CN109486003A - 一种新能源电容器用大功率金属化薄膜 - Google Patents

一种新能源电容器用大功率金属化薄膜 Download PDF

Info

Publication number
CN109486003A
CN109486003A CN201811307519.9A CN201811307519A CN109486003A CN 109486003 A CN109486003 A CN 109486003A CN 201811307519 A CN201811307519 A CN 201811307519A CN 109486003 A CN109486003 A CN 109486003A
Authority
CN
China
Prior art keywords
new
capacitance device
energy capacitance
metallic film
device high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811307519.9A
Other languages
English (en)
Other versions
CN109486003B (zh
Inventor
刘同林
陈五
陈五一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongling Chaoyue Electronics Co ltd
Original Assignee
Tongling Beyond Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongling Beyond Electronics Co Ltd filed Critical Tongling Beyond Electronics Co Ltd
Priority to CN201811307519.9A priority Critical patent/CN109486003B/zh
Publication of CN109486003A publication Critical patent/CN109486003A/zh
Application granted granted Critical
Publication of CN109486003B publication Critical patent/CN109486003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/285Ammonium nitrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种新能源电容器用大功率金属化薄膜,通过在导热型聚丙烯薄膜的一面或两面采用真空镀膜工艺制成金属镀层即得到成品。将挤出级聚丙烯树脂和改性导热硅胶粉碎混合制成混合粉料,将混合粉料经挤出机平模口缝隙挤出,然后进行拉伸、冷却、退火即得到导热型聚丙烯薄膜。本发明所述新能源电容器用大功率金属化薄膜的导热性能显著提升,这使得采用该新能源电容器用大功率金属化薄膜制成的电容器能够用于大功率的用电场合,不会因为散热不良造成金属化薄膜发生大规模击穿。

Description

一种新能源电容器用大功率金属化薄膜
技术领域
本发明涉及电容器技术领域,尤其涉及一种新能源电容器用大功率金属化薄膜。
背景技术
随着常规能源的有限性以及环境问题的日益突出,新能源的利用正在被有效开发利用。而新能源汽车作为目前新能源项目的代表,正在被逐渐充分开发。在新能源技术领域中,金属化薄膜电容器常用作储能电器元器件。而金属化薄膜电容器中的电容器芯是由金属化薄膜经过卷绕、喷金制成,金属化薄膜是在绝缘基膜的一面或两面采用真空镀膜工艺制成金属镀层。大功率的金属化薄膜电容器在使用时,电容器芯易产生大量的热量,尤其是电容器芯内部的热量不易散发,易造成电容器芯内部过热,最终易造成金属化薄膜发生大规模击穿。而目前的金属化薄膜中,由于金属镀层的导热性能优良,金属化薄膜的散热性能取决于绝缘基膜的传热能力,例如聚丙烯薄膜作为常用的绝缘基膜,聚丙烯薄膜的导热系数为0.22~0.23W/(m·K),而金属铝镀层的导热系数通常为160~177W/(m·K),因此,绝缘基膜的传热能力限制着金属化薄膜散热能力,也就是大功率金属化薄膜的开发。
发明内容
本发明针对现有技术存在的不足,提供了一种新能源电容器用大功率金属化薄膜,具体技术方案如下:
一种新能源电容器用大功率金属化薄膜,包括以下步骤:通过在导热型聚丙烯薄膜的一面或两面采用真空镀膜工艺制成金属镀层即得到成品。
作为上述技术方案的改进,将挤出级聚丙烯树脂和改性导热硅胶粉碎混合制成粒径小于0.5mm的混合粉料,将混合粉料在220~250℃的温度下经挤出机平模口缝隙挤出,然后经拉伸辊按照拉伸比为1:(120~150)倍的比例进行拉伸,再经冷却辊冷却,将冷却后的薄膜在120~150℃温度下经过退火70~80min即得到所述导热型聚丙烯薄膜。
作为上述技术方案的改进,所述挤出级聚丙烯树脂的等规度≥96.5%,所述挤出级聚丙烯树脂的密度为0.9±0.05g/cm3
作为上述技术方案的改进,所述挤出级聚丙烯树脂和改性导热硅胶之间的质量比为100:(33~43)。
作为上述技术方案的改进,将氮化铝粉末、水玻璃溶液、稀无机酸在高剪釜内部生成原硅酸-氮化铝混合物,经静置固化、水洗、干燥、二次造粒得到粗粒,将粗粒浸泡在铝酸酯偶联剂的乙酸乙酯溶液中30~50分钟,将粗粒取出经过干燥除去乙酸乙酯即得到所述改性导热硅胶。
作为上述技术方案的改进,所述氮化铝粉末的粒径为5~20μm。
作为上述技术方案的改进,所述原硅酸-氮化铝混合物中氮化铝的质量分数为50%~55%。
作为上述技术方案的改进,将铝酸酯偶联剂和乙酸乙酯按照质量比(30~35):100的比例混合均即得所述铝酸酯偶联剂的乙酸乙酯溶液。
本发明的有益效果:本发明所述新能源电容器用大功率金属化薄膜的导热性能显著提升,这使得采用该新能源电容器用大功率金属化薄膜制成的电容器能够用于大功率的用电场合,不会因为散热不良造成金属化薄膜发生大规模击穿。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
1)、将粒径为5~20μm的氮化铝粉末、水玻璃溶液、稀无机酸在高剪釜内部生成原硅酸-氮化铝混合物,所述原硅酸-氮化铝混合物中氮化铝的质量分数为50%;经静置固化、水洗、干燥、二次造粒得到粗粒,将粗粒浸泡在铝酸酯偶联剂的乙酸乙酯溶液中30分钟,将粗粒取出经过干燥除去乙酸乙酯即得到所述改性导热硅胶。其中,将铝酸酯偶联剂和乙酸乙酯按照质量比30:100的比例混合均即得所述铝酸酯偶联剂的乙酸乙酯溶液。
2)、将等规度≥96.5%且密度为0.9±0.05g/cm3的挤出级聚丙烯树脂和改性导热硅胶按照质量比为100:33的比例粉碎混合制成粒径小于0.5mm的混合粉料,将混合粉料在220℃的温度下经挤出机平模口缝隙挤出,然后经拉伸辊按照拉伸比为1:120倍的比例进行拉伸,再经冷却辊冷却,将冷却后的薄膜在120℃温度下经过退火80min即得到所述导热型聚丙烯薄膜。所述导热型聚丙烯薄膜的导热系数为0.68W/(m·K)。
3)、通过在导热型聚丙烯薄膜的一面采用真空镀膜工艺制成铝锌合金镀层即得到成品。
实施例2
1)、将粒径为5~20μm的氮化铝粉末、水玻璃溶液、稀无机酸在高剪釜内部生成原硅酸-氮化铝混合物,所述原硅酸-氮化铝混合物中氮化铝的质量分数为53%;经静置固化、水洗、干燥、二次造粒得到粗粒,将粗粒浸泡在铝酸酯偶联剂的乙酸乙酯溶液中35分钟,将粗粒取出经过干燥除去乙酸乙酯即得到所述改性导热硅胶。其中,将铝酸酯偶联剂和乙酸乙酯按照质量比33:100的比例混合均即得所述铝酸酯偶联剂的乙酸乙酯溶液。
2)、将等规度≥96.5%且密度为0.9±0.05g/cm3的挤出级聚丙烯树脂和改性导热硅胶按照质量比为100:36的比例粉碎混合制成粒径小于0.5mm的混合粉料,将混合粉料在230℃的温度下经挤出机平模口缝隙挤出,然后经拉伸辊按照拉伸比为1:130倍的比例进行拉伸,再经冷却辊冷却,将冷却后的薄膜在135℃温度下经过退火75min即得到所述导热型聚丙烯薄膜。所述导热型聚丙烯薄膜的导热系数为0.71W/(m·K)。
3)、通过在导热型聚丙烯薄膜的一面采用真空镀膜工艺制成铝镀层即得到成品。
实施例3
1)、将粒径为5~20μm的氮化铝粉末、水玻璃溶液、稀无机酸在高剪釜内部生成原硅酸-氮化铝混合物,所述原硅酸-氮化铝混合物中氮化铝的质量分数为55%;经静置固化、水洗、干燥、二次造粒得到粗粒,将粗粒浸泡在铝酸酯偶联剂的乙酸乙酯溶液中50分钟,将粗粒取出经过干燥除去乙酸乙酯即得到所述改性导热硅胶。其中,将铝酸酯偶联剂和乙酸乙酯按照质量比35:100的比例混合均即得所述铝酸酯偶联剂的乙酸乙酯溶液。
2)、将等规度≥96.5%且密度为0.9±0.05g/cm3的挤出级聚丙烯树脂和改性导热硅胶按照质量比为100:43的比例粉碎混合制成粒径小于0.5mm的混合粉料,将混合粉料在250℃的温度下经挤出机平模口缝隙挤出,然后经拉伸辊按照拉伸比为1:150倍的比例进行拉伸,再经冷却辊冷却,将冷却后的薄膜在150℃温度下经过退火70min即得到所述导热型聚丙烯薄膜。所述导热型聚丙烯薄膜的导热系数为0.69W/(m·K)。
3)、通过在导热型聚丙烯薄膜的两面采用真空镀膜工艺制成铝镀层即得到成品。
实施例4
1)、通过在普通聚丙烯薄膜的一面采用真空镀膜工艺制成铝镀层即得到对照品;对照品中铝镀层的厚度与实施例2中铝镀层的厚度相同,并且,真空镀膜工艺也与实施例2中相同。将对照品中铝镀层切割成200个边长1.0±0.1mm的方格,用3M胶带粘贴在铝镀层的表面并将所有方格覆盖,然后快速拉起3M胶带,统计方格处脱落的金属块数量为4~6个。
2)、取实施例2中的成品,将该成品中铝镀层切割成200个边长1.0±0.1mm的方格,用3M胶带粘贴在铝镀层的表面并将所有方格覆盖,然后快速拉起3M胶带,统计方格处脱落的金属块数量为1~2个。
在上述实施例中,相对于普通聚丙烯薄膜来说,所述导热型聚丙烯薄膜的导热系数提升有3倍,所述导热型聚丙烯薄膜的导热系数的提升,这使得所述新能源电容器用大功率金属化薄膜的传热性能显著提升,将该大功率金属化薄膜制成电容器芯,其内部的热量易散发,不会造成电容器芯内部过热,也就是说,该大功率金属化薄膜能够进行更大电流的充放电。
在本发明中,采用不导电的氮化铝粉末能够显著提高聚丙烯薄膜的导热性能,同时不影响聚丙烯薄膜的绝缘性能。如该大功率金属化薄膜的直流击穿电压为1800~1850V,不低于普通金属化薄膜。其中,如果向挤出级聚丙烯树脂直接添加氮化铝粉末,氮化铝粉末不易与聚丙烯树脂结合,从而会影响最终对照成品的抗拉性能。所述抗拉性能测试实验如下:将导热型聚丙烯薄膜按照拉伸比为1:5倍的比例进行拉伸,将拉伸后的薄膜裁切成若干块50*50的方块,然后检测其是否漏水,最终统计合格率。本发明所述导热型聚丙烯薄膜经过抗拉性能测试实验后,其合格率为95.7%以上。而对照成品经过抗拉性能测试实验后,其合格率不超过63.1%。这充分说明,直接添加氮化铝粉末会影响其在聚丙烯薄膜内部的分布,易发生分布不均,在经过拉伸后,易导致部分区域被拉破。
利用硅胶将氮化铝包裹、混合制成粗粒,而硅胶本身即为开放的多孔结构,吸附性强,这使得粗粒能够吸附铝酸酯偶联剂,铝酸酯偶联剂能够将粗粒中的微孔给填充,而铝酸酯偶联剂能够改善无机填料与有机聚合物的亲和性和结合力,从而产生防沉效果,还可提高薄膜与金属镀层之间的粘接强度。薄膜与金属镀层之间粘接强度的提升可通过实施例4得出,本发明所述金属镀层与导热型聚丙烯薄膜之间的抗剥落性能明显优于现有金属化薄膜。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种新能源电容器用大功率金属化薄膜,其特征在于包括以下步骤:通过在导热型聚丙烯薄膜的一面或两面采用真空镀膜工艺制成金属镀层即得到成品。
2.根据权利要求1所述的一种新能源电容器用大功率金属化薄膜,其特征在于:将挤出级聚丙烯树脂和改性导热硅胶粉碎混合制成粒径小于0.5mm的混合粉料,将混合粉料在220~250℃的温度下经挤出机平模口缝隙挤出,然后经拉伸辊按照拉伸比为1:(120~150)倍的比例进行拉伸,再经冷却辊冷却,将冷却后的薄膜在120~150℃温度下经过退火70~80min即得到所述导热型聚丙烯薄膜。
3.根据权利要求2所述的一种新能源电容器用大功率金属化薄膜,其特征在于:所述挤出级聚丙烯树脂的等规度≥96.5%,所述挤出级聚丙烯树脂的密度为0.9±0.05g/cm3
4.根据权利要求2所述的一种新能源电容器用大功率金属化薄膜,其特征在于:所述挤出级聚丙烯树脂和改性导热硅胶之间的质量比为100:(33~43)。
5.根据权利要求2所述的一种新能源电容器用大功率金属化薄膜,其特征在于:将氮化铝粉末、水玻璃溶液、稀无机酸在高剪釜内部生成原硅酸-氮化铝混合物,经静置固化、水洗、干燥、二次造粒得到粗粒,将粗粒浸泡在铝酸酯偶联剂的乙酸乙酯溶液中30~50分钟,将粗粒取出经过干燥除去乙酸乙酯即得到所述改性导热硅胶。
6.根据权利要求5所述的一种新能源电容器用大功率金属化薄膜,其特征在于:所述氮化铝粉末的粒径为5~20μm。
7.根据权利要求5所述的一种新能源电容器用大功率金属化薄膜,其特征在于:所述原硅酸-氮化铝混合物中氮化铝的质量分数为50%~55%。
8.根据权利要求5所述的一种新能源电容器用大功率金属化薄膜,其特征在于:将铝酸酯偶联剂和乙酸乙酯按照质量比(30~35):100的比例混合均即得所述铝酸酯偶联剂的乙酸乙酯溶液。
CN201811307519.9A 2018-11-05 2018-11-05 一种新能源电容器用大功率金属化薄膜 Active CN109486003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811307519.9A CN109486003B (zh) 2018-11-05 2018-11-05 一种新能源电容器用大功率金属化薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811307519.9A CN109486003B (zh) 2018-11-05 2018-11-05 一种新能源电容器用大功率金属化薄膜

Publications (2)

Publication Number Publication Date
CN109486003A true CN109486003A (zh) 2019-03-19
CN109486003B CN109486003B (zh) 2021-05-11

Family

ID=65693813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811307519.9A Active CN109486003B (zh) 2018-11-05 2018-11-05 一种新能源电容器用大功率金属化薄膜

Country Status (1)

Country Link
CN (1) CN109486003B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138700A (zh) * 2020-01-06 2020-05-12 佛山佛塑科技集团股份有限公司 一种电容器薄膜及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275385A1 (en) * 2004-06-09 2005-12-15 Sb Electronics Power Ring Pulse Capacitor
CN102888062A (zh) * 2012-09-10 2013-01-23 中国科学院宁波材料技术与工程研究所 一种热交换异相复合薄膜及其制备方法
US20160056038A1 (en) * 2010-05-12 2016-02-25 Micron Technology, Inc. Constructions Comprising Rutile-Type Titanium Oxide; And Methods of Forming And Utilizing Rutile-Type Titanium Oxide
CN107151536A (zh) * 2017-04-24 2017-09-12 国网浙江海宁市供电公司 一种散热显温的电气绝缘胶带
CN108707241A (zh) * 2018-05-25 2018-10-26 如皋市兰峰服饰有限公司 一种超薄耐高温聚丙烯电容器金属化薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275385A1 (en) * 2004-06-09 2005-12-15 Sb Electronics Power Ring Pulse Capacitor
US20160056038A1 (en) * 2010-05-12 2016-02-25 Micron Technology, Inc. Constructions Comprising Rutile-Type Titanium Oxide; And Methods of Forming And Utilizing Rutile-Type Titanium Oxide
CN102888062A (zh) * 2012-09-10 2013-01-23 中国科学院宁波材料技术与工程研究所 一种热交换异相复合薄膜及其制备方法
CN107151536A (zh) * 2017-04-24 2017-09-12 国网浙江海宁市供电公司 一种散热显温的电气绝缘胶带
CN108707241A (zh) * 2018-05-25 2018-10-26 如皋市兰峰服饰有限公司 一种超薄耐高温聚丙烯电容器金属化薄膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KONG, MG ET AL: "《Electrically induced heat dissipation in metallized film capacitors》", 《IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION》 *
周文英等: "《聚合物基导热复合材料》", 30 June 2017, 国防工业出版社 *
白秀琴等: "《真空镀膜技术在塑料表面金属化上的应用》", 《武汉理工大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138700A (zh) * 2020-01-06 2020-05-12 佛山佛塑科技集团股份有限公司 一种电容器薄膜及其制造方法

Also Published As

Publication number Publication date
CN109486003B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN104263267B (zh) 多用途导电导热复合胶带
Yang et al. Phase change mediated graphene hydrogel-based thermal interface material with low thermal contact resistance for thermal management
CN103117151B (zh) 一种热管导热式水冷电抗器
CN111534016B (zh) 具有导热与电磁屏蔽性能的电子封装材料及其制备方法
CN204130659U (zh) 一种锂离子电池组
CN109605862B (zh) 一种具有导热和电磁屏蔽功能的复合材料及其制备方法
CN104716402B (zh) 一种动力电池模块
CN103045119A (zh) 超高导热系数散热双面胶带
CN109486003A (zh) 一种新能源电容器用大功率金属化薄膜
CN114427145B (zh) 导热高分子复合材料及其制备方法
Yao et al. Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions
CN109830774B (zh) 自冷却散热集流体及动力电池电芯
CN206059377U (zh) 一种功率器件单管及其冷却装置
CN211151085U (zh) 一种电力设备防潮装置
CN205303540U (zh) 一种防水电源
CN103632818A (zh) 干式变压器
CN208127370U (zh) 热管理装置及电池系统
CN203812937U (zh) 一种电池组
CN106633912A (zh) 一种电机的高导热绝缘材料
CN207185087U (zh) 一种水冷及热管复合散热的逆变电源装置
CN102270768A (zh) 一种电池装置
CN115246994B (zh) 一种导热-吸波一体化柔性材料及其制备方法与应用
CN218262345U (zh) 一种太阳能选择性高吸收率的酚醛防锈涂层
CN219497782U (zh) 高效石墨复合散热部件
CN210957708U (zh) 一种具有母线防护功能的母线槽

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 244000, Floor 1, Building 15, Science and Technology Innovation Park, East of Tongjingshan Avenue and North of Tongjing East Road, Shizishan High tech Zone, Tongguan District, Tongling City, Anhui Province

Patentee after: Tongling Chaoyue Electronics Co.,Ltd.

Country or region after: China

Address before: 244000 No. 1111, east section of Weiyi Road, Shizishan District, Tongling City, Anhui Province (1 plant and 2 warehouse)

Patentee before: TONGLING BEYOND ELECTRONICS Co.,Ltd.

Country or region before: China