CN109479326A - 用于物理上行链路共享信道(pusch)格式信令和竞争接入的系统和方法 - Google Patents

用于物理上行链路共享信道(pusch)格式信令和竞争接入的系统和方法 Download PDF

Info

Publication number
CN109479326A
CN109479326A CN201780029053.8A CN201780029053A CN109479326A CN 109479326 A CN109479326 A CN 109479326A CN 201780029053 A CN201780029053 A CN 201780029053A CN 109479326 A CN109479326 A CN 109479326A
Authority
CN
China
Prior art keywords
laa
subframe
pusch
symbol
lbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780029053.8A
Other languages
English (en)
Other versions
CN109479326B (zh
Inventor
尹占平
野上智造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FG Innovation Co Ltd
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN109479326A publication Critical patent/CN109479326A/zh
Application granted granted Critical
Publication of CN109479326B publication Critical patent/CN109479326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明描述了一种用于在授权辅助接入(LAA)服务小区中传输信号的用户设备(UE)。所述UE包括处理器以及与所述处理器进行电子通信的存储器。所述UE从一个或多个下行链路控制信息(DCI)接收用于一个或多个UL LAA子帧的上行链路(UL)许可。所述UE还确定用于UL LAA子帧的UL LAA物理上行链路共享信道(PUSCH)格式或结构。所述UE还确定调度的LAA PUSCH是否需要对话前监听(LBT)。如果需要,所述UE基于用于UL LAA子帧的所述UL许可来确定UL竞争接入区域。所述UE还确定所述竞争接入区域中的UL竞争接入方法。所述UE还在所述UL竞争接入区域中执行UL竞争接入。如果信道接入成功,则所述UE另外传输所述LAA PUSCH。

Description

用于物理上行链路共享信道(PUSCH)格式信令和竞争接入的 系统和方法
相关申请
本申请涉及于2016年5月11日提交的名称为“SYSTEMS AND METHODS FORPHYSICAL UPLINK SHARED CHANNEL(PUSCH)FORMAT SIGNALING AND CONTENTION ACCESS”的美国临时专利申请No.62/334,964,并且要求该美国临时专利申请的优先权,该美国临时专利申请据此全文以引用方式并入本文。
技术领域
本公开整体涉及通信系统。更具体地讲,本公开涉及用户设备(UE)、基站和方法。
背景技术
为了满足消费者需求并改善便携性和便利性,无线通信设备已变得更小且功能更强大。消费者已变得依赖于无线通信设备,并期望得到可靠的服务、扩大的覆盖区域和增强的功能性。无线通信系统可为多个无线通信设备提供通信,所述多个无线通信设备中的每一个都可由基站提供服务。基站可以是与无线通信设备通信的设备。
随着无线通信设备的发展,人们一直在寻求改善通信容量、速度、灵活性和/或效率的方法。然而,改善通信容量、速度、灵活性和/或效率可能会带来某些问题。
例如,无线通信设备可使用通信结构与一个或多个设备通信。然而,所使用的通信结构可能仅提供有限的灵活性和/或效率。如本讨论所示,改善通信灵活性和/或效率的系统和方法可能是有利的。
附图说明
图1是示出可在其中实施用于物理上行链路共享信道(PUSCH)格式信令和竞争接入的系统和方法的一个或多个演进节点B(eNB)以及一个或多个用户设备(UE)的一种实施方式的框图;
图2是示出UE进行PUSCH格式信令和竞争接入的方法的流程图;
图3示出了没有对话前监听(LBT)的上行链路(UL)传输的隐藏节点问题;
图4是示出了类别2UL授权辅助接入(LAA)传输的示意图;
图5示出了在CCA间隙开始处的至少25微秒(μs)的单个空闲信道评估(CCA)感测的示例;
图6是示出具有所需的对话前监听(LBT)信道接入且没有消隐符号的LAA PUSCH的实施方式的示意图;
图7是示出由前一个UL LAA子帧传输的状态确定是否需要LBT的示意图;
图8是示出在前一个子帧中传输失败的情况下CCA间隙和LBT的选项的示意图;
图9是示出用于LAA PUSCH格式信令和执行竞争接入的方法的流程图;
图10是示出用于执行情况1LBT的方法的流程图;
图11是示出用于执行情况3LBT的方法的流程图;
图12示出可在UE中利用的各种部件;
图13示出可在eNB中利用的各种部件;
图14是示出可在其中实施用于PUSCH格式信令和竞争接入的系统和方法的UE的一种实施方式的框图;并且
图15是示出可在其中实施用于PUSCH格式信令和竞争接入的系统和方法的eNB的一种实施方式的框图。
具体实施方式
本发明描述了一种用于在授权辅助接入(LAA)服务小区中传输信号的用户设备(UE)。该UE包括处理器以及与该处理器进行电子通信的存储器。该UE从一个或多个下行链路控制信息(DCI)接收用于一个或多个UL LAA子帧的上行链路(UL)许可。该UE还确定用于UL LAA子帧的UL LAA物理上行链路共享信道(PUSCH)格式或结构。该UE还确定调度的LAAPUSCH是否需要对话前监听(LBT)。如果需要,该UE基于用于UL LAA子帧的UL许可来确定UL竞争接入区域。该UE还确定竞争接入区域中的UL竞争接入方法。该UE还在UL竞争接入区域中执行UL竞争接入。如果信道接入成功,则该UE另外传输LAA PUSCH。
UL许可DCI可指示调度的子帧的LAA PUSCH格式和关于前一个子帧的最后一个符号的可用性的信息。
用于UL LAA子帧的UL LAA PUSCH格式或结构可从符号0或1开始,并且可以符号12或符号13结束。
UL LAA PUSCH可以符号0开始,并且前一个子帧的最后一个符号可不消隐。当前一个LAA子帧传输成功时,该UE可在不进行LBT的情况下传输调度的LAA PUSCH。
可基于指示的LAA PUSCH结构来确定竞争接入区域。可基于指示的LAA PUSCH结构以及前一个子帧的最后一个符号是否消隐来确定竞争接入区域。
还描述了一种用于在LAA服务小区中传输信号的方法。该方法包括从一个或多个DCI接收用于一个或多个UL LAA子帧的UL许可。该方法还包括确定用于UL LAA子帧的ULLAA PUSCH格式或结构。该方法还包括确定调度的LAA PUSCH是否需要LBT。如果需要,该方法还包括基于用于UL LAA子帧的UL许可来确定UL竞争接入区域。该方法还包括确定竞争接入区域中的UL竞争接入方法。该方法还包括在UL竞争接入区域中执行UL竞争接入。该方法还包括如果信道接入成功则传输LAA PUSCH。
第三代合作伙伴项目(也称为“3GPP”)是旨在为第三代和第四代无线通信系统制定全球适用的技术规范和技术报告的合作协议。3GPP可为下一代移动网络、系统和设备制定规范。
3GPP长期演进(LTE)是授予用来改善通用移动通信系统(UMTS)移动电话或设备标准以应付未来需求的项目的名称。在一个方面,已对UMTS进行修改,以便为演进的通用陆地无线电接入(E-UTRA)和演进的通用陆地无线电接入网络(E-UTRAN)提供支持和规范。
本文所公开的系统和方法的至少一些方面可结合3GPP LTE、高级LTE(LTE-A)和其他标准(例如,3GPP第8、9、10、11和/或12版)进行描述。然而,本公开的范围不应在这方面受到限制。本文所公开的系统和方法的至少一些方面可用于其他类型的无线通信系统。
无线通信设备可以是如下电子设备,其用于向基站传送语音和/或数据,基站进而可与设备的网络(例如,公用交换电话网(PSTN)、互联网等)进行通信。在描述本文的系统和方法时,无线通信设备可另选地称为移动站、UE、接入终端、订户站、移动终端、远程站、用户终端、终端、订户单元、移动设备等。无线通信设备的示例包括蜂窝电话、智能电话、个人数字助理(PDA)、膝上型计算机、上网本、电子阅读器、无线调制解调器等。在3GPP规范中,无线通信设备通常被称为UE。然而,由于本公开的范围不应限于3GPP标准,因此术语“UE”和“无线通信设备”在本文中可互换使用,以表示更一般的术语“无线通信设备”。UE还可更一般地称为终端设备。
在3GPP规范中,基站通常称为节点B、演进节点B(eNB)、家庭增强或演进的节点B(HeNB)或者一些其他类似术语。由于本公开的范围不应限于3GPP标准,因此术语“基站”、“节点B”、“eNB”和“HeNB”在本文中可互换使用,以表示更一般的术语“基站”。此外,术语“基站”可用来表示接入点。接入点可以是为无线通信设备提供对网络(例如,局域网(LAN)、互联网等)的接入的电子设备。术语“通信设备”可用来表示无线通信设备和/或基站。eNB还可更一般地称为基站设备。
应当注意,如本文所用,“小区”可以指如下通信信道的任意集合:在所述通信信道上,可由标准化指定或由监管机构管理以用于高级国际移动通信(IMT-Advanced)或其扩展以及其全部或其子集的用于UE与eNB之间的通信的协议可被3GPP采用为用于eNB与UE之间的通信的授权频带(例如,频率带)。“配置的小区”是UE知晓并得到eNB准许以传输或接收信息的那些小区。“配置的小区”可以是服务小区。UE可接收系统信息并对所有配置的小区执行所需的测量。“激活的小区”是UE正在其上进行传输和接收的那些配置的小区。也就是说,激活的小区是UE监控其物理下行链路控制信道(PDCCH)的那些小区,并且是在下行链路传输的情况下,UE对其物理下行链路共享信道(PDSCH)进行解码的那些小区。“去激活的小区”是UE不监控传输PDCCH的那些配置的小区。应当注意,可以按不同的维度来描述“小区”。例如,“小区”可具有时间、空间(例如,地理)和频率特性。
所公开的系统和方法可涉及载波聚合(CA)。载波聚合是指同时利用一个以上的载波。在载波聚合中,一个以上的小区可被聚合成UE。在一个示例中,载波聚合可用于增加可供UE使用的有效带宽。对于第10版中的TDD CA以及对于第11版中的带内CA,必须使用相同的时分双工(TDD)上行链路-下行链路(UL/DL)配置。在第11版中,支持具有不同TDD UL/DL配置的带间TDD CA。具有不同TDD UL/DL配置的带间TDD CA可在CA部署中提供TDD网络的灵活性。此外,利用业务自适应的增强型干扰管理(elMTA)(也称为动态UL/DL重配置)可允许基于网络业务负载的灵活TDD UL/DL重配置。
应当注意,如本文所用,术语“同时”及其变型可表示两个或更多个事件可在时间上彼此重叠并且/或者可在时间上彼此相近地发生。另外,“同时”及其变型可意指或可不意指两个或更多个事件精确地在相同时间发生。
LTE UL传输可由eNB利用上行链路许可来调度。UL许可可以是物理下行链路控制信道(PDCCH)、增强EPDCCH(EPDCCH)或物理混合ARQ指示信道(PHICH)反馈中的DCI格式。UL许可与调度的UL传输之间的时间是至少4毫秒(ms)。eNB可为单个LAA UE调度多个LAA子帧传输。eNB可在单个子帧中调度来自多个UE的同步UL传输。
对于增强LAA上行链路传输,可通过动态信令指示LAA PUSCH格式。信道接入方法(例如,LBT方法)可与PUSCH格式联合配置或独立于PUSCH格式配置。但是,LBT方法和PUSCH格式之间存在一些内在的关系。在某些情况下,LBT方法或PUSCH格式不能按指示执行;可能需要一些特殊的处理。
本公开描述了可在每种LAA PUSCH格式应用的不同LAA PUSCH格式和潜在LBT方法的用例。此外,描述了在不同条件下应用适当的LBT和/或PUSCH结构的机制。
已经针对3GPP的LAA上行链路传输提出了一些方法。候选方法包括在传输之前的单一空闲信道评估(CCA)感测(例如,25微秒(μs)初始CCA(ICCA)尺寸感测);竞争窗口大小内的随机退避;利用由eNB指示的计数器进行随机退避;以及如果DL和UL传输之间的时间间隙非常短(例如,小于16或25μs),则没有LBT。
可指示LBT方法用于UL LAA传输。对于eLAA上行链路LAA传输,可针对不同的LAA子帧传输不同LBT方法的信号。在多子帧调度中,可针对所有子帧指示相同的LBT方法,或者可针对多子帧调度中的每个子帧指示不同的LBT方法。此外,可通过指示的LAA PUSCH格式隐式地确定每个子帧的LBT方法。
然而,为了执行LBT,LAA UE可能需要知道所调度的子帧的PUSCH格式以及前一子帧的LAA PUSCH格式。对于多子帧调度,如果前一子帧LBT失败,则指示的PUSCH格式可能不可用。因此,可执行一些错误处理和错误返回模式操作。
本文描述的系统和方法提供以下内容。可在UL许可的DCI格式中指示当前子帧和前一子帧的LAA PUSCH格式。可通过动态信令指示LBT方法,并且可基于CCA间隙分配显式地传输LBT参数的信号或隐式地确定该参数。可基于调度的LAA PUSCH的格式和位置来确定LBT方法。在较早子帧中的LBT方法失败的情况下,可修改LBT参数。
现在将参考附图来描述本文所公开的系统和方法的各种实施例,其中相同的参考标号可指示功能相似的元件。如在本文附图中一般性描述和说明的系统和方法可以以各种不同的具体实施来布置和设计。因此,下文对附图呈现的几种具体实施进行更详细的描述并非意图限制要求保护的范围,而是仅仅代表所述系统和方法。
图1是示出可在其中实施用于竞争接入的系统和方法的一个或多个eNB 160以及一个或多个UE 102的一种实施方式的框图。一个或多个UE 102使用一个或多个天线122a-n来与一个或多个eNB 160进行通信。例如,UE 102使用一个或多个天线122a-n将电磁信号传输到eNB 160并且从eNB 160接收电磁信号。eNB 160使用一个或多个天线180a-n来与UE102进行通信。
UE 102和eNB 160可使用一个或多个信道119、121来彼此通信。例如,UE 102可使用一个或多个上行链路信道121将信息或数据传输到eNB 160。上行链路信道121的示例包括PUCCH和PUSCH等。例如,一个或多个eNB 160也可使用一个或多个下行链路信道119将信息或数据传输到一个或多个UE 102。下行链路信道119的示例包括PDCCH、PDSCH等。可使用其他种类的信道。
一个或多个UE 102中的每一者可包括一个或多个收发器118、一个或多个解调器114、一个或多个解码器108、一个或多个编码器150、一个或多个调制器154、数据缓冲器104和UE操作模块124。例如,可在UE 102中实现一个或多个接收路径和/或传输路径。为方便起见,UE 102中仅示出了单个收发器118、解码器108、解调器114、编码器150和调制器154,但可实现多个并行元件(例如,多个收发器118、解码器108、解调器114、编码器150和调制器154)。
收发器118可包括一个或多个接收器120以及一个或多个发射器158。一个或多个接收器120可使用一个或多个天线122a-n从eNB 160接收信号。例如,接收器120可接收并降频转换信号,以产生一个或多个接收的信号116。可将一个或多个接收的信号116提供给解调器114。一个或多个发射器158可使用一个或多个天线122a-n将信号传输到eNB160。例如,一个或多个发射器158可升频转换并传输一个或多个调制的信号156。
解调器114可解调一个或多个接收的信号116,以产生一个或多个解调的信号112。可将一个或多个解调的信号112提供给解码器108。UE 102可使用解码器108来解码信号。解码器108可以产生解码的信号110,其可以包括UE解码的信号106(也被称为第一UE解码的信号106)。例如,第一UE解码的信号106可包含接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器104中。解码的信号110(也被称为第二UE解码的信号110)中的另一个信号可以包括开销数据和/或控制数据。例如,第二UE解码的信号110可提供UE操作模块124可用来执行一个或多个操作的数据。
如本文所用,术语“模块”可意指特定的元件或部件可在硬件、软件或者硬件和软件的组合中实施。然而,应当注意,本文表示为“模块”的任何元件可另选地在硬件中实施。例如,UE操作模块124可在硬件、软件或者这两者的组合中实现。
一般来讲,UE操作模块124可使UE 102能够与一个或多个eNB 160进行通信。UE操作模块124可包括UL LAA PUSCH格式信令和竞争接入模块126中的一个或多个。
增强的授权辅助接入(eLAA)可用于上行链路LAA传输。eLAA可支持多个LAA子帧调度。eLAA可具有DCI格式以在k<=N个子帧中调度PUSCH传输,其中每个子帧具有单个TB或者每个子帧具有两个TB。N的值可以是半静态配置的或硬编码的。
DCI格式可具有以下调度信息类型。类型A可以是所有调度的子帧共用的(在DCI中仅出现一次)。类型A可包括载波指示符、资源分配、DM RS的循环移位和OCC索引。类型B可包括子帧特定信息(对于N个子帧调度出现N次)。
对于LAA PUSCH格式,可动态地传输信号到开始和结束符号。可消隐包含PUSCH的子帧中的一个符号。
动态信令可指示UL子帧中的PUSCH是从DFT-S-OFDM符号0的开头还是DFT-S-OFDM符号1的开头传输的。动态信令可指示UL子帧中的PUSCH是否被传输到OFDM符号13或OFDM符号12。可通过动态信令启用上述选项的任何组合。
对于信道接入对话前监听(LBT)方法,可如下使用最大信道占用时间(MCOT)内的单个25μs LBT。如果DL和UL传输(以及UL LBT)的总持续时间少于所获得的信道占用持续时间,则UE 102执行单个25μs LBT以接入信道并执行UL传输就足够了。
授权辅助接入(LAA)支持未授权频谱中的LTE。在LAA网络中,LAA子帧传输按机会性方式发生。因此,在LAA传输之前需要具有空闲信道评估(CCA)的对话前监听(LBT)。仅DLLAA在LTE版本13中指定。
LTE UL传输可由eNB 160利用上行链路许可来调度。UL许可可以是PDCCH、EPDCCH或PHICH反馈中的DCI格式。UL许可与调度的UL传输之间的时间可以是至少4ms。eNB 160可在单个子帧中调度来自多个UE 102的同步UL传输。对于调度的UL传输,eNB 160应确保在相同的LAA小区上的DL和UL之间不存在冲突。
LAA PUSCH子帧可具有一个或两个消隐符号。消隐符号空间可用于信道接入。该空间可称为竞争接入区域或CCA间隙。对于LAA DL传输,可在任何子帧和符号位置处执行竞争接入或LBT。另一方面,UL LAA是通过UL许可给定定时调度的传输。利用UL LAA,LBT和竞争接入可仅在竞争接入区域中执行。
可为UL LBT实施几种方法。这些方法的优缺点如下所述。在第一种方法中,如果DL和UL之间的时间间隙非常短,则不执行LBT。在该方法中,如果DL和UL之间的间隙非常短,则可在没有LBT的情况下发生UL传输。但是,这种方法有很多限制。首先,LAA DL传输无法避免隐藏终端问题,如结合图3所描述的。
在第二个限制中,UL LAA的开始时间应当事先知道或者可以是固定的。DL传输的结束时间应当事先知道。此外,该方法仅适用于DL LAA传输之后的第一UL传输,并且不能用于其他LAA UL传输。另外,LAA DL脉冲串应该持续至少4ms,以便保持DL调度DCI和UL传输之间的关联定时。非常难以支持可变长度LAA传输和连续UL LAA传输。因此,尽管当间隙非常短时,在某些情况下对于没有LBT的LAA UL传输是可行的,但是这种方法带来许多限制并且可能难以证明其合理性。
然而,在没有其他现有的未许可网络(例如来自其他运营商的WiFi或LAA小区)的情况下,该方法可能是适用的。特别地,如果LAA模式包括限定的LAA DL和LAA UL子帧,则可使用该方法。
在第二种方法中,可在调度传输之前执行类别2 LBT。类别2 LBT在传输之前仅需要单个CCA感测。这也称为基于帧的设备(FBE)竞争接入。类别2 LBT可能有意义,因为UL传输被调度,并且如果UL传输不能在预定时间获得信道,则应该丢弃UL传输。此外,该方法允许来自多个UE 102的同步UL传输,因为它们在传输之前都感测到相同的CCA间隔。结合图4描述了类别2UL LAA传输的一个示例。
为了避免WiFi传输的潜在中断,CCA感测间隔应该具有最小延迟持续时间(Td)的长度,其包括持续时间Tf=16μs,紧接着是Tsl=9μs的时隙持续时间,并且Tf包括在Tf开始处的空闲时隙持续时间Tsl。如果eNB 160在时隙持续时间期间感测到信道,并且eNB 160在时隙持续时间内至少4μs检测到的功率小于能量检测阈值XThresh,则时隙持续时间Tsl被认为是空闲的……否则,时隙持续时间Tsl被认为是忙碌的。
然而,由于单个CCA感测位于子帧结构中的固定位置,因此降低了使用另一个区域进行信道接入的信道接入概率和机会。因此,尽管有可能在调度传输之前进行类别2 LBT,但是它对LBT感测和LAA传输定时有太多限制。
类似地,在没有其他现有的未许可网络(例如来自其他运营商的WiFi或LAA小区)的情况下,可使用该方法。如果不存在其他未许可网络,则LAA eNB 160调度器应确保LAADL传输与LAA UL传输之间不存在冲突。在这种情况下,在UL传输之前的单个CCA检测应该是足够的。
类别2 LBT也被称为在传输之前至少25微秒(μs)的单个CCA感测。然而,不清楚UE102何时可在竞争接入区域或CCA间隙中开始UL LAA传输。因此,可在对LAA UL信号传输具有固有影响的CCA间隙的不同位置处执行传输之前的至少25μs的单个CCA感测。描述了用于单个CCA感测定时的不同方法。
在一种方法中,可在CCA间隙结束时(即,紧接在具有指示的UL LAA PUSCH格式的调度的UL LAA传输之前)执行至少25μs的单个CCA感测。这提供了CCA间隙内的最新信道接入机会。对于CCA感测间隔,可考虑UL定时超前。因此,感测间隔可基于调整TA值的UL定时,如图4所示。
然而,在CCA感测时隙之前和之内发生的任何未许可传输可能阻止UL LAA传输。因此,使用这种方法,UL LAA倾向于在信道接入中具有最低优先级。因为CCA感测紧接在具有指示的PUSCH格式的调度UL子帧之前执行,所以无需在UL LAA传输中的UL LAA子帧之前添加额外的预留信号或初始信号。
在另一种方法中,可在给定CCA间隙的开始处执行至少25μs的单个CCA感测。在该方法中,可在CCA间隙的开始处执行至少25μs的单个CCA感测。这在CCA间隙内提供了最早的信道接入机会。对于感测时隙,可考虑UL定时超前(TA)。因此,感测时隙可基于DL定时(即,考虑DL传输的传播延迟)。对于UL定时,可添加TA值以避免与前一子帧的DL传输冲突。图5示出了这种方法的一个示例。
如果在CCA感测间隔内存在另一个未许可传输,则LBT失败,并且LAA UE 102应该在下一个可用CCA间隙中推迟竞争接入。如果CCA感测成功,则UL LAA UE 102可开始传输。但是,必须在调度的UL PUSCH子帧之前传输预留信号或初始信号以占用信道。
在另一种方法中,可在给定的CCA间隙中连续地执行在UL传输之前至少25μs的CCA感测。因此,LBT可在信道连续空闲25μs之后立即获得信道。这是一种更积极的方法,并提供UL LAA传输的最大可能性。一旦在CCA间隙中存在25μs的空闲间隔,UE 102就可传输UL LAA子帧。类似于在CCA间隙开始处的CCA感测,可能必须在调度的UL PUSCH子帧之前传输预留信号或初始信号以占用信道。
尽管在UL传输之前存在对至少25μs的CCA感测的不同解释,但是规范可仅指定一种方法(例如,在OFDM符号边界处的UL传输之前至少25μs)。另一方面,如果指定了多种方法,则应在针对给定子帧的UL调度DCI中指示精确方法。
在第三种方法中,可执行类别4LBT。根据如何确定竞争窗口大小、如何执行计数器处理等,存在用于类别4的许多可能的LBT方法。可由eNB 160传输竞争窗口大小的信号。可基于反馈信息诸如HARQ-ACK来调整竞争窗口大小。
在一种方法中,如果信道被感测为占用或在占用信道之后的延迟时段内,则可暂停退避计数器。因此,退避计数器可能无法在给定的CCA间隙中达到0。在一种方法中,ULLAA LBT可利用DL LAA中的连续退避计数器处理来执行。如果不成功,退避计数器可扩展到下一个CCA间隙。在另一种方法中,如果在CCA间隙中没有成功,则可重置退避计数器和LBT过程,并且应该在新的CCA间隙中启动新的LBT和退避计数器。
在另一种方法中,无论信道条件如何,退避计数器都可保持减小。当计数器达到0时,LAA UE 102可在信道空闲时进行传输。因此,退避计数器决定CCA间隙中的感测位置。如果基于CCA间隙的长度确定退避计数器,则确保LBT过程可在CCA间隙中完成。
虽然对类别4LBT有不同的解释,但规范可能只指定一种方法。但是,可限定几种不同的类别4方法。此外,对于给定的LBT类别4方法,可使用不同的LBT参数。因此,可在UL调度DCI中为给定子帧指示LBT类别4方法和/或LBT参数。LBT参数可包括竞争窗口大小、退避计数器值、退避计数器处理方法等。
本文的系统和方法提供了在不同的LAA PUSCH格式和信道接入条件下应该应用什么LBT方法和参数的条件。在可能的UL LBT方法和对应的CCA时隙结构的示例中,eNB 160可指示信道接入方案(例如,上述类别2(以下也称为类型1)信道接入过程或者上述类别4(以下也称为类型2)信道接入过程)。
对于类型1信道接入过程,如果指示UE 102对给定子帧执行类型1信道接入过程,则UE 102可在延迟持续时间Td的时隙持续期间首先感测载波空闲之后(该延迟持续时间在子帧的初始子帧边界处并且在步骤5(下面)中计数器N为零之后开始),在执行LAA Scell传输的载波上的子帧中传输包括PUSCH的传输。可通过根据以下步骤感测信道以获得附加的时隙持续时间来调整计数器N:
步骤1)设置N=Ninit,其中如果N存储Nstored,则Ninit=Nstored,否则Ninit是在0和CWp之间均匀分布的随机数,并且转到步骤5。
步骤2)如果时隙持续时间超过子帧的第一单载波频分多址(SC-FDMA)符号持续时间,则停止并将Nstored设置为N,否则转到3。
步骤3)如果N>0并且UE 102选择递减计数器,则设置N=N-1。
步骤4)感测附加的时隙持续时间的信道,如果附加的时隙持续时间是空闲的,则转到步骤5;否则,转到步骤6。
步骤5)如果N=0,则停止并冲洗Nstored;否则,转到步骤2。
步骤6)在附加的延迟持续时间Td的时隙持续时间期间感测信道。
步骤7)如果在附加的延迟持续时间Td的时隙持续时间内感测到信道空闲,则转到步骤2;否则,转到步骤6。
如果UE 102在上述过程中在步骤5之后在执行LAA Scell传输的载波上的子帧中没有传输包括PUSCH的传输,则UE 102可在载波上的子帧中丢弃PUSCH传输。
延迟持续时间Td包括持续时间16μs≤Tf≤16μs+Ts,紧接着是mp连续时隙持续时间,其中每个时隙的持续时间是9μs≤Tsl≤9μs+Ts,并且Tf包括在Tf开始处的空闲时隙持续时间Tsl。表1提供了信道接入优先级。
信道接入优先级(p) m<sub>p</sub> CW<sub>min,p</sub> CWm<sub>ax,p</sub> T<sub>mcot,p</sub> 允许的CW<sub>p</sub>大小
1 1 3 7 2ms {3,7}
2 1 7 15 3ms {7,15}
3 3 15 63 8或10ms {15,31,63}
4 7 15 1023 8或10ms {15,31,63,127,255,511,1023}
表1
对于类型2信道接入过程,如果指示UE 102对给定子帧执行类型2信道接入过程,则UE 102可在感测到载波空闲至少一个感测间隔Tdrs=25μs(该感测间隔在子帧的初始子帧边界处开始)之后,立即在执行LAA Scell传输的载波上的子帧中传输包括PUSCH的传输。Tdrs包括持续时间Tf=16μs,紧接着是时隙持续时间Tsl=9μs,并且Tf包括在Tf开始处的空闲时隙持续时间Tsl。如果在Tdrs的时隙持续时间内感测到空闲,则认为载波对于Tdrs是空闲的。
如果针对给定子帧用没有PUSCH的SRS传输触发UE 102,则UE 102可在感测到载波空闲至少一个感测间隔Tdrs=25μs(该感测间隔恰好在子帧的最后一个SC-FDMA符号之前结束)之后,立即在执行LAA Scell传输的载波上的子帧中传输包括SRS而没有PUSCH的传输。
类型2信道接入过程可等效于类型1信道接入过程,其中mp=1且N=0。因此,与类型1信道接入过程相比,UE 102可具有与类型2信道接入过程相比更多的信道接入机会。另一方面,利用类型2信道接入过程,包括PUSCH的传输的开始定时能够在多个UE 102之间对准,因此类型2信道接入过程可实现UE复用。
应当注意,eNB 160可仅针对在eNB的DL传输之后不超过MCOT的PUSCH子帧或仅针对仅承载UCI的PUSCH来指示类型2信道接入过程。另外,即使UE 102接收到指示用于给定子帧的类型1信道接入过程的UL许可,如果eNB 160在接收UL许可之后指示对子帧使用类型2信道接入过程,UE 102也可针对该子帧执行类型2信道接入过程。
本文还描述了LAA PUSCH格式和LBT方法。LAA PUSCH可从离散傅立叶变换-扩展-正交频分复用(DFT-S-OFDM)符号0或1开始。LAA PUSCH可在符号12或13处结束。可通过动态信令启用上述选项的任何组合。可在相应的UL许可中指示UL LAA子帧的LAA PUSCH格式。对于多子帧调度,可针对所有子帧传输相同PUSCH格式的信号,或者可独立地配置每个子帧的PUSCH格式。
类似地,还可在UL许可DCI中指示信道接入方法(即,LBT方法)。LBT方法可与PUSCH格式联合配置或独立于PUSCH格式配置。但是,LBT方法和PUSCH格式之间存在一些内在的关系。在某些情况下,LBT方法或PUSCH格式不能按指示执行。在这些情况下,可能需要一些特殊的处理。
在以下描述中总结了不同LAA PUSCH格式的用例。此外,描述了可在每种LAAPUSCH格式下应用的潜在LBT方法。此外,讨论了在不同条件下应用适当的LBT和/或PUSCH结构的机制。
可指示LBT方法用于UL LAA传输。对于eLAA上行链路LAA传输,可针对不同的LAA子帧传输不同LBT方法的信号。在多子帧调度中,可针对所有子帧指示相同的LBT方法,或者可针对多子帧调度中的每个子帧指示不同的LBT方法。此外,可通过指示的LAA PUSCH格式隐式地确定每个子帧的LBT方法。
可能有4种可能的LAA PUSCH格式。在第一格式(格式1)中,LAA PUSCH可在DFT-S-OFDM符号0处开始并且传输到DFT-S-OFDM符号13(在LAA子帧中没有消隐符号)。在第二格式(格式2)中,LAA PUSCH可在DFT-S-OFDM符号0处开始并且传输到DFT-S-OFDM符号12(最后一个符号(符号13)在LAA子帧中被消隐)。格式1和格式2在子帧的开始处均没有消隐符号。这两种格式可用于单个UL LAA子帧,或UL LAA子帧的脉冲串中的初始UL LAA子帧,或LAA UL脉冲串内的连续LAA UL子帧。具有这些格式的用例将在下面进一步讨论。
在第一种情况下(情况1),需要执行LBT。在该情况下,调度的UL LAA子帧可以是单个UL LAA子帧,或者UL LAA子帧的脉冲串中的初始UL LAA子帧,或UL LAA脉冲串中间的子帧,其中指示了前一个子帧,最后一个符号(符号13)被消隐。这对于来自多个LAA UE 102的同步UL LAA传输可能是有用的。
在所有这些情况下,必须执行LBT,如图6所示。应当在前一子帧的最后一个符号(符号13)空间中执行LBT过程(即,UE 102假设前一子帧的最后一个符号(符号13)可用于信道接入)。eNB 160应确保未占用所调度的UL LAA子帧的前一子帧的最后一个符号(符号13)。前一个子帧可以是部分DL子帧或UL LAA子帧,其中为相同或不同的UE 102屏蔽最后一个符号(符号13)。
在一个具体实施中,UL许可可不指示用于给定UL LAA子帧的LBT方法。可基于给定UL LAA子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的UL LAA子帧在eNB160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。
在另一个具体实施中,UL许可可指示用于给定UL LAA子帧的LBT方法。LAA UE 102应遵循所指示的用于信道接入的LBT方法。也就是说,如果指示了在传输之前至少25μs的单个CCA感测,则应当应用单个CCA感测,无论UL LAA传输是在eNB 160传输的MCOT之内还是之外。类似地,如果指示了类别4LBT,则无论UL LAA传输是在eNB160传输的MCOT之内还是之外,都应该应用类别4LBT。在调度多个LAA UE 102传输的情况下,应该向参与的LAA UE 102传输相同的LBT方法和/或参数的信号。
在另一种方法中,即使指示了类别4LBT,如果调度的UL LAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。
如果eNB 160调度来自多个UE 102的多个LAA UL传输,则应当向所有参与的UE102传输相同的LBT方法和LBT参数诸如竞争窗口大小和退避计数器值等的信号。
在第二种情况下(情况2),可能需要或可能不需要LBT。如果调度的UL LAA子帧是LAA UL脉冲串内的连续传输并且前一个UL LAA子帧没有消隐最后一个符号(符号13),则是否需要LBT取决于前一个LAA传输是否成功。由于子帧处于连续LAA脉冲串传输的中间,因此可指示或不指示LBT方法。
如果指示LBT方法,则作为连续LAA传输,如果传输前一个UL LAA子帧,则可能不需要LBT,如图7所示。如果没有指示LBT方法,则如果由于早期的LBT失败而未传输前一个LAA子帧,仍可执行LBT。
因此,如果在UL许可中未指示LBT方法,则可在前一个UL LAA子帧传输失败时指定UE 102行为。如果指示了LBT方法,则可在前一个LAA UL传输失败时在回退操作的情况下使用LBT方法。然而,应当阐明详细的UE 102行为(例如,应当使用什么LBT方法以及假设LBT信道接入的CCA间隙的位置)。
无论是哪种LBT方法,有几种不同的选项可确定竞争接入的CCA间隙,如下所述并且如图8所示。在第一选项(选项1)中,在前一个子帧的最后一个符号(符号13)空间中执行LBT。UE 102可假设前一个子帧的最后一个符号(符号13)空间用于信道接入并执行LBT。最简单的方法可以是紧接在调度的传输子帧边界之前的至少25μs的单个CCA感测。
在更复杂的方法中,如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则可使用给定LBT方法。LBT类别4参数可基于一个符号空间的CCA间隙。如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的UL LAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数应基于一个符号空间的CCA间隙。
在第二选项(选项2)中,在调度的子帧的第一个符号(符号0)空间中执行LBT。由于前一个LAA子帧LBT失败,因此UE 102可屏蔽用于信道接入和LBT的调度的子帧的第一个符号(符号0)空间。这提供了独立于前一个子帧结构和传输的自包含竞争接入区域。对于选项2,必须通过屏蔽第一个符号(符号0)来修改调度的UL LAA子帧结构。
最简单的方法可以是紧接在调度的传输子帧符号1边界之前的至少25μs的单个CCA感测。在更复杂的方法中,如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则可使用给定LBT方法。LBT类别4参数可基于一个符号空间的CCA间隙。如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的UL LAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数可基于一个符号空间的CCA间隙。
在第三选项(选项3)中,在前一个子帧的最后一个符号(符号13)空间和调度的子帧的第一个符号(符号0)空间中执行LBT。由于前一个LAA子帧LBT失败,UE 102可调整LBT并且可假设应当使用更大的CCA间隙。因此,UE 102可使用前一个子帧的最后一个符号(符号13)的空间并且屏蔽用于信道接入和LBT的调度的子帧的第一个符号(符号0)空间。对于选项3,必须通过屏蔽第一个符号(符号0)来修改调度的UL LAA子帧结构。
如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则可使用给定LBT方法。LBT类别4参数可基于两个符号空间的CCA间隙。如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的ULLAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数可基于两个符号空间的CCA间隙。
在第四选项(选项4)中,可在前一个子帧的最后一个符号(符号13)空间和调度的子帧的第一个符号(符号0)空间中执行两步LBT。由于前一个LAA子帧LBT失败,UE 102可调整LBT并且假设应当使用更大的CCA间隙。因此,UE 102可使用前一个子帧的最后一个符号(符号13)的空间并且屏蔽用于信道接入和LBT的调度的子帧的第一个符号(符号0)空间。然而,为了减少PUSCH格式改变带来的影响,可分两步执行LBT。
首先,可在前一个子帧的最后一个符号(符号13)的空间中执行LBT。如果成功,则可用指示的LAA PUSCH格式传输调度的LAA UL子帧。如果前一个子帧的最后一个符号(符号13)的空间中的LBT失败,则可在调度的子帧的第一个符号(符号0)的空间中执行第二LBT。如果第二LBT成功,则可通过屏蔽第一个符号(符号0)来以修改的PUSCH格式传输调度的LAAUL子帧。
因此,对于选项4,如果前一个子帧的最后一个符号(符号13)中的LBT成功,则不需要修改调度的子帧结构,如果前一个子帧的最后一个符号(符号13)中的LBT失败并且在调度的子帧的第一个符号(符号0)中执行第二LBT,则需要通过屏蔽第一个符号(符号0)来修改调度的UL LAA子帧结构。与上面的选项1和选项2相比,选项4为信道接入提供了更多的信道接入机会和更长的CCA间隙。与选项3相比,选项4提供了更多的信道接入机会,并减少了修改PUSCH格式的机会。
如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则可使用给定LBT方法。LBT类别4参数可基于一个符号空间的CCA间隙。如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的ULLAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数应基于一个符号空间的CCA间隙。
在第三格式(格式3)中,LAA PUSCH可在DFT-S-OFDM符号1处开始并且传输到DFT-S-OFDM符号13。在格式3中,LAA子帧中的第一个符号(符号0)被消隐。
在第四格式(格式4)中,LAA PUSCH可在DFT-S-OFDM符号1处开始并且传输到DFT-S-OFDM符号12。在格式4中,LAA子帧中的第一个符号和最后一个符号(符号13)被消隐。
格式3和格式4在子帧的开始处均具有消隐符号。这两种格式可用于单个UL LAA子帧,或UL LAA子帧的脉冲串中的初始UL LAA子帧,或LAA UL脉冲串内的连续LAA UL子帧,尤其是当调度来自其他LAA UE 102的一些同步传输时。
针对具有LAA PUSCH格式3和格式4的LBT,描述了几个选项。在第一选项(选项1)中,LBT仅在调度的UL LAA子帧的第一个符号(符号0)中执行。由于CCA间隙包括在调度的UL子帧的第一个符号(符号0)中,因此在所有情况下LBT可限于第一个符号(符号0)的空间。
如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则应使用给定LBT方法。LBT类别4参数可基于一个符号空间的CCA间隙。
如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的UL LAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数可基于一个符号空间的CCA间隙。
此外,如果eNB 160调度来自多个UE 102的多个LAA UL传输,则可向所有参与的UE102传输相同的LBT方法和LBT参数(例如,竞争窗口大小、退避计数器值等)的信号。
在第二选项(选项2)中,竞争接入区域和LBT也可由前一个子帧的最后一个符号(符号13)确定。在选项2中,竞争接入区域和LBT也应考虑前一个子帧的最后一个符号(符号13)。前一个子帧的消隐的最后一个符号(符号13)和调度的子帧的消隐的第一个符号(符号0)提供更长的竞争接入区域或CCA间隙。因此,可更好地将LBT参数调整到信道占用和拥塞状况。
如果前一个子帧的最后一个符号(符号13)对于信道接入未被消隐,则竞争接入和LBT方法可与上面的选项1中的相同。另一方面,如果前一个子帧的最后一个符号(符号13)对于信道接入也被消隐,则两个符号的CCA间隙可用于竞争接入。即使LBT在前一个子帧的最后一个符号(符号13)中成功,UE 102也可使用所指示的LAA PUSCH格式。因此,UE 102可始终在所有情况下遵循所指示的LAA PUSCH格式。
如果在用于给定UL LAA子帧的UL许可中指示了LBT方法,则可使用给定LBT方法。LBT类别4参数可基于两个符号空间的CCA间隙。如果在用于给定UL LAA子帧的UL许可中未指示LBT方法,则可基于该子帧是否在eNB 160传输的MCOT内来确定LBT方法。如果调度的ULLAA子帧在eNB 160传输的MCOT内,则可在UL LAA子帧传输之前应用至少25μs的单个CCA感测。如果调度的UL LAA子帧在eNB 160传输的MCOT之外,则可在UL LAA子帧传输之前应用类别4LBT。LBT类别4参数应基于两个符号空间的CCA间隙。
此外,如果eNB 160调度来自多个UE 102的多个LAA UL传输,则可向所有参与的UE102传输相同的LBT方法和LBT参数(例如,竞争窗口大小、退避计数器值等)的信号。
本文还描述了PUSCH格式和LBT方法的信令要求。基于上面的讨论,为了确定适用于所有LAA PUSCH格式的LBT方法和参数,UE 102需要知道前一个子帧的最后一个符号(符号13)是否为空。因此,2比特可指示调度的UL LAA PUSCH子帧的格式(即,第一个符号(符号0)和/或最后一个符号(符号13)是否对于信道接入被消隐)。
而且,可能需要一个额外比特来指示前一个子帧的最后一个符号(符号13)是否被消隐作为CCA间隙。在多个LAA子帧调度的情况下,如果在单个DCI中调度所有UL LAA子帧,则UE 102可知道前一个子帧的结构,因此不需要额外的比特来指示前一个子帧的最后一个符号的可用性。
LAA PUSCH格式和CCA间隙的长度可能影响给定子帧的LBT方法和参数。在一种方法中,针对每个UL LAA子帧传输LBT方法和参数的信号。在连续的UL LAA子帧脉冲串中,在调度的子帧之前没有保留CCA间隙,如果传输前一个LAA UL子帧,则UE 102可在没有LBT的情况下传输UL LAA子帧(即,忽略指示的LBT和参数)。如果由于LBT失败而未传输前一个LAAUL子帧,则可应用所指示的LBT和参数。
如果eNB 160调度来自多个UE 102的多个LAA UL传输,则可向所有参与的UE 102传输相同的LBT方法和LBT参数(例如,竞争窗口大小、退避计数器值等)的信号。
在另一种方法中,可不用信号传输LBT方法。UE 102可基于调度的LAA UL子帧的位置、指示的PUSCH格式以及CCA间隙的长度来确定LBT方法和LBT参数。例如,对于类别4LBT,可基于CCA间隙的长度动态地确定竞争窗口大小。如果eNB 160调度来自多个UE 102的多个LAA UL传输,则参与的UE 102应当对给定UL LAA子帧中的LBT方法和LBT参数具有相同的理解。
UE操作模块124可将信息148提供给一个或多个接收器120。例如,UE操作模块124可通知接收器120何时接收重传。
UE操作模块124可将信息138提供给解调器114。例如,UE操作模块124可通知解调器114针对来自eNB 160的传输所预期的调制图案。
UE操作模块124可将信息136提供给解码器108。例如,UE操作模块124可通知解码器108针对来自eNB 160的传输所预期的编码。
UE操作模块124可将信息142提供给编码器150。信息142可包括待编码的数据和/或用于编码的指令。例如,UE操作模块124可指示编码器150编码传输数据146和/或其他信息142。其他信息142可包括PDSCH HARQ-ACK信息。
编码器150可编码由UE操作模块124提供的传输数据146和/或其他信息142。例如,对数据146和/或其他信息142进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器150可将编码的数据152提供给调制器154。
UE操作模块124可将信息144提供给调制器154。例如,UE操作模块124可通知调制器154将用于向eNB 160进行传输的调制类型(例如,星座映射)。调制器154可调制编码的数据152,以将一个或多个调制的信号156提供给一个或多个发射器158。
UE操作模块124可将信息140提供给一个或多个发射器158。该信息140可包括用于一个或多个发射器158的指令。例如,UE操作模块124可指示一个或多个发射器158何时将信号传输到eNB 160。例如,一个或多个发射器158可在UL子帧期间进行传输。一个或多个发射器158可升频转换调制的信号156并将该信号传输到一个或多个eNB 160。
eNB 160可包括一个或多个收发器176、一个或多个解调器172、一个或多个解码器166、一个或多个编码器109、一个或多个调制器113、数据缓冲器162和eNB操作模块182。例如,可在eNB 160中实现一个或多个接收路径和/或传输路径。为方便起见,eNB 160中仅示出了单个收发器176、解码器166、解调器172、编码器109和调制器113,但可实现多个并行元件(例如,多个收发器176、解码器166、解调器172、编码器109和调制器113)。
收发器176可包括一个或多个接收器178以及一个或多个发射器117。一个或多个接收器178可使用一个或多个天线180a-n从UE 102接收信号。例如,接收器178可接收并降频转换信号,以产生一个或多个接收的信号174。可将一个或多个接收的信号174提供给解调器172。一个或多个发射器117可使用一个或多个天线180a-n将信号传输到UE 102。例如,一个或多个发射器117可升频转换并传输一个或多个调制的信号115。
解调器172可解调一个或多个接收的信号174,以产生一个或多个解调的信号170。可将一个或多个解调的信号170提供给解码器166。eNB 160可使用解码器166来解码信号。解码器166可产生一个或多个解码的信号164、168。例如,第一eNB解码的信号164可包含接收的有效载荷数据,该有效载荷数据可存储在数据缓冲器162中。第二eNB解码的信号168可包括开销数据和/或控制数据。例如,第二eNB解码的信号168可提供eNB操作模块182可用来执行一个或多个操作的数据(例如,PDSCH HARQ-ACK信息)。
一般来讲,eNB操作模块182可使eNB 160能够与一个或多个UE 102进行通信。eNB操作模块182可包括UL LAA PUSCH格式信令和竞争接入模块194中的一个或多个。
UL LAA PUSCH格式信令和竞争接入模块194可执行UL LAA PUSCH格式信令和竞争接入操作。这可如上所述实现。
eNB操作模块182可将信息188提供给解调器172。例如,eNB操作模块182可通知解调器172针对来自UE 102的传输所预期的调制图案。
eNB操作模块182可将信息186提供给解码器166。例如,eNB操作模块182可通知解码器166针对来自UE 102的传输所预期的编码。
eNB操作模块182可将信息101提供给编码器109。信息101可包括待编码的数据和/或用于编码的指令。例如,eNB操作模块182可指示编码器109编码信息101,包括传输数据105。
编码器109可编码由eNB操作模块182提供的传输数据105和/或信息101中包括的其他信息。例如,对数据105和/或信息101中包括的其他信息进行编码可涉及错误检测和/或纠正编码,将数据映射到空间、时间和/或频率资源以便传输,多路复用等。编码器109可将编码的数据111提供给调制器113。传输数据105可包括要中继到UE 102的网络数据。
eNB操作模块182可将信息103提供给调制器113。该信息103可包括用于调制器113的指令。例如,eNB操作模块182可通知调制器113将用于向UE 102进行传输的调制类型(例如,星座映射)。调制器113可调制编码的数据111,以将一个或多个调制的信号115提供给一个或多个发射器117。
eNB操作模块182可将信息192提供给一个或多个发射器117。该信息192可包括用于一个或多个发射器117的指令。例如,eNB操作模块182可指示一个或多个发射器117何时(何时不)将信号传输到UE 102。一个或多个发射器117可升频转换调制的信号115并将该信号传输到一个或多个UE 102。
应当注意,DL子帧可从eNB 160传输到一个或多个UE 102,并且UL子帧可从一个或多个UE 102传输到eNB 160。此外,eNB 160以及一个或多个UE 102均可在标准特殊子帧中传输数据。
还应当注意,包括在eNB 160和UE 102中的元件或其部件中的一者或多者可在硬件中实施。例如,这些元件或其部件中的一者或多者可被实现为芯片、电路或硬件部件等。还应当注意,本文所述功能或方法中的一者或多者可在硬件中实现和/或使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。
图2是示出UE 102进行PUSCH格式信令和竞争接入的方法200的流程图。UE 102可在无线通信网络中与一个或多个eNB 160进行通信。在一种实施方式中,无线通信网络可包括LTE网络。
UE 102可从一个或多个下行链路控制信息(DCI)接收202用于一个或多个UL LAA子帧的上行链路(UL)许可。UL许可可以是PDCCH、EPDCCH或PHICH反馈中的DCI格式。
UE 102可确定204用于UL LAA子帧的UL LAA物理上行链路共享信道(PUSCH)格式或结构。UL许可DCI可指示调度的子帧的LAA PUSCH格式和关于前一个子帧的最后一个符号的可用性的信息。用于UL LAA子帧的UL LAA PUSCH格式或结构可从符号0或1开始,并且可以符号12或符号13结束。在一个具体实施中,UL LAA PUSCH可从符号0开始,并且前一个子帧的最后一个符号可不消隐。
UE 102可确定206调度的LAA PUSCH是否需要对话前监听(LBT)。当前一个LAA子帧传输成功时,UE 102可在没有LBT的情况下传输调度的LAA PUSCH。
如果需要,UE 102可基于用于UL LAA子帧的UL许可来确定208UL竞争接入区域。可基于指示的LAA PUSCH结构来确定竞争接入区域。可基于指示的LAA PUSCH结构以及前一个子帧的最后一个符号是否消隐来确定竞争接入区域。UE 102可确定210竞争接入区域中的UL竞争接入方法。
UE 102还可在UL竞争接入区域中执行212UL竞争接入。例如,UE 102可在UL竞争接入区域中执行LBT。如果信道接入成功,则UE 102可传输214 LAA PUSCH。
图3示出了没有LBT的UL传输的隐藏节点问题。在图3中,UE 302可在LAA小区323(例如,eNB 160)和另一个未许可节点325的范围内。另一个未许可节点325在LAA小区的范围之外。因此,可将其视为隐藏节点(也称为隐藏终端)。
LAA DL传输无法避免在UE 302处观察到的隐藏节点问题,因为在eNB 160和UE302处观察到的信道可能不同。LAA小区323可传输DL LAA传输329,随后传输最小间隙327,用于没有LBT的UL传输。
UE 302可具有调度的UL LAA传输331。然而,在UE 302附近可能存在未被LAA eNB160检测到的其他未许可传输333。如果UE 302在没有感测的情况下进行传输,则它将引起与正在进行的未许可传输333的冲突。
图4是示出类别2UL LAA传输的示意图。可在调度的UL传输之前执行类别2 LBT。类别2 LBT在传输之前仅需要单个CCA感测。这可在UL子帧边界439之前的CCA感测间隔437中发生。这也称为基于帧的设备(FBE)竞争接入。
如图4所示,调度的LAA UE 102在调度的UL子帧边界439上面的单个CCA感测间隔437中执行CCA检测。如果信道空闲,则LAA UE 102可按计划传输LAA UL子帧441。否则,UL传输被丢弃。
图5示出了在CCA间隙开始处的至少25μs的单个空闲信道评估(CCA)感测的示例。如图5所示,传播延迟表示为δ。TA值将是2δ,并且CCA感测间隔545可与包括传播延迟的DL符号边界543对齐。
如果在CCA感测间隔545内存在另一个未许可传输,则LBT失败,并且LAA UE 102应该在下一个可用CCA间隙中推迟竞争接入。如果CCA感测成功,则UL LAA UE 102可开始传输。但是,可在调度的UL LAA子帧551(例如,PUSCH)之前传输预留信号549或初始信号以占用信道。
图6是示出具有所需的LBT信道接入且没有消隐符号的LAA PUSCH的实施方式的示意图。在一个具体实施中,调度的UL LAA子帧可以是单个UL LAA子帧651a(或UL LAA子帧的脉冲串中的初始UL LAA子帧)。在该具体实施中,前一个子帧的最后一个符号653a可用作用于竞争接入的CCA间隙。
在另一个具体实施中,调度的UL LAA子帧可以是UL LAA脉冲串中间的子帧651c。在该具体实施中,可指示前一个子帧651b,其中最后一个符号653b(符号13)被消隐。
这些具体实施对于来自多个LAA UE 102的同步UL LAA传输可能是有用的。
图7是示出由前一个UL LAA子帧传输的状态确定是否需要LBT的示意图。如果调度的UL LAA子帧751是LAA UL脉冲串内的连续传输并且前一个UL LAA子帧751没有消隐最后一个符号(符号13),则是否需要LBT取决于前一个LAA传输是否成功。由于子帧751处于连续LAA脉冲串传输的中间,因此可指示或不指示LBT方法。
如果指示LBT方法,则作为连续LAA传输,如果传输前一个UL LAA子帧751a,则可能不需要用于调度的UL LAA子帧751b的LBT。如果没有指示LBT方法,则如果由于早期的LBT失败而未传输前一个LAA子帧751c,则仍可执行用于调度的UL LAA子帧751d的LBT。
图8是示出在前一个子帧851中传输失败的情况下CCA间隙和LBT的选项的示意图。无论是哪种LBT方法,有几种不同的选项可确定竞争接入的CCA间隙。在这些示例中,前一个UL LAA子帧851a、851c、851e、851g的最后一个符号853未被消隐。
在第一选项(选项1)中,在前一个子帧851a的最后一个符号853a空间中执行用于调度的UL LAA子帧851b的LBT。
在第二选项(选项2)中,在调度的UL LAA子帧851d的第一个符号853b空间中执行用于调度的UL LAA子帧851d的LBT。
在第三选项(选项3)中,在前一个子帧851e的最后一个符号853c空间和调度的ULLAA子帧851f的第一个符号853d空间中执行用于调度的UL LAA子帧851f的单个LBT。
在第四选项(选项4)中,在前一个子帧851g的最后一个符号853e空间和调度的ULLAA子帧851h的第一个符号853f空间中执行用于调度的UL LAA子帧851h的两步LBT。
图9是示出用于LAA PUSCH格式信令和执行竞争接入的方法900的流程图。具体地,方法900示出了PUSCH格式以及是否应该在传输之前执行LBT。方法900可由UE 102实施。UE102可在无线通信网络中与一个或多个eNB 160进行通信。在一种实施方式中,无线通信网络可包括LTE网络。
UE 102可接收902用于UL LAA PUSCH的UL许可DCI。用于LAA PUSCH传输的UL许可DCI可指示PUSCH格式。
UE 102可确定904所指示的LAA PUSCH格式是否在DFT-S-OFDM符号0处开始。UE102应确定904PUSCH是否在DFT-S-OFDM符号0或符号1处开始。如果PUSCH在DFT-S-OFDM符号1处开始906,则总是存在CCA间隙并且LBT应该在LAA PUSCH传输之前执行908(即,情况1LBT)。图10示出了情况1LBT方法的选项。
如果PUSCH在DFT-S-OFDM符号0处开始,则UE 102可确定910在子帧之前CCA间隙是否可用。换句话说,UE 102可确定910调度的LAA PUSCH是否是连续的UL子帧,其中在前一个子帧的末尾没有指示CCA间隙。如果调度的LAA PUSCH是单个UL子帧、多子帧调度中的初始UL子帧、或者其中前一个子帧的最后一个符号(符号13)被用信号传输为消隐的连续UL子帧,则CCA间隙可用。
如果调度的LAA PUSCH不是在前一个子帧的末尾没有指示CCA间隙的连续UL子帧,则UE 102可执行912用于UL LAA PUSCH传输的LBT(即,情况2)。对于情况2,始终执行LBT,假设前一个子帧的最后一个符号(符号13)被消隐并用于信道接入。
如果调度的UL LAA PUSCH是在前一个子帧的末尾没有指示CCA间隙的连续UL子帧,则CCA间隙的存在取决于前一个UL PUSCH是否成功传输。
UE 102可确定914前一个LAA PUSCH子帧传输是否成功。如果从给定UE 102成功传输前一个LAA PUSCH,则UE 102可在没有LBT的情况下传输916给定UL LAA PUSCH。即使指示,UE 102也可忽略LBT方法和/或参数。如果前一个LAA PUSCH未被成功传输(例如,LBT失败),则UE 102可执行918用于调度的LAA PUSCH传输的LBT(即,情况3)。情况3LBT可使用多个选项,如图11所示(也如图8所示)。
图10是示出用于执行情况1LBT的方法1000的流程图。方法1000可由UE 102实施。
UE 102可确定1002 LAA PUSCH在符号1处开始。在这种情况下(即,情况1),UE 102可执行用于UL LAA PUSCH传输的LBT。UE 102可实现针对情况1LBT的两个选项之一。在一个选项中,UE 102可始终仅在调度的子帧的符号0的间隙中执行1004LBT。
在另一个选项中,UE 102可基于前一个子帧的PUSCH格式确定1006用于LBT的CCA间隙的长度。如果UE 102确定1008前一个LAA PUSCH子帧的最后一个符号(符号13)被消隐,则UE 102可在前一个子帧的符号13和调度的子帧的符号0的间隙中执行1010LBT。否则,UE102可仅在调度的子帧的符号0的间隙中执行1012 LBT。
图11是示出用于执行情况3LBT的方法1100的流程图。方法1100可由UE 102实施。
UE 102可确定1102执行用于UL LAA PUSCH传输的LBT。在该示例中,LBT是情况3LBT。如果前一个LAA PUSCH未成功传输(例如,LBT失败),则UE 102可执行用于调度的LAAPUSCH传输的LBT。情况3 LBT可使用多个选项。
在选项1中,UE 102可在前一个子帧的最后一个符号空间中执行1104LBT。如果UE102确定1106LBT成功,则LAA PUSCH格式应在符号0处开始1108,如在UL许可DCI中用信号传输的。否则,不存在传输1110,并且LAA PUSCH被推迟到后面的子帧。
在选项2中,UE 102可在调度的子帧的第一个符号空间中执行1112LBT。如果UE102确定1114LBT成功,则LAA PUSCH格式应该通过屏蔽UL许可DCI中指示的PUSCH格式的符号0在符号1处开始1116。不存在传输1110并且LAA PUSCH被推迟到后面的子帧。
在选项3中,UE 102可在前一个子帧的最后一个符号空间和调度的子帧的第一个符号空间中执行1118单个LBT。如果UE 102确定1120LBT成功,则LAA PUSCH格式应该通过屏蔽UL许可DCI中指示的PUSCH格式的符号0在符号1处开始1116。不存在传输1110并且LAAPUSCH被推迟到后面的子帧。
在选项4中,UE 102可在前一个子帧的最后一个符号空间和调度的子帧的第一个符号空间中执行1122两步LBT。如果UE 102确定1124 LBT在前一个子帧的最后一个符号(符号13)中成功,则LAA PUSCH格式应在符号0处开始1108,如在UL许可DCI中用信号传输的。
如果LBT在前一个子帧的最后一个符号(符号13)中失败,则可在调度的子帧的第一个符号(符号0)中执行第二个LBT。如果UE 102在调度的子帧的第一个符号(符号0)中确定1126LBT成功,则LAA PUSCH格式应该通过屏蔽UL许可DCI中指示的PUSCH格式的符号0在符号1处开始1116。不存在传输1110并且LAA PUSCH被推迟到后面的子帧。
图12示出了可用于UE 1202的各种部件。结合图12描述的UE 1202可根据结合图1描述的UE 102来实现。UE 1202包括控制UE 1202的操作的处理器1289。处理器1289也可称为中央处理单元(CPU)。存储器1295(可包括只读存储器(ROM)、随机存取存储器(RAM)、这两种存储器的组合或可存储信息的任何类型的设备)将指令1291a和数据1293a提供给处理器1289。存储器1295的一部分还可包括非易失性随机存取存储器(NVRAM)。指令1291b和数据1293b还可驻留在处理器1289中。加载到处理器1289中的指令1291b和/或数据1293b还可包括来自存储器1295的指令1291a和/或数据1293a,这些指令和/或数据被加载以供处理器1289执行或处理。指令1291b可由处理器1289执行,以实施上述方法200。
UE 1202还可包括外壳,该外壳容纳一个或多个发射器1258和一个或多个接收器1220以允许传输和接收数据。发射器1258和接收器1220可合并为一个或多个收发器1218。一个或多个天线1222a-n附接到外壳并且电耦合到收发器1218。
UE 1202的各个部件通过总线系统1297(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦合在一起。然而,为了清楚起见,各种总线在图12中被示出为总线系统1297。UE 1202还可包括用于处理信号的数字信号处理器(DSP)1299。UE 1202还可包括对UE 1202的功能提供用户接入的通信接口1201。图12所示的UE 1202是功能框图而非具体部件的列表。
图13示出了可用于eNB 1360的各种部件。结合图13描述的eNB 1360可根据结合图1描述的eNB 160来实现。eNB 1360包括控制eNB 1360的操作的处理器1389。处理器1389也可称为中央处理单元(CPU)。存储器1395(可包括只读存储器(ROM)、随机存取存储器(RAM)、这两种存储器的组合或可存储信息的任何类型的设备)将指令1391a和数据1393a提供给处理器1389。存储器1395的一部分还可包括非易失性随机存取存储器(NVRAM)。指令1391b和数据1393b还可驻留在处理器1389中。加载到处理器1389中的指令1391b和/或数据1393b还可包括来自存储器1395的指令1391a和/或数据1393a,这些指令和/或数据被加载以供处理器1389执行或处理。指令1391b可由处理器1389执行,以实施上述的一种或多种方法。
eNB 1360还可包括外壳,该外壳容纳一个或多个发射器1317和一个或多个接收器1378以允许传输和接收数据。发射器1317和接收器1378可合并为一个或多个收发器1376。一个或多个天线1380a-n附接到外壳并且电耦合到收发器1376。
eNB 1360的各个部件通过总线系统1397(除了数据总线之外,还可包括电源总线、控制信号总线和状态信号总线)耦合在一起。然而,为了清楚起见,各种总线在图13中被示出为总线系统1397。eNB 1360还可包括用于处理信号的数字信号处理器(DSP)1399。eNB1360还可包括对eNB 1360的功能提供用户接入的通信接口1301。图13所示的eNB 1360是功能框图而非具体部件的列表。
图14是示出可在其中实施用于PUSCH格式信令和竞争接入的系统和方法的UE1402的一种实施方式的框图。UE 1402包括发射装置1458、接收装置1420和控制装置1424。发射装置1458、接收装置1420和控制装置1424可被配置为执行结合上图1所述的功能中的一者或多者。图12示出了图14的具体装置结构的一个实施例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。
图15是示出可在其中实施用于PUSCH格式信令和竞争接入的系统和方法的eNB1560的一种实施方式的框图。eNB 1560包括发射装置1517、接收装置1578和控制装置1582。发射装置1517、接收装置1578和控制装置1582可被配置为执行结合上图1所述的功能中的一者或多者。图13示出了图15的具体装置结构的一个实施例。可实施其他各种结构,以实现图1的功能中的一者或多者。例如,DSP可通过软件实现。
术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。如本文所用,术语“计算机可读介质”可表示非暂态性且有形的计算机可读介质和/或处理器可读介质。以举例而非限制的方式,计算机可读介质或处理器可读介质可包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储设备、磁盘存储设备或其他磁存储设备,或者可用于携带或存储指令或数据结构形式的所需程序代码并且可由计算机或处理器访问的任何其他介质。如本文所用,磁盘和光盘包括压缩光盘(CD)、激光盘、光学光盘、数字通用光盘(DVD)、软磁盘及光盘,其中磁盘通常以磁性方式复制数据,而光盘则利用激光以光学方式复制数据。
应当注意,本文所述方法中的一者或多者可在硬件中实现并且/或者使用硬件执行。例如,本文所述方法中的一者或多者可在芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等中实现,并且/或者使用芯片组、专用集成电路(ASIC)、大规模集成电路(LSI)或集成电路等实现。
本文所公开方法中的每一者包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求书的范围的情况下,这些方法步骤和/或动作可彼此互换并且/或者合并为单个步骤。换句话讲,除非所述方法的正确操作需要特定顺序的步骤或动作,否则在不脱离权利要求书的范围的情况下,可对特定步骤和/或动作的顺序和/或用途进行修改。
应当理解,权利要求书不限于上文所示的精确配置和部件。在不脱离权利要求书的范围的情况下,可对本文所述系统、方法和装置的布置、操作和细节进行各种修改、改变和变更。
根据所述系统和方法在eNB 160或UE 102上运行的程序是以实现根据所述系统和方法的功能的方式控制CPU等的程序(使得计算机操作的程序)。然后,在这些装置中处理的信息在被处理的同时被暂时存储在RAM中。随后,该信息被存储在各种ROM或HDD中,每当需要时,由CPU读取以便进行修改或写入。作为其上存储有程序的记录介质,半导体(例如,ROM、非易失性存储卡等)、光学存储介质(例如,DVD、MO、MD、CD、BD等)、磁存储介质(例如,磁带、软磁盘等)等中的任一者都是可能的。此外,在一些情况下,通过运行所加载的程序来实现上述根据所述系统和方法的功能,另外,基于来自程序的指令并结合操作系统或其他应用程序来实现根据所述系统和方法的功能。
此外,在程序在市场上有售的情况下,可分发存储在便携式记录介质上的程序,或可将该程序传输到通过网络诸如互联网连接的服务器计算机。在这种情况下,还包括服务器计算机中的存储设备。此外,根据上述系统和方法的eNB 160和UE 102中的一些或全部可实现为作为典型集成电路的LSI。eNB 160和UE 102的每个功能块可单独地内置到芯片中,并且一些或全部功能块可集成到芯片中。此外,集成电路的技术不限于LSI,并且用于功能块的集成电路可利用专用电路或通用处理器实现。此外,如果随着半导体技术不断进步,出现了替代LSI的集成电路技术,则也可使用应用该技术的集成电路。
此外,每个上述实施方案中所使用的基站设备和终端设备的每个功能块或各种特征可通过电路(通常为一个集成电路或多个集成电路)实施或执行。被设计为执行本说明书中所述的功能的电路可包括通用处理器、数字信号处理器(DSP)、专用或通用集成电路(ASIC)、现场可编程门阵列(FPGA),或其他可编程逻辑设备、分立栅极或晶体管逻辑器,或分立硬件部件,或它们的组合。通用处理器可为微处理器,或另选地,该处理器可为常规处理器、控制器、微控制器或状态机。通用处理器或上述每种电路可由数字电路进行配置,或可由模拟电路进行配置。此外,当由于半导体技术的进步而出现制成取代当前集成电路的集成电路的技术时,也能够使用通过该技术生产的集成电路。

Claims (12)

1.一种用于在授权辅助接入(LAA)服务小区中传输信号的用户设备(UE),包括:
处理器;和
存储器,所述存储器与所述处理器进行电子通信,其中存储在所述存储器中的指令可被执行以:
从一个或多个下行链路控制信息(DCI)接收用于一个或多个UL LAA子帧的上行链路(UL)许可;
确定用于UL LAA子帧的UL LAA物理上行链路共享信道(PUSCH)格式或结构;以及
确定调度的LAA PUSCH是否需要对话前监听(LBT);并且如果需要
基于UL LAA子帧的所述UL许可来确定UL竞争接入区域;
确定所述竞争接入区域中的UL竞争接入方法;
在所述UL竞争接入区域中执行UL竞争接入;以及
如果信道接入成功,则传输所述LAA PUSCH。
2.根据权利要求1所述的UE,其中所述UL许可DCI指示所述调度的子帧的所述LAAPUSCH格式和关于前一个子帧的最后一个符号的可用性的信息。
3.根据权利要求1所述的UE,其中用于UL LAA子帧的所述UL LAA PUSCH格式或结构可从符号0或1开始,并且可以符号12或符号13结束。
4.根据权利要求1所述的UE,其中所述UL LAA PUSCH以符号0开始,并且前一个子帧的最后一个符号不消隐,并且当前一个LAA子帧传输成功时,所述UE在不进行LBT的情况下传输所述调度的LAA PUSCH。
5.根据权利要求1所述的UE,其中基于指示的LAA PUSCH结构来确定所述竞争接入区域。
6.根据权利要求1所述的UE,其中基于指示的LAA PUSCH结构以及前一个子帧的最后一个符号是否消隐来确定所述竞争接入区域。
7.一种用于在授权辅助接入(LAA)服务小区中传输信号的方法,包括:
从一个或多个下行链路控制信息(DCI)接收用于一个或多个UL LAA子帧的上行链路(UL)许可;
确定用于UL LAA子帧的UL LAA物理上行链路共享信道(PUSCH)格式或结构;以及
确定调度的LAA PUSCH是否需要对话前监听(LBT);并且如果需要
基于用于UL LAA子帧的所述UL许可来确定UL竞争接入区域;
确定所述竞争接入区域中的UL竞争接入方法;
在所述UL竞争接入区域中执行UL竞争接入;以及
如果信道接入成功,则传输所述LAA PUSCH。
8.根据权利要求7所述的方法,其中所述UL许可DCI指示所述调度的子帧的所述LAAPUSCH格式和关于前一个子帧的最后一个符号的可用性的信息。
9.根据权利要求7所述的方法,其中UL LAA子帧的所述UL LAA PUSCH格式或结构可从符号0或1开始,并且可以符号12或符号13结束。
10.根据权利要求7所述的方法,其中所述UL LAA PUSCH以符号0开始,并且前一个子帧的最后一个符号不消隐,并且当前一个LAA子帧传输成功时,所述UE在不进行LBT的情况下传输所述调度的LAA PUSCH。
11.根据权利要求7所述的方法,其中基于指示的LAA PUSCH结构来确定所述竞争接入区域。
12.根据权利要求7所述的方法,其中基于指示的LAA PUSCH结构以及前一个子帧的最后一个符号是否消隐来确定所述竞争接入区域。
CN201780029053.8A 2016-05-11 2017-05-10 用于物理上行链路共享信道(pusch)格式信令和竞争接入的系统和方法 Active CN109479326B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662334964P 2016-05-11 2016-05-11
US62/334964 2016-05-11
US15/590,830 US20170332395A1 (en) 2016-05-11 2017-05-09 Systems and methods for physical uplink shared channel (pusch) format signaling and contention access
US15/590830 2017-05-09
PCT/US2017/031982 WO2017196994A1 (en) 2016-05-11 2017-05-10 Systems and methods for physical uplink shared channel (pusch) format signaling and contention access

Publications (2)

Publication Number Publication Date
CN109479326A true CN109479326A (zh) 2019-03-15
CN109479326B CN109479326B (zh) 2023-01-24

Family

ID=58765931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780029053.8A Active CN109479326B (zh) 2016-05-11 2017-05-10 用于物理上行链路共享信道(pusch)格式信令和竞争接入的系统和方法

Country Status (7)

Country Link
US (2) US20170332395A1 (zh)
EP (1) EP3456142A1 (zh)
KR (1) KR102380537B1 (zh)
CN (1) CN109479326B (zh)
CA (1) CA3023249A1 (zh)
RU (1) RU2735637C2 (zh)
WO (1) WO2017196994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056627A1 (zh) * 2021-10-09 2023-04-13 北京小米移动软件有限公司 一种接收及发送上行信道配置信息的方法、装置及介质

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152626A (ja) * 2015-08-05 2018-09-27 シャープ株式会社 端末装置、基地局装置および通信方法
CN115426657A (zh) * 2015-09-25 2022-12-02 中兴通讯股份有限公司 一种确定lbt模式的方法、装置和实现lbt模式切换的方法
CN107371271B (zh) 2016-05-12 2022-05-24 北京三星通信技术研究有限公司 一种上行信号的发送方法和用户设备
GB2550200B (en) * 2016-05-13 2021-08-04 Tcl Communication Ltd Methods and devices for supporting access to unlicensed radio resources in wireless communication systems
KR102168141B1 (ko) * 2016-05-20 2020-10-20 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 비면허 스펙트럼에서의 다수의 서브프레임들의 스케줄링
US10887849B2 (en) * 2016-08-08 2021-01-05 Lg Electronics Inc. Method and device for reporting power headroom
CN107809805B (zh) * 2016-09-08 2020-07-24 华为技术有限公司 一种上行lbt信道检测和上行数据发送方法、设备
US10070462B2 (en) * 2017-01-31 2018-09-04 Qualcomm Incorporated Listen before transmit (LBT) communication protocol for vehicle-to-vehicle communications
US11102846B2 (en) * 2017-03-24 2021-08-24 Apple Inc. Downlink control information to support uplink partial subframe transmission on licensed assisted access secondary cell
KR102315778B1 (ko) * 2017-05-04 2021-10-22 삼성전자 주식회사 무선 통신 시스템에서 상향링크 전송시간 식별 방법 및 장치
WO2019006695A1 (en) * 2017-07-05 2019-01-10 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND SYSTEM FOR FLEXIBLE SURVEY REFERENCE SIGNAL (SRS) TRANSMISSION IN A WIRELESS COMMUNICATION NETWORK
WO2019066482A1 (ko) * 2017-09-27 2019-04-04 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
CN111557116A (zh) * 2018-01-12 2020-08-18 瑞典爱立信有限公司 改进的调度传输
KR102393512B1 (ko) * 2018-02-14 2022-05-04 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
US11129196B2 (en) * 2018-05-11 2021-09-21 Qualcomm Incorporated Shared channel design around reserved resources
KR102256786B1 (ko) 2018-07-31 2021-05-27 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 비면허 셀의 슬롯 포맷을 지시하는 방법 및 장치
CN110831201A (zh) * 2018-08-10 2020-02-21 华硕电脑股份有限公司 未授权频谱中的结束时隙的时隙格式指示的方法和设备
JP2022515033A (ja) * 2018-12-26 2022-02-17 北京小米移動軟件有限公司 時間領域リソースの割り当て方法、データ送信方法、基地局及び端末
US10869336B2 (en) 2019-02-15 2020-12-15 Qualcomm Incorporated Random access channel access and validity procedures
CN114008948A (zh) * 2019-03-28 2022-02-01 苹果公司 针对在未许可频谱上操作的新空口(nr)系统中的配置授权启用多个起始符号时机
EP3959939A1 (en) * 2019-06-19 2022-03-02 Apple Inc. Channel sensing for physical random access channel (prach) signals in new radio (nr) systems operating in the unlicensed spectrum
JP7377966B2 (ja) * 2019-10-04 2023-11-10 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Nr-uにおけるセル再設定に適応性のあるユーザ機器の挙動のための方法
US11889559B2 (en) * 2021-04-06 2024-01-30 Qualcomm Incorporated Channel sensing with self-interference awareness for unlicensed band

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365931A1 (en) * 2014-06-11 2015-12-17 Samsung Electronics Co., Ltd. Harq procedure and frame structure for lte cells on unlicensed spectrum
CN105471554A (zh) * 2014-09-26 2016-04-06 宏达国际电子股份有限公司 处理非执照频带中的传输的方法及其通信装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100166056A1 (en) * 2002-12-10 2010-07-01 Steve Perlman System and method for encoding video using a selected tile and tile rotation pattern
AU2004237046B2 (en) * 2003-05-02 2008-02-28 Giritech A/S Pervasive, user-centric network security enabled by dynamic datagram switch and an on-demand authentication and encryption scheme through mobile intelligent data carriers
JP2011509547A (ja) * 2007-12-05 2011-03-24 オンライブ インコーポレイテッド 通信チャンネルを経て送信されるある形式のマルチメディアデータを保護するシステム及び方法
US8780790B2 (en) * 2008-01-07 2014-07-15 Qualcomm Incorporated TDD operation in wireless communication systems
JP6400598B2 (ja) * 2013-01-14 2018-10-03 エルジー エレクトロニクス インコーポレイティド 下りリンク信号受信方法およびユーザ機器、並びに下りリンク信号送信方法および基地局
US9585103B2 (en) 2014-01-30 2017-02-28 Qualcomm Incorporated Techniques for controlling transmission power in shared radio frequency spectrum
US9609666B2 (en) 2014-03-03 2017-03-28 Futurewei Technologies, Inc. System and method for reserving a channel for coexistence of U-LTE and Wi-Fi
JP6388780B2 (ja) * 2014-03-19 2018-09-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2015174437A1 (ja) 2014-05-15 2015-11-19 株式会社Nttドコモ 無線基地局、ユーザ端末および無線通信システム
US10560891B2 (en) 2014-09-09 2020-02-11 Blackberry Limited Medium Access Control in LTE-U
US10856327B2 (en) * 2016-03-15 2020-12-01 Ofinno, Llc Energy detection threshold in a wireless device and wireless network
US9979581B2 (en) * 2016-04-01 2018-05-22 Mediatek Inc. Control channel design for eLAA
US10375634B2 (en) * 2016-09-10 2019-08-06 Ofinno, Llc Deactivation timer management in a wireless device and wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365931A1 (en) * 2014-06-11 2015-12-17 Samsung Electronics Co., Ltd. Harq procedure and frame structure for lte cells on unlicensed spectrum
CN105471554A (zh) * 2014-09-26 2016-04-06 宏达国际电子股份有限公司 处理非执照频带中的传输的方法及其通信装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "R1-144778 "Details of Listen-Before-Talk for LAA"", 《3GPP TSG_RAN\WG1_RL1》 *
HUAWEI等: "R1-162131 "Discussion on CCA gap and symbol position for PUSCH and SRS for eLAA"", 《3GPP TSG_RAN\WG1_RL1》 *
INTEL CORPORATION: ""R1-162359"", 《3GPP TSG_RAN\WG1_RL1》 *
SAMSUNG: ""R1-162671"", 《3GPP TSG_RAN\WG1_RL1》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056627A1 (zh) * 2021-10-09 2023-04-13 北京小米移动软件有限公司 一种接收及发送上行信道配置信息的方法、装置及介质
CN116261907A (zh) * 2021-10-09 2023-06-13 北京小米移动软件有限公司 一种接收及发送上行信道配置信息的方法、装置及介质

Also Published As

Publication number Publication date
RU2018139089A3 (zh) 2020-06-11
CA3023249A1 (en) 2017-11-16
RU2735637C2 (ru) 2020-11-05
KR20190008247A (ko) 2019-01-23
US20170332395A1 (en) 2017-11-16
US20180302913A1 (en) 2018-10-18
RU2018139089A (ru) 2020-06-11
US10397939B2 (en) 2019-08-27
KR102380537B1 (ko) 2022-03-29
EP3456142A1 (en) 2019-03-20
CN109479326B (zh) 2023-01-24
WO2017196994A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
CN109479326A (zh) 用于物理上行链路共享信道(pusch)格式信令和竞争接入的系统和方法
US10965407B2 (en) User equipments, base stations and communication methods
CN106658742B (zh) 数据调度及传输的方法、装置及系统
EP3566368B1 (en) Signaling, procedures, user equipment and base stations for uplink ultra reliable low latency communications
CN109479306A (zh) 用户设备、基站和方法
CN111082915B (zh) 一种无线通信中的方法和装置
US10708100B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
CN110419186A (zh) 用于上行链路超高可靠和低延迟通信的下行链路控制通道
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
CN109952731A (zh) 用于处理时间缩减的pucch资源分配和harq-ack报告的系统和方法
CN108476103A (zh) 用于利用授权辅助接入(laa)上行链路传输进行上行链路控制信息报告的系统和方法
CN108200780A (zh) 用于授权辅助接入的退避过程的系统和方法
CN111602438B (zh) Harq-ack复用的码本确定的方法、ue及基站
CN103416011A (zh) 用于通信系统的灵活时分双工方法及装置
US10616888B2 (en) Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
CN113383597A (zh) 实现基于微时隙的重复的用户设备和基站
CN108370571A (zh) 用于低延迟无线通信的用户设备、基站和方法
CN117098233A (zh) 数据传输方法、装置和系统
CN104811909A (zh) 设备到设备广播信息的发送、接收方法及装置、传输系统
CN107733620A (zh) 一种无线传输中的方法和装置
CN107294646A (zh) 一种信息反馈方法、基站及终端
CN110430619B (zh) 一种基于蜂窝网的窄带通信的方法和装置
CN110235400A (zh) 用户设备、基站和通信方法
CN108141883A (zh) 用于授权辅助接入中的退避计数器处理的系统和方法
CN111713039A (zh) 用于下行链路半持久调度的用户设备、基站和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20190425

Address after: No. 1, Takumicho, Sakai Ward, Sakai City, Osaka Prefecture, Japan

Applicant after: Sharp Corp.

Applicant after: FG Innovation Co.,Ltd.

Address before: No. 1, Takumicho, Sakai Ward, Sakai City, Osaka Prefecture, Japan

Applicant before: Sharp Corp.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant