected to It is hinged with the abutment, pier and main girder; the axis of the self-resetting energy-dissipating shock absorbing system is arranged at a certain angle to the axis of the main girder; the acceleration-related locking device can adapt to the temperature deformation of the bridge during normal operation, and is instantly activated when an earthquake occurs, automatically The reset energy-dissipating damper starts to work; the sliding support and the self-resetting energy-dissipating damping system realize the separation of vertical and horizontal functions. The invention can effectively limit the relative displacement of the pier beam under the earthquake action, reduce the earthquake damage of the pier, and ensure that the bridge structure can be restored to traffic after the earthquake.
Description
技术领域technical field
本发明涉及桥梁结构体系,具体涉及自复位耗能阻尼器、加速度相关型锁定装置、串联定位装置和滑动支座配合使用的功能分离式自复位减震桥梁。The invention relates to a bridge structure system, in particular to a function-separated self-resetting shock-absorbing bridge used in conjunction with a self-resetting energy-consuming damper, an acceleration-related locking device, a series positioning device and a sliding support.
背景技术Background technique
现有桥梁结构体系其抗震性能的提升,主要是通过设置减隔震支座和弹塑性挡块等减震措施来实现,采用这些减震措施的桥梁其梁体的地震位移响应较大,极易引起支座的破坏以及落梁等震害的发生。另外,这些传统的减震措施在震后主梁存在很大的残余位移,不能使桥梁结构体系恢复到初始的状态,很难满足震后应急运营等要求。为此,借鉴日本及我国高铁桥梁中采用的“功能分离”抗震设计理念,提出一种功能分离式自复位减震桥梁,自复位减震桥梁主要是通过滑动支座来承担主梁的竖向荷载,通过自复位耗能减震体系控制主梁的水平位移,从而实现竖向和水平向的功能分离。The improvement of the seismic performance of the existing bridge structure system is mainly realized by setting shock-absorbing measures such as shock-absorbing and isolating bearings and elastic-plastic blocks. The seismic displacement response of the beam body of the bridge adopting these shock-absorbing measures is relatively large, which is extremely large. It is easy to cause the damage of the support and the occurrence of earthquake damage such as falling beams. In addition, these traditional shock absorption measures have a large residual displacement of the main girder after the earthquake, which cannot restore the bridge structural system to its original state, and it is difficult to meet the requirements of emergency operation after the earthquake. For this reason, referring to the "function separation" seismic design concept adopted in Japan and my country's high-speed rail bridges, a self-resetting shock-absorbing bridge with function separation is proposed. Load, the horizontal displacement of the main girder is controlled by the self-resetting energy-dissipating shock-absorbing system, so as to realize the separation of vertical and horizontal functions.
发明内容Contents of the invention
本发明的目的是提供一种功能分离式自复位减震桥梁及安装方法。The object of the present invention is to provide a function-separated self-resetting damping bridge and its installation method.
本发明是一种功能分离式自复位减震桥梁及安装方法,功能分离式自复位减震桥梁,桥台1、桥墩2、主梁3以及桥台1、桥墩2处竖向支承主梁的滑动支座4和连接主梁的自复位耗能减震体系5;自复位耗能减震体系5由自复位耗能阻尼器7、加速度相关型锁定装置8、串联定位装置9构成,串联定位装置9为一圆形不锈钢钢筒,钢筒外部的中点位置焊接连接构件6,利用螺栓将自复位耗能阻尼器7与加速度相关型锁定装置8串联在一起,并在串联部位外套串联定位装置9,形成自复位耗能减震体系5;将连接好的自复位耗能减震装体系5通过连接构件6与桥台1、桥墩2及主梁3铰接相连;自复位耗能减震体系5在梁底的布置形式按平行主梁3轴线沿桥梁纵向布置、垂直主梁3轴线沿桥梁横向布置或者与主梁3轴线成一定的夹角θ布置,θ的取值范围为0°~90°。The present invention is a function-separated self-resetting shock-absorbing bridge and an installation method thereof. The function-separated self-resetting shock-absorbing bridge includes
本发明的功能分离式自复位减震桥梁的安装方法,其步骤为:The installation method of the function separation type self-resetting damping bridge of the present invention, its steps are:
(1)自复位耗能减震体系:根据设计要求选取自复位耗能阻尼器7、加速度锁定装置8、串联定位装置9;利用螺栓将自复位耗能阻尼器7与加速度相关型锁定装置8串联在一起,并在串联部位外套串联定位装置9,形成自复位耗能减震体系5;(1) Self-resetting energy-dissipating damping system: select self-resetting energy-dissipating
(2)连接构件6:根据桥梁结构纵、横向地震风险的差异性,确定自复位耗能减震体系5在主梁3与桥墩2或台上的布置位置,根据设计要求用钢材制作连接构件6,并利用高强螺栓在桥台1、桥墩2、主梁3的布置位置处安装连接构件6;(2) Connecting member 6: According to the differences in the longitudinal and lateral seismic risks of the bridge structure, determine the arrangement position of the self-resetting energy-dissipating shock-absorbing
(3)整体装配:利用螺栓将自复位耗能减震体系5与桥台1、桥墩2、主梁3处的连接构件6相连,利用螺栓将串联定位装置9外焊接的连接构件6与主梁3底部相连。(3) Overall assembly: use bolts to connect the self-resetting energy
本发明的有益之处是:1)在温度、收缩、徐变作用下,通过滑动支座满足正常使用的小变形要求。2)车辆、风、地震等活载作用下,加速度相关型锁定装置瞬间被激活,使其力学特性由柔性变为刚性,以确保墩(台)梁间的变形和耗能全有自复位耗能减震体系承担,从而减小桥墩的地震损伤。3)对于连续梁结构体系,各个桥墩协同受力,共同承担地震力。4)通过自复位耗能阻尼器耗散地震输入结构的能量,减小桥梁结构的地震损伤,实现桥梁结构的震后功能可恢复性,以满足震后的应急运营等要求。The advantages of the present invention are: 1) Under the effects of temperature, shrinkage and creep, the sliding support meets the small deformation requirement of normal use. 2) Under the action of live loads such as vehicles, wind, and earthquakes, the acceleration-related locking device is instantly activated, making its mechanical properties change from flexible to rigid, so as to ensure that the deformation and energy consumption between the pier (platform) beams are all self-resetting. It can be borne by the shock-absorbing system, thereby reducing the earthquake damage of the bridge pier. 3) For the continuous beam structure system, each pier bears the force jointly and jointly bears the earthquake force. 4) Dissipate the energy input by the earthquake through the self-resetting energy-dissipating damper, reduce the earthquake damage of the bridge structure, and realize the post-earthquake functional recovery of the bridge structure, so as to meet the requirements of emergency operation after the earthquake.
附图说明Description of drawings
图1为本发明的功能分离式自复位减震桥梁体系的结构示意图,图2为功能分离式自复位减震桥梁中主梁与桥台间布置2根自复位耗能减震体系的结构示意图,图3、图4为功能分离式自复位减震桥梁中主梁与桥墩间多根自复位耗能减震体系布置结构示意图。附图标记及对应名称为:1、桥台,2、桥墩,3、主梁,4、滑动支座,5、自复位耗能减震体系,6、连接构件,7、自复位耗能阻尼器,8、加速度相关型锁定装置,9、串联定位装置。Fig. 1 is a structural schematic diagram of a function-separated self-resetting shock-absorbing bridge system of the present invention, and Fig. 2 is a structural schematic diagram of two self-resetting energy-dissipating shock-absorbing systems arranged between the main girder and the abutment in a function-separated self-resetting shock-absorbing bridge , Figures 3 and 4 are schematic diagrams of the layout of multiple self-resetting energy-dissipating damping systems between the main girder and the pier in a function-separated self-resetting damping bridge. Reference signs and corresponding names are: 1. Abutment, 2. Pier, 3. Main girder, 4. Sliding support, 5. Self-resetting energy-dissipating damping system, 6. Connecting member, 7. Self-resetting energy-dissipating damping Device, 8, acceleration-related locking device, 9, serial positioning device.
具体实施方式Detailed ways
如图1~图4所示,本发明是一种功能分离式自复位减震桥梁及安装方法,功能分离式自复位减震桥梁,桥台1、桥墩2、主梁3以及桥台1、桥墩2处竖向支承主梁的滑动支座4和连接主梁的自复位耗能减震体系5;自复位耗能减震体系5由自复位耗能阻尼器7、加速度相关型锁定装置8、串联定位装置9构成,串联定位装置9为一圆形不锈钢钢筒,钢筒外部的中点位置焊接连接构件6,利用螺栓将自复位耗能阻尼器7与加速度相关型锁定装置8串联在一起,并在串联部位外套串联定位装置9,形成自复位耗能减震体系5;将连接好的自复位耗能减震装体系5通过连接构件6与桥台1、桥墩2及主梁3铰接相连;自复位耗能减震体系5在梁底的布置形式按平行主梁3轴线沿桥梁纵向布置、垂直主梁3轴线沿桥梁横向布置或者与主梁3轴线成一定的夹角θ布置,θ的取值范围为0°~90°。As shown in Figures 1 to 4, the present invention is a function-separated self-resetting damping bridge and its installation method, a function-separating self-resetting damping bridge,
本发明涉及自复位耗能阻尼器、加速度相关型锁定装置、串联定位装置和滑动支座配合使用的功能分离式自复位减震桥梁,不仅能适应梁体在温度、收缩、徐变作用下的自由收缩,而且能够有效限制地震作用下墩梁相对位移,减小桥梁结构损伤。对于连续梁桥结构体系,功能分离式自复位减震桥梁使得连续梁桥的固定墩和活动墩协同受力,避免固定墩单独受力。同时,通过自复位耗能减震体系使得桥梁结构恢复至初始状态,满足桥梁结构震后尽快恢复通车。该发明适用于新建桥梁的抗震和减隔震设计措施和既有桥梁的抗震加固。The invention relates to a self-resetting energy-consuming damper, an acceleration-related locking device, a series positioning device and a sliding support used in conjunction with a function-separated self-resetting shock-absorbing bridge, which can not only adapt to the temperature, shrinkage and creep of the beam body. It can shrink freely, and can effectively limit the relative displacement of the pier beam under the earthquake, and reduce the damage of the bridge structure. For the continuous girder bridge structure system, the function-separated self-resetting shock-absorbing bridge enables the fixed piers and movable piers of the continuous girder bridge to bear the force together, avoiding the independent force of the fixed pier. At the same time, the bridge structure is restored to its original state through the self-resetting energy-dissipating shock absorbing system, so that the bridge structure can be resumed to traffic as soon as possible after the earthquake. The invention is applicable to the anti-seismic and anti-seismic design measures of new bridges and the anti-seismic reinforcement of existing bridges.
如图1~图4所示,所述桥梁体系的纵向地震风险高于横向地震风险的情况下,自复位耗能减震体系5与主梁3轴线的夹角θ取值在0°~45°范围内;所述桥梁体系的横向地震风险高于桥梁纵向地震风险的情况下,自复位耗能减震体系5与主梁3轴线的夹角θ取值在45°~90°范围内;所述桥梁体系的纵、横向地震风险相当或者纵、横向地震风险不确定的情况下,自复位耗能减震体系5轴线5与主梁3轴线呈45°夹角布置;其中几种比较典型情况如下:θ=0°表示只在桥梁结构的纵向布置自复位耗能减震体系5,即平行主梁3轴线沿桥梁纵向布置自复位耗能减震体系5;θ=90°表示只在桥梁的横向布置自复位耗能减震体系5,即垂直主梁3轴线沿桥梁横向布置自复位耗能减震体系5。As shown in Figures 1 to 4, when the longitudinal earthquake risk of the bridge system is higher than the transverse earthquake risk, the angle θ between the self-resetting energy-dissipating shock-absorbing
如图1~图4所示,自复位耗能减震体系5中的加速度相关型锁定装置8铰接于自复位耗能阻尼器7的端部,并在铰接部位设有防止串联体系横向失稳的串联定位装置9,串联定位装置9为一圆柱形不锈钢钢筒,并在钢筒外部焊接连接构件6,利用螺栓将连接构件6与主梁3底部相连。As shown in Figures 1 to 4, the acceleration-
如图1~图4所示,所述自复位耗能减震体系5中的加速度相关型锁定装置8应选用在温度、收缩徐变作用下处于自由伸缩状态、不产生次内力,在地震动、高速活载状况下会被瞬间激活的锁定装置。As shown in Figures 1 to 4, the acceleration-
如图1~图4所示,所述的自复位耗能减震体系5中的自复位耗能阻尼器7选用具有自复位和耗能特性的自复位摩擦阻尼器、自复位耗能支撑。As shown in Figures 1 to 4, the self-resetting energy-dissipating
如图1~图4所示,所述的滑动支座4采用板式橡胶支座或者聚四氟乙烯滑板式橡胶支座。As shown in Figures 1 to 4, the sliding bearing 4 is a plate rubber bearing or a polytetrafluoroethylene sliding plate rubber bearing.
如图1~图4所示,所述的桥墩2采用重力式钢筋混凝土实体桥墩;所述的桥台1采用重力式桥台。As shown in Figures 1 to 4, the
如图1~图4所示,所述结构体系为简支梁桥和连续梁桥体系;对于连续梁桥桥台处设置的自复位耗能减震体系5中的自复位耗能阻尼器7可更换为耗能性阻尼器。As shown in Figures 1 to 4, the structural system is a simply supported girder bridge and a continuous girder bridge system; for the self-resetting energy-dissipating
本发明的功能分离式自复位减震桥梁的安装方法,其步骤为:The installation method of the function separation type self-resetting damping bridge of the present invention, its steps are:
(1)自复位耗能减震体系:根据设计要求选取自复位耗能阻尼器7、加速度锁定装置8、串联定位装置9;利用螺栓将自复位耗能阻尼器7与加速度相关型锁定装置8串联在一起,并在串联部位外套串联定位装置9,形成自复位耗能减震体系5;(1) Self-resetting energy-dissipating damping system: select self-resetting energy-dissipating
(2)连接构件6:根据桥梁结构纵、横向地震风险的差异性,确定自复位耗能减震体系5在主梁3与桥墩2或台上的布置位置,根据设计要求用钢材制作连接构件6,并利用高强螺栓在桥台1、桥墩2、主梁3的布置位置处安装连接构件6;(2) Connecting member 6: According to the differences in the longitudinal and lateral seismic risks of the bridge structure, determine the arrangement position of the self-resetting energy-dissipating shock-absorbing
(3)整体装配:利用螺栓将自复位耗能减震体系5与桥台1、桥墩2、主梁3处的连接构件6相连,利用螺栓将串联定位装置9外焊接的连接构件6与主梁3底部相连。(3) Overall assembly: use bolts to connect the self-resetting energy
如图1所示的自复位耗能阻尼器7、加速度相关型锁定装置8、串联定位装置9和滑动支座4配合使用的功能分离式自复位减震桥梁,包括:桥台1、桥墩2、主梁3以及桥台1、桥墩2处竖向支承主梁的滑动支座4和连接主梁的水平自复位耗能减震体系5。自复位耗能减震体系5由自复位耗能阻尼器7、加速度相关型锁定装置8和串联定位装置9构成,串联定位装置9为一圆形不锈钢钢筒,钢筒外部的中点位置焊接连接构件6,利用螺栓将自复位耗能阻尼器7和加速度相关型锁定装置8串联在一起,并在串联部位外套串联定位装置9,形成自复位减震体系5;将连接好的自复位减震体系5通过连接构件6与桥台1、桥墩2、主梁3铰接相连。自复位耗能减震体系5在梁底的布置形式按平行主梁3轴线沿桥梁纵向布置、垂直主梁3轴线沿桥梁横向布置或者与主梁3轴线成一定的夹角θ布置,θ的取值范围为0°~90°。As shown in Figure 1, the self-resetting energy-dissipating
采用上述自复位耗能阻尼器7、加速度相关型锁定装置8、串联定位装置9和滑动支座4配合使用的功能分离式自复位减震桥梁,能够有效限制地震作用下墩梁相对位移,减小桥墩2的地震损伤,使桥墩2处于弹性状态。另外,自复位耗能减震体系5可以控制残余位移,实现桥梁结构震后的功能可恢复性。The function-separated self-resetting shock-absorbing bridge using the above-mentioned self-resetting energy-dissipating
桥台1、桥墩2和主梁3之间设置用于耗散地震能量和限制主梁3位移的自复位耗能减震体系5。其中自复位耗能阻尼器7用于耗散地震能量减小下部结构传递给上部结构的地震力,限制主梁产生过大的纵、横向位移,且震后能够减小甚至消除主梁3的纵、横向移位,使桥梁结构恢复到初始的状态,有利于桥梁结构震后尽快恢复通车。A self-resetting energy-dissipating shock-absorbing
在自复位耗能阻尼器7的端部铰接加速度锁定装置8,该装置在温度、收缩徐变作用下处于自由伸缩状态,在地震动、高速活载等加速度下会被瞬间激活,使其力学特性由柔性变为刚性,从而保证主梁3和桥墩2(台)间的变形和耗能全由自复位耗能减震体系5来承担。The end of the self-resetting energy-dissipating
自复位耗能阻尼器7与加速度相关型锁定装置8铰接处设置用于定位、防止自复位减震体系横向失稳的串联定位装置9,串联定位装置9为一圆形不锈钢钢筒,钢筒外部中点位置焊接连接构件6。A
滑动支座4采用板式橡胶支座或者聚四氟乙烯板式橡胶支座,主要用于承担主梁的竖向荷载,且不产生竖向荷载。The sliding
自复位耗能减震体系5在梁底的布置方式:根据桥梁结构纵、横向地震风险的差异性,确定自复位耗能减震体系5与主梁3轴线夹角θ的大小;当桥梁纵向地震风险较高时,自复位耗能减震体系5与主梁3轴线的夹角在0°~45°范围内;当桥梁横向地震风险较高时,自复位耗能减震体系5与主梁3轴线的夹角在45°~90°范围内;当纵、横向地震风险基本相当或者纵、横向地震风险不确定时,自复位耗能减震体系轴线5与主梁3轴线呈45°布置。The layout of the self-resetting energy-dissipating damping
所述的自复位耗能减震体系5的数量可依据桥梁抗震及减隔震设计计算确定,当自复位耗能减震体系5的数量为2个时,自复位耗能减震体系5在桥台、桥墩与主梁间斜向布置,如图2、图3所示;当自复位耗能减震体系5的数量超过2个时,自复位耗能减震体系在桥梁结构的横向按折线型布置,如图4所示。The quantity of the self-resetting energy-dissipating shock-absorbing
自复位耗能减震体系5与桥台1、桥墩2、主梁3的连接方式,因其对象(新建桥梁结构或者既有桥梁结构)不同而不同:The connection mode of the self-resetting energy-dissipating shock-absorbing
第一、对于新建桥梁,其特征是先在桥台1、桥墩2、主梁3处预埋连接构件6,再通过螺栓将自复位耗能减震体系5与预埋件连接构件6采用铰接的方式连接,保证其在罕遇地震下不发生滑移或拔出等破坏。First, for new bridges, the feature is that the connecting
第二、对于既有桥梁,其特征是先在既有桥台1、桥墩2、主梁3处安装连接构件6,再通过螺栓将自复位耗能减震体系5与连接构件6相连,保证其在罕遇地震下不发生滑移或拔出等破坏。Second, for the existing bridge, it is characterized in that the connecting
采用本发明提出的含自复位耗能阻尼器、加速度相关型锁定装置、串联定位装置和滑动支座配合使用的功能分离式自复位减震桥梁,可有效地提高了桥梁结构的双向抗震能力,达到在罕遇地震后桥梁可恢复至初始状态、满足应急运营等要求,即本发明可用于新建桥梁抗震设计或既有桥梁的抗震加固。The function-separated self-resetting shock-absorbing bridge including the self-resetting energy-dissipating damper, the acceleration-related locking device, the series positioning device and the sliding support proposed by the present invention can effectively improve the two-way seismic capacity of the bridge structure, The bridge can be restored to its original state after a rare earthquake and meet the requirements of emergency operation, that is, the invention can be used for the seismic design of new bridges or the seismic reinforcement of existing bridges.
以上所述,仅是本发明的具体实施例方式,对于本技术领域的普通技术人员,在不脱离本发明技术范围内,还可做出若干改进或变形。因此本发明不限于上述实施例,本领域的技术人员根据本发明的技术范围,未脱离本发明范畴做出的任何改进或变形都应该在本发明保护范围之内。The above are only specific embodiments of the present invention, and those skilled in the art may make some improvements or modifications without departing from the technical scope of the present invention. Therefore, the present invention is not limited to the above-mentioned embodiments, and any improvement or deformation made by those skilled in the art according to the technical scope of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910033131.2A CN109487703B (en) | 2019-01-14 | 2019-01-14 | A function-separated self-resetting shock-absorbing bridge and its installation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910033131.2A CN109487703B (en) | 2019-01-14 | 2019-01-14 | A function-separated self-resetting shock-absorbing bridge and its installation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109487703A CN109487703A (en) | 2019-03-19 |
CN109487703B true CN109487703B (en) | 2023-07-04 |
Family
ID=65714560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910033131.2A Active CN109487703B (en) | 2019-01-14 | 2019-01-14 | A function-separated self-resetting shock-absorbing bridge and its installation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109487703B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110847008B (en) * | 2019-12-12 | 2024-05-31 | 福州大学 | Bridge abutment rigid frame bridge structure with rigid expansion foundation and construction method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960021678A (en) * | 1994-12-27 | 1996-07-18 | 한승준 | Emergency closing device of speed-sensitive side sliding door |
JP2006152635A (en) * | 2004-11-29 | 2006-06-15 | Chiyoda Engineering Consultants Co Ltd | Seismic strengthening method and seismic strengthening structure for all directions of pier in existing bridge |
CN203807932U (en) * | 2014-02-19 | 2014-09-03 | 株洲时代新材料科技股份有限公司 | Combined layout structure of steel damping devices and sliding bearings |
CN206815169U (en) * | 2017-04-27 | 2017-12-29 | 北京市市政工程设计研究总院有限公司 | Without the replaceable energy-dissipating device of bearing Self-resetting bridge |
CN108350972A (en) * | 2015-11-09 | 2018-07-31 | Itt制造企业有限责任公司 | Viscous damping device assembly with lock function |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201778281U (en) * | 2010-09-21 | 2011-03-30 | 招商局重庆交通科研设计院有限公司 | Aseismatic structure of cable-stayed bridge pier |
CN102296528A (en) * | 2011-06-02 | 2011-12-28 | 中国科学技术大学 | High-precision lock-up device (LUD) for multi-span bridges to resist earthquakes |
CN202913344U (en) * | 2012-10-26 | 2013-05-01 | 中铁上海设计院集团有限公司 | Seismic mitigation and isolation system applied to seismic resistance of long-span continuous beam of single-track railway |
CN103233422B (en) * | 2013-04-28 | 2015-08-19 | 武汉艾尔格桥梁新技术开发有限公司 | For the integral supporting structure of three bridge beam Horizontal Seismics |
JP2015101866A (en) * | 2013-11-22 | 2015-06-04 | Jfeシビル株式会社 | Vibration control reinforcing structure of bridge |
JP6476055B2 (en) * | 2014-04-30 | 2019-02-27 | 首都高速道路株式会社 | Seismic structure for bridges |
CN204023396U (en) * | 2014-07-26 | 2014-12-17 | 台州中昊建设有限公司 | Bridge aseismic devices |
CN205155007U (en) * | 2015-12-03 | 2016-04-13 | 核工业西南勘察设计研究院有限公司 | From viscous damper that tests speed that restores to throne |
CN205474795U (en) * | 2016-01-21 | 2016-08-17 | 成都亚佳工程新技术开发有限公司 | Bridge speed locking device |
CN105735106B (en) * | 2016-04-12 | 2018-04-03 | 兰州理工大学 | Self-resetting frcition damper for bridge isolation system |
CN106223186B (en) * | 2016-07-25 | 2019-02-12 | 江苏科技大学 | A bridge seismic structure with additional cable connection damper device |
CN209482155U (en) * | 2019-01-14 | 2019-10-11 | 兰州理工大学 | A function-separated self-resetting shock-absorbing bridge |
-
2019
- 2019-01-14 CN CN201910033131.2A patent/CN109487703B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960021678A (en) * | 1994-12-27 | 1996-07-18 | 한승준 | Emergency closing device of speed-sensitive side sliding door |
JP2006152635A (en) * | 2004-11-29 | 2006-06-15 | Chiyoda Engineering Consultants Co Ltd | Seismic strengthening method and seismic strengthening structure for all directions of pier in existing bridge |
CN203807932U (en) * | 2014-02-19 | 2014-09-03 | 株洲时代新材料科技股份有限公司 | Combined layout structure of steel damping devices and sliding bearings |
CN108350972A (en) * | 2015-11-09 | 2018-07-31 | Itt制造企业有限责任公司 | Viscous damping device assembly with lock function |
CN206815169U (en) * | 2017-04-27 | 2017-12-29 | 北京市市政工程设计研究总院有限公司 | Without the replaceable energy-dissipating device of bearing Self-resetting bridge |
Also Published As
Publication number | Publication date |
---|---|
CN109487703A (en) | 2019-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209482155U (en) | A function-separated self-resetting shock-absorbing bridge | |
CN106368115B (en) | A kind of shock isolation system suitable for medium and small span beam bridge | |
CN101424071B (en) | Supporting system of long span stayed-cable bridge | |
CN105735106B (en) | Self-resetting frcition damper for bridge isolation system | |
CN106120546B (en) | Function separate type Self-resetting friction rope energy-dissipating and shock-absorbing bearing | |
CN109555009B (en) | A Support and Beam Body Seismic Isolation Structural System and Its Application | |
CN114775413A (en) | Structure and method for improving seismic performance of existing bridge piers based on inertial isolation and sway | |
CN109487703B (en) | A function-separated self-resetting shock-absorbing bridge and its installation method | |
CN209114316U (en) | Energy-consuming spherical steel support with multiple friction coefficients | |
CN111287344A (en) | Shock-absorbing and collapse-preventing combined structure | |
CN108978446A (en) | A kind of Self-resetting energy-dissipation structure suitable for bridge | |
CN206721658U (en) | An energy-dissipating position-limiting support with a viscous damper | |
CN212103646U (en) | Bridge lateral support with limiting, wind-resistant and earthquake-resistant functions | |
US5918850A (en) | Device for positioning at least one fixed point in a civil engineering structure and use in such structures | |
CN209923758U (en) | Annular rubber multi-dimensional damping support | |
CN209669681U (en) | Single pylon cable stayed bridge three-dimensional subtracts vibration-isolating system | |
CN106351118A (en) | Earthquake isolation and reduction structure and earthquake reduction method thereof | |
CN111962569B (en) | Lower shock isolation support for tunnel shock isolation | |
CN213142770U (en) | X-shaped viaduct shock-absorbing support | |
CN103614962B (en) | A kind of continuous girder bridge self-locking linked system damping device | |
WO2019112106A1 (en) | Damping member and damping bridge using same | |
CN111335147B (en) | A self-resetting high damping rubber and SMA steel rod combined anti-drop beam device | |
CN115948976A (en) | Longitudinal combination toughness constraint system and method for large-span suspension bridge | |
CN108385546A (en) | Winding rope anti-fall girder apparatus for bridge strengthening | |
CN211420845U (en) | Sliding friction damping device for continuous beam bridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |