CN109472784A - 基于级联全卷积网络病理图像有丝分裂细胞的识别方法 - Google Patents

基于级联全卷积网络病理图像有丝分裂细胞的识别方法 Download PDF

Info

Publication number
CN109472784A
CN109472784A CN201811289753.3A CN201811289753A CN109472784A CN 109472784 A CN109472784 A CN 109472784A CN 201811289753 A CN201811289753 A CN 201811289753A CN 109472784 A CN109472784 A CN 109472784A
Authority
CN
China
Prior art keywords
image
convolution
cell
recognition methods
convolutional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811289753.3A
Other languages
English (en)
Inventor
张源
石磊
陈金娥
陈星强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Medical College
Original Assignee
Anhui Medical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Medical College filed Critical Anhui Medical College
Priority to CN201811289753.3A priority Critical patent/CN109472784A/zh
Publication of CN109472784A publication Critical patent/CN109472784A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Abstract

本发明涉及计算机神经网络,具体涉及基于级联全卷积网络病理图像有丝分裂细胞的识别方法,输入待识别组织切片图像,对组织切片图像进行卷积运算,选择卷积后的组织切片图像池化区域中的最大值或者平均值作为该图像区域的输出,得到下采样特征图,对下采样特征图进行反卷积运算得到上采样特征图,再进行卷积运算,形成细胞分割图像,输入细胞分割图像,对细胞分割图像进行卷积运算,引入权重参数加入到交叉熵代价函数对卷积后的细胞分割图像进行池化,形成检测结果图像;本发明所提供的技术方案能够有效克服现有技术所存在的分割精度较低、检测精度较低、输入图像的尺寸必须固定的缺陷。

Description

基于级联全卷积网络病理图像有丝分裂细胞的识别方法
技术领域
本发明涉及计算机神经网络,具体涉及基于级联全卷积网络病理图像有丝分裂细胞的识别方法。
背景技术
肿瘤细胞的增殖速度,也就是肿瘤的生产速度,是预示癌症患者预后的重要标志物。肿瘤增殖速度快的癌症患者比肿瘤增殖速度慢的患者的预后较差。因此,这种肿瘤增殖速度的评估会给病人治疗方案带来影响。病理学家为了获取肿瘤在临床上的扩散情况,使用组织切片扫描仪融合高倍显微镜下每个组织的图像成为一个全切片图像,这些图像通过图像处理技术做进一步分析,也可以通过互联网进行存储和传输。为了量化癌症的恶性程度,病理学家使用有丝分裂细胞的数量作为重要的预测指标之一。细胞分离的越多,肿瘤的恶性程度越大。癌症细胞有丝分裂的过程分成四个阶段:前期,染色体聚集;中期,染色体向两极拉升;后期,染色体开始分离;末期,两个完全分离的染色体,如果有丝分裂细胞密度大则表明肿瘤的增殖速度很快。这种方法几乎在每一个病理实验中都会应用到,但这种方法也有一定的局限性。首先每个阶段的细胞核形状虽然稍有不同,但与非分裂细胞也非常相似,其次病理学家在有丝分裂计数过程容易遇到重复计数的困扰,这些问题是由病理学家在观察过程中的潜在主观性引起的。
近年来,随着计算机学科与医学学科广泛交融,为了减少病理学家的主观因素导致的诊断误差,许多基于组织图像处理技术的有丝分裂细胞检测系统被广泛研究。而在该项研究的过程中,普遍存在两个难题,一是有丝分裂与非有丝分裂的高度相似性导致辨别困难,甚至对于专业的病理学家也难以辨别;二是在一个组织的全切片图像中,有丝分裂细胞仅占所有细胞的1%,而其余99%的细胞均为非有丝分裂细胞。因此,样本数据集的不均衡会导致检测的性能受到严重影响,传统的图像处理技术在医学图像中的应用出现了瓶颈。
在过去的十几年里,深度学习(Deep Learning)因其在语音识别、图像分类等领域展现了引人注目的成绩,而备受学者关注。越来越多的学者开始利用深度学习做医学图像方面的应用,例如,计算机辅助诊断、医学图像分析、医学图像分割等。除此之外,还有许多利用深度学习的医学领域的应用,像细胞追踪、癌症检测等。在未来的研究中,深度学习辅助医学诊断具有更快、更客观、更可靠、更鲁棒的优点。
越来越多的医学图像处理技术都是基于深度卷积网络开发而来,例如,基于神经网络的乳腺癌中的恶性导管癌分类研究、基于神经网络的U-NET医学图像分割、基于神经网络的乳腺癌中有丝分裂检测、基于神经网络的乳腺癌和直肠癌的上皮组织图像分类、基于神经网络的鉴别胶质瘤与非小细胞肺癌研究等等。然而,使用神经卷积网络的深度学习在组织图像方面的应用,仍然处于刚起步阶段。所以,本发明就基于深度卷积神经网络结构在组织全切片病理图像中有丝分裂细胞的数量检测进行深入研究。
传统的卷积神经网络含有若干个卷积层、若干个池化层以及若干全连接层的结构,在卷积层之后使用全连接层得到固定长度的特征向量,通过softmax()函数来计算输出图像的得分,根据得分对图像进行分类。该结构的缺点在于输入的图像需固定尺寸,而且采用传统卷积神经网络进行图像分割,是基于图形的分割,分割效果和精度非常差。
一种解决办法就是用卷积层替代最后的全连接层,优点就是输入图像的尺寸无需固定,即可以输入任意尺寸的图形作为输入图像。其次,把图像中的每一个像素看作一个二分类问题,所有Ground Truth图像中标注为0的作为负样本,所有标注为1的作为正样本,这样分割的图像就达到了pixel-pixel级别,即像素级的分类,增强了图像分割的效果和精度,但是这种结构的网络训练的过程中,会因为重叠训练的图像块较多,而产生冗余数据的存储,降低了效率,增加了存储消耗,同时,在实际的测试过程中,这种全卷积网络因为结构的特殊,同一个模型需要训练多次,大大降低了效率。
发明内容
(一)解决的技术问题
针对现有技术所存在的上述缺点,本发明提供了基于级联全卷积网络病理图像有丝分裂细胞的识别方法,能够有效克服现有技术所存在的分割精度较低、检测精度较低、输入图像的尺寸必须固定的缺陷。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
基于级联全卷积网络病理图像有丝分裂细胞的识别方法,包括以下步骤:
S1、输入待识别组织切片图像;
S2、对组织切片图像进行卷积运算;
S3、选择卷积后的组织切片图像池化区域中的最大值或者平均值作为该图像区域的输出,得到下采样特征图;
S4、对下采样特征图进行反卷积运算得到上采样特征图,再进行卷积运算,形成细胞分割图像;
S5、输入细胞分割图像,对细胞分割图像进行卷积运算;
S6、引入权重参数加入到交叉熵代价函数对卷积后的细胞分割图像进行池化,形成检测结果图像。
优选地,第一层所述卷积的特征映射公式表达为:
其中,Nl表示该层的特征映射数量,每个映射图表示为 表示第i个卷积层第j个卷积核的参数的二维数组,表示第l层第j个卷积核的偏置参数,φ(·)为非线性函数作为激活函数。
优选地,所述卷积运算中的卷积核采用16*16卷积核。
优选地,所述池化的步长值为4。
优选地,所述组织切片图像与细胞分割图像使用随机梯度下降法来训练网络。
优选地,所述随机梯度下降法的代价函数融合了交叉熵的特征映射方程:
其中,ak(X)表示激活特征k在X位置,K是类别数,pk(x)是近似的最大函数。
优选地,所述交叉熵惩罚每个位置来自正样本pl(x)(x)的公式为:
其中,l∈Ω{1,2...,K}是每个像素的真实值,ω是在训练中给一些重要像素的映射权重。
优选地,所述引入权重参数加入到交叉熵代价函数的公式为:
其中,Pi表示i属于前景的概率,是标定过的真实数据。
(三)有益效果
与现有技术相比,本发明所提供的基于级联全卷积网络病理图像有丝分裂细胞的识别方法具有以下有益效果:
1、采用级联全卷积网络,相比于传统的卷积网络,细胞分割组件可以对细胞进行粗选择,然后再送入有丝分裂检测组件进行精检测,提高了检测的精度;
2、采用全卷积网络结构,可以使输入的图像为任意尺寸并且得到的输出图像也是任意尺寸,相比传统的卷积网络更加直观;
3、用卷积层代替全连接层,使得图像的分割精确和检测精度达到像素级。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明示意图;
图2为本发明图1中细胞分割组件示意图;
图3为本发明图1中有丝分裂检测组件示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
基于级联全卷积网络病理图像有丝分裂细胞的识别方法,如图1至图3所示,包括以下步骤:
S1、输入待识别组织切片图像;
S2、对组织切片图像进行卷积运算;
S3、选择卷积后的组织切片图像池化区域中的最大值或者平均值作为该图像区域的输出,得到下采样特征图;
S4、对下采样特征图进行反卷积运算得到上采样特征图,再进行卷积运算,形成细胞分割图像;
S5、输入细胞分割图像,对细胞分割图像进行卷积运算;
S6、引入权重参数加入到交叉熵代价函数对卷积后的细胞分割图像进行池化,形成检测结果图像。
第一层卷积的特征映射公式表达为:
其中,Nl表示该层的特征映射数量,每个映射图表示为 表示第i个卷积层第j个卷积核的参数的二维数组,表示第l层第j个卷积核的偏置参数,φ(·)为非线性函数作为激活函数。
卷积运算中的卷积核采用16*16卷积核。
池化的步长值为4。
组织切片图像与细胞分割图像使用随机梯度下降法来训练网络。
随机梯度下降法的代价函数融合了交叉熵的特征映射方程:
其中,ak(X)表示激活特征k在X位置,K是类别数,pk(x)是近似的最大函数。
交叉熵惩罚每个位置来自正样本pl(x)(x)的公式为:
其中,l∈Ω{1,2...,K}是每个像素的真实值,ω是在训练中给一些重要像素的映射权重。
引入权重参数加入到交叉熵代价函数的公式为:
其中,Pi表示i属于前景的概率,是标定过的真实数据。
对传统卷积神经网络进行改进,采用一种特殊的全卷积网络,增加了上采样后反卷积层的全卷积网络,详细的网络结构如图2所示。
卷积层:
假设第l层,Nl表示该层的特征映射数量,每个映射图表示为 表示第i个卷积层第j个卷积核的参数的二维数组,表示第l层第j个卷积核的偏置参数,利用一个非线性函数φ(·)作为激活函数,那么第l层的特征映射公式可以表达为:
*表示卷积运算。本发明采用目前效果非常好的激活函数Relu(Rectified LinearUnits)函数,即f(x)=max(0,x)。
池化层:
池化层是下采样特征图,选择图像池化区域中的最大值或者平均值作为该图像区域的输出。该方法会降低训练神经网络的运算量而不改变图像表现,通常称为“平均池化方法”或者“最大值池化方法”。本发明均采用16*16的卷积核和步长值为4的最大值池化方法。
代价函数:
本发明输入的图像与他们对应的分割图像使用随机梯度下降法(SGB)来训练网络,代价函数是融合了交叉熵的特征映射方程:
ak(X)表示激活特征k在X位置,K是类别数,pk(x)是近似的最大函数。交叉熵惩罚每个位置来自正样本pl(x)(x)的公式为:
其中,l∈Ω{1,2...,K}是每个像素的真实值,ω是在训练中给一些重要像素的映射权重。
改进的细胞分割组件分割了组织切片图像中的细胞核,送入有丝分裂检测组件中进行进一步学习有丝分裂细胞的特征,并且通过网络将其检测结果输出。有了第一层的“粗分割”,对备选细胞核进行第二次检测,精确度会有所提升。有丝分裂检测组件的网络结构相对于细胞分割组件有所不同,具体网络结构见图3。有丝分裂检测组件网络结构中的卷积层、池化层与细胞分割组件没有区别,但是训练过程有所不同。网络在检测有丝分裂细胞的时候,存在训练数据的样本严重不平衡的问题,即1%的有丝分裂,99%的非有丝分裂。为了解决该问题,我们引入了一个额外的权重参数ωclass加入到交叉熵代价函数中:
其中,Pi表示i属于前景的概率,是Ground Truth。
本发明所提供的基于级联全卷积网络病理图像有丝分裂细胞的识别方法具有以下有益效果:
1、采用级联全卷积网络,相比于传统的卷积网络,细胞分割组件可以对细胞进行粗选择,然后再送入有丝分裂检测组件进行精检测,提高了检测的精度;
2、采用全卷积网络结构,可以使输入的图像为任意尺寸并且得到的输出图像也是任意尺寸,相比传统的卷积网络更加直观;
3、用卷积层代替全连接层,使得图像的分割精确和检测精度达到像素级。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:包括以下步骤:
S1、输入待识别组织切片图像;
S2、对组织切片图像进行卷积运算;
S3、选择卷积后的组织切片图像池化区域中的最大值或者平均值作为该图像区域的输出,得到下采样特征图;
S4、对下采样特征图进行反卷积运算得到上采样特征图,再进行卷积运算,形成细胞分割图像;
S5、输入细胞分割图像,对细胞分割图像进行卷积运算;
S6、引入权重参数加入到交叉熵代价函数对卷积后的细胞分割图像进行池化,形成检测结果图像。
2.根据权利要求1所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:第一层所述卷积的特征映射公式表达为:
其中,Nl表示该层的特征映射数量,每个映射图表示为 表示第i个卷积层第j个卷积核的参数的二维数组,表示第l层第j个卷积核的偏置参数,φ(·)为非线性函数作为激活函数。
3.根据权利要求1所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述卷积运算中的卷积核采用16*16卷积核。
4.根据权利要求1所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述池化的步长值为4。
5.根据权利要求1所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述组织切片图像与细胞分割图像使用随机梯度下降法来训练网络。
6.根据权利要求5所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述随机梯度下降法的代价函数融合了交叉熵的特征映射方程:
其中,ak(X)表示激活特征k在X位置,K是类别数,pk(x)是近似的最大函数。
7.根据权利要求6所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述交叉熵惩罚每个位置来自正样本pl(x)(x)的公式为:
其中,l∈Ω{1,2...,K}是每个像素的真实值,ω是在训练中给一些重要像素的映射权重。
8.根据权利要求1所述的基于级联全卷积网络病理图像有丝分裂细胞的识别方法,其特征在于:所述引入权重参数加入到交叉熵代价函数的公式为:
其中,Pi表示i属于前景的概率,是标定过的真实数据。
CN201811289753.3A 2018-10-31 2018-10-31 基于级联全卷积网络病理图像有丝分裂细胞的识别方法 Pending CN109472784A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811289753.3A CN109472784A (zh) 2018-10-31 2018-10-31 基于级联全卷积网络病理图像有丝分裂细胞的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811289753.3A CN109472784A (zh) 2018-10-31 2018-10-31 基于级联全卷积网络病理图像有丝分裂细胞的识别方法

Publications (1)

Publication Number Publication Date
CN109472784A true CN109472784A (zh) 2019-03-15

Family

ID=65666493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811289753.3A Pending CN109472784A (zh) 2018-10-31 2018-10-31 基于级联全卷积网络病理图像有丝分裂细胞的识别方法

Country Status (1)

Country Link
CN (1) CN109472784A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119710A (zh) * 2019-05-13 2019-08-13 广州锟元方青医疗科技有限公司 细胞分类方法、装置、计算机设备和存储介质
CN110287966A (zh) * 2019-06-26 2019-09-27 上海昌岛医疗科技有限公司 一种关于肾小球分割的图像处理的方法
CN110334226A (zh) * 2019-04-25 2019-10-15 吉林大学 融合特征分布熵的深度图像检索方法
CN111161212A (zh) * 2019-12-05 2020-05-15 广州金域医学检验中心有限公司 数字病理切片有丝核分裂象统计方法、装置、设备和介质
CN111368872A (zh) * 2019-12-20 2020-07-03 浙江大学 基于融合特征和验证模型的乳腺癌有丝分裂细胞检测方法
CN113610760A (zh) * 2021-07-05 2021-11-05 河海大学 一种基于u型残差神经网络的细胞图像分割示踪方法
CN115294126A (zh) * 2022-10-08 2022-11-04 南京诺源医疗器械有限公司 一种病理图像的癌细胞智能识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106202997A (zh) * 2016-06-29 2016-12-07 四川大学 一种基于深度学习的细胞分裂检测方法
CN107832684A (zh) * 2017-10-26 2018-03-23 通华科技(大连)有限公司 一种具有自主学习能力的智能静脉认证方法和系统
CN108492297A (zh) * 2017-12-25 2018-09-04 重庆理工大学 基于深度级联卷积网络的mri脑肿瘤定位与瘤内分割方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106202997A (zh) * 2016-06-29 2016-12-07 四川大学 一种基于深度学习的细胞分裂检测方法
CN107832684A (zh) * 2017-10-26 2018-03-23 通华科技(大连)有限公司 一种具有自主学习能力的智能静脉认证方法和系统
CN108492297A (zh) * 2017-12-25 2018-09-04 重庆理工大学 基于深度级联卷积网络的mri脑肿瘤定位与瘤内分割方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOQIAN WU ET AL: "FF-CNN: An Efficient Deep Neural Network for Mitosis Detection in Breast Cancer Histological Images", 《MEDICAL IMAGE UNDERSTANDING AND ANALYSIS》 *
乐美琰等: "基于电子计算机断层扫描图像的肝癌病灶自动分割方法研究进展", 《生物医学工程学杂志》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334226A (zh) * 2019-04-25 2019-10-15 吉林大学 融合特征分布熵的深度图像检索方法
CN110334226B (zh) * 2019-04-25 2022-04-05 吉林大学 融合特征分布熵的深度图像检索方法
CN110119710A (zh) * 2019-05-13 2019-08-13 广州锟元方青医疗科技有限公司 细胞分类方法、装置、计算机设备和存储介质
CN110287966A (zh) * 2019-06-26 2019-09-27 上海昌岛医疗科技有限公司 一种关于肾小球分割的图像处理的方法
CN110287966B (zh) * 2019-06-26 2021-11-12 沈熠 一种关于肾小球分割的图像处理的方法
CN111161212A (zh) * 2019-12-05 2020-05-15 广州金域医学检验中心有限公司 数字病理切片有丝核分裂象统计方法、装置、设备和介质
CN111161212B (zh) * 2019-12-05 2024-01-16 广州金域医学检验中心有限公司 数字病理切片有丝核分裂象统计方法、装置、设备和介质
CN111368872A (zh) * 2019-12-20 2020-07-03 浙江大学 基于融合特征和验证模型的乳腺癌有丝分裂细胞检测方法
CN113610760A (zh) * 2021-07-05 2021-11-05 河海大学 一种基于u型残差神经网络的细胞图像分割示踪方法
CN113610760B (zh) * 2021-07-05 2024-03-12 河海大学 一种基于u型残差神经网络的细胞图像分割示踪方法
CN115294126A (zh) * 2022-10-08 2022-11-04 南京诺源医疗器械有限公司 一种病理图像的癌细胞智能识别方法

Similar Documents

Publication Publication Date Title
CN109472784A (zh) 基于级联全卷积网络病理图像有丝分裂细胞的识别方法
Sadoughi et al. Artificial intelligence methods for the diagnosis of breast cancer by image processing: a review
Roy et al. Patch-based system for classification of breast histology images using deep learning
WO2022063200A1 (zh) 用于非小细胞肺癌预后生存预测的方法、介质及电子设备
CN108305249B (zh) 基于深度学习的全尺度病理切片的快速诊断和评分方法
Li et al. A generalized framework of feature learning enhanced convolutional neural network for pathology-image-oriented cancer diagnosis
Zhang et al. Soft sensor of flotation froth grade classification based on hybrid deep neural network
Jia et al. Detection of cervical cancer cells in complex situation based on improved YOLOv3 network
Li et al. Benign and malignant mammographic image classification based on convolutional neural networks
Rodrigues et al. Optimizing a deep residual neural network with genetic algorithm for acute lymphoblastic leukemia classification
Zhang et al. Quantitative detection of cervical cancer based on time series information from smear images
Chen et al. Breast tumor classification in ultrasound images by fusion of deep convolutional neural network and shallow LBP feature
Wang et al. A ResNet‐based approach for accurate radiographic diagnosis of knee osteoarthritis
Han et al. One-stage and lightweight CNN detection approach with attention: Application to WBC detection of microscopic images
Pan et al. SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations
Sethanan et al. Double AMIS-ensemble deep learning for skin cancer classification
Mikhaylichenko et al. Automatic grading of knee osteoarthritis from plain radiographs using densely connected convolutional networks
Li et al. Self-attention random forest for breast cancer image classification
Nigudgi et al. Lung cancer CT image classification using hybrid-SVM transfer learning approach
Xu et al. Identification of benign and malignant lung nodules in CT images based on ensemble learning method
Cao et al. 3D convolutional neural networks fusion model for lung nodule detection onclinical CT scans
Ma et al. Automatic pulmonary ground‐glass opacity nodules detection and classification based on 3D neural network
Lu et al. Prediction of breast cancer metastasis by deep learning pathology
Yan et al. Two and multiple categorization of breast pathological images by transfer learning
Yang Leveraging CNN and vision transformer with transfer learning to diagnose pigmented skin lesions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190315

RJ01 Rejection of invention patent application after publication