CN109472770B - 一种印刷电路板检测中的图像特征点快速匹配方法 - Google Patents

一种印刷电路板检测中的图像特征点快速匹配方法 Download PDF

Info

Publication number
CN109472770B
CN109472770B CN201811137926.XA CN201811137926A CN109472770B CN 109472770 B CN109472770 B CN 109472770B CN 201811137926 A CN201811137926 A CN 201811137926A CN 109472770 B CN109472770 B CN 109472770B
Authority
CN
China
Prior art keywords
points
feature
algorithm
point
feature points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811137926.XA
Other languages
English (en)
Other versions
CN109472770A (zh
Inventor
产叶林
胡新平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201811137926.XA priority Critical patent/CN109472770B/zh
Publication of CN109472770A publication Critical patent/CN109472770A/zh
Application granted granted Critical
Publication of CN109472770B publication Critical patent/CN109472770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Abstract

本发明的印刷电路板检测中的图像特征点快速匹配算法,包括如下步骤:步骤1)使用FAST算法快速提取大量特征点;步骤2)通过SURF算法进行特征点的矢量描述;步骤3)通过K均值聚类算法减少特征点的数量获得最佳匹配点。有益效果:结合FAST,SURF和K‑Means算法的优点,解决了传统PCB图像匹配过程中特征点不足,匹配时间过长,算法可靠性低的问题,并有效地提高了算法的可行性和图像匹配的准确率和效率。

Description

一种印刷电路板检测中的图像特征点快速匹配方法
技术领域
本发明涉及电路板检测领域,更为具体的说涉及一种印刷电路板检测中的图像特征点快速匹配方法。
背景技术
在制造超薄、高密度的电子元件时,自动光学检测技术已经代替人工检测成为主流,这给产品质量检测带来了新的技术挑战[1]。在对PCB图像缺陷检测过程中,图像匹配是其中重要的一步。目前常见的图像匹配算法大致分为两类:基于区域的算法和基于特征的算法。前者主要利用计算模版图像与待测图像像素信息之间的相关程度,然后通过搜索策略来找到图像相似度最高的区域来达到匹配的目的。该算法通过遍历能够得到图像的整个拓扑结构和灰度分布,但是遍历搜索带来的就是过大的计算量,同时易受噪声干扰。基于特征的算法关键在于寻找模版图像与待测图像的特征,然后通过一定的规则对一些错误特征进行筛选,从而实现匹配。基于特征的算法的特征数据量较少,在实时性要求高的自动光学检测中具有明显的优势。
基于特征点的匹配关键在于设计一个一个较好的特征描述算法和检测特征速度较快的算法。张春美和其他学者评估了Harris,SIFT和SURF]等一些特征点的优缺点。结果表明,FAST算法简单快速,检测时间短,可以快速确定特征点,但不显示特征点描述信息。SURF算法具有参数估计准确,计算量小的优点,但获得的匹配点数较少。综上,传统印刷电路板图像配准过程中存在匹配耗时和错配率较高的问题,传统的Harris,再到SIFT、SUSAN、SURF算法特征检测时间消耗很大,实时性不好,降低了系统性能。
发明内容
本发明目的在于解决传统PCB图像匹配过程中特征点不足,匹配时间过长,算法可靠性低以及传统算法中精度低,实时性差的问题,公开一种有效地提高了算法的可行性和图像匹配的准确率和效率的印刷电路板检测中的图像特征点快速匹配方法,具体由以下方案实现:
所述印刷电路板检测中的图像特征点快速匹配方法,包括如下步骤:
步骤1)使用FAST算法快速提取大量特征点;
步骤2)通过SURF算法进行特征点的矢量描述;
步骤3)通过K均值聚类算法减少特征点的数量获得最佳匹配点。
所述印刷电路板检测中的图像特征点快速匹配方法的进一步设计在于,所述步骤1)在特征点提取与步骤2)的特征点描述过程中使用64维向量进行SURF描述子的构造,SURF描述子的构造过程为:通过计算特征点的设定领域内的水平haar小波特征和垂直haar小波特征来确定来形成64维特征向量。
所述印刷电路板检测中的图像特征点快速匹配方法的进一步设计在于,所述步骤1)包括如下步骤:
步骤1-1)从图片中选取一个像素P,将该像素P的亮度值设置为Ip,并且选择一个合适的阈值t;
步骤1-2)以该像素P为中心选取一个离散的Bresenham圆,在该圆边界上有16个像素,若在这个16个像素的圆上有n个连续的像素点的像素值比Ip+t大,或者比Ip-t小,则判定满足条件的像素点为特征点;
步骤1-3)计算每个特征点对应的响应值V,V设定为像素点P以及相邻的16个像素点的绝对偏差的和,并比较相邻特征点的V值,将V值较低的对应的特征点删除。
所述印刷电路板检测中的图像特征点快速匹配方法的进一步设计在于,所述步骤2)中通过SURF算法进行矢量描述具体包括:
步骤2-1)将特征点作为中心点,并在半径为6s的邻域内聚合Haar小波响应,其中s表示该中心点所在的尺度,根据所述响应值分配加权系数,平衡因使用盒式滤波器近似代替高斯滤波器所带来的误差;
步骤2-2)在该特征点周围,统计60度扇形内所有点的水平Haar小波特征和垂直Haar小波特征总和;
步骤2-3)将60度扇形区域以一定间隔进行旋转,将统计的小波特征总和最大值的扇形方向作为该特征点的主方向;
步骤2-4)在特征点周围取一个20s的正方形框,将其拆分为16个子区域,并在每个子区域中统计25个像素的水平方向和垂直方向Haar的小波特征V4,所述小波特征V4根据式(1)计算;
V4=(∑dx,∑|dx|,∑dy,∑|dy|) (1)
其中,∑dx表示水平方向值之和,∑|dx|表示水平方向绝对值之和,∑dy表示垂直方向值之和,∑|dy|表示垂直方向绝对值之和。
所述印刷电路板检测中的图像特征点快速匹配方法的进一步设计在于,所述步骤3)中通过K均值聚类算法减少特征点的数量,并筛选出最佳的匹配点具体包括如下步骤:
步骤3-1)从即将进行匹配的两幅图中各自特征点集合S1和S2中随机选择K个特征点作为初始聚类中心,所述K个特征点分别为A1,A2,A3,…,Ak
步骤3-2)根据公式(2)获得从每个特征点到聚类中心的距离,分成不同的集群;
Figure GDA0003492470590000031
其中,{q1,q2,...,qm}是一个训练集,其中每个输入qi∈Rn,1≤j≤k;
步骤3-3)根据公式(3)和公式(4),重新计算每个聚类的聚类中心,并且重复步骤2-b)和步骤2-c),直到距离中心点的聚类元素不大于λ;
Figure GDA0003492470590000032
Figure GDA0003492470590000033
步骤3-4)根据获得的聚类中心,根据式(5)选择一个方形区域点Ai(x,y)作为中心:
Ai(x±Δx,y±Δy)∈Z(n) (5)
步骤3-5)遍历所有特征点,将所有特征点进行了聚类划分。
所述印刷电路板检测中的图像特征点快速匹配方法的进一步设计在于,K值设定为4。
本发明的有益效果:
本发明的印刷电路板检测中的图像特征点快速匹配方法结合FAST,SURF和K-Means算法的优点,解决了传统PCB图像匹配过程中特征点不足,匹配时间过长,算法可靠性低的问题,并有效地提高了算法的可行性和图像匹配的准确率和效率。
附图说明
图1是本发明的印刷电路板检测中的图像特征点快速匹配方法的流程示意图。
图2是FAST特征点示意图。
图3是选取特征点的主方向的示意图。
图4构造SURF特征点描述子的示意图。
图5是第一组提取特征点的数量和时间的比较示意图。
图5的a为第一组比较的原图。
图5的b为第一组比较采用FAST-1提取特征点的效果示意图。
图5的c为第一组比较采用SURF-1提取特征点的效果示意图。
图5的d为第一组比较采用FAST-SURF-1提取特征点的效果示意图。
图6是第二组提取特征点的数量和时间的比较示意图。
图6的a为第二组比较的原图。
图6的b为第二组比较采用FAST-1提取特征点的效果示意图。
图6的c为第二组比较采用SURF-1提取特征点的效果示意图。
图6的d为第二组比较采用FAST-SURF-1提取特征点的效果示意图。
图7为特征点筛选算法比较比较示意图。
具体实施方式
为了使本发明的目的和技术方案更加清楚,下面结合附图对本发明作进一步说明。
本实施例的印刷电路板检测中的图像特征点快速匹配方法,包括如下步骤:
步骤1)使用FAST算法快速提取大量特征点。
步骤2)通过SURF算法进行特征点的矢量描述。
步骤3)通过K均值聚类算法减少特征点的数量筛选出最佳匹配点。
SURF是一种加速的鲁棒特征算法,使用haar特征以及积分图像来改进SIFT算法并降低计算复杂度。与SIFT相比,SURF特征也是一种尺度、旋转不变的特征描述方法。步骤1)在特征点提取与步骤2)的特征点描述过程中使用64维向量进行SURF描述子的构造。SURF描述子生成的过程:通过计算特征点的一定领域内的水平haar小波特征和垂直haar小波特征来确定来形成64维特征向量。
进一步的,步骤1)包括如下步骤:
步骤1-1)从图片中选取一个像素P,将该像素P的亮度值设置为Ip,并且选择一个合适的阈值t;
步骤1-2)以该像素P为中心选取一个离散的Bresenham圆,在该圆边界上有16个像素,若在这个16个像素的圆上有n个连续的像素点的像素值比Ip+t大,或者比Ip-t小,则判定满足条件的像素点为特征点;
步骤1-3)计算每个特征点对应的响应值V,V设定为像素点P以及相邻的16个像素点的绝对偏差的和,并比较相邻特征点的V值,将V值较低的对应的特征点删除。
步骤2)中通过SURF算法进行矢量描述具体包括:
步骤2-1)将特征点作为中心点,并在半径为6s的邻域内聚合Haar小波响应,其中s表示该中心点所在的尺度,根据所述响应值分配加权系数,平衡因使用盒式滤波器近似代替高斯滤波器所带来的误差;
步骤2-2)在该特征点周围,统计60度扇形内所有点的水平Haar小波特征和垂直Haar小波特征总和;
步骤2-3)将60度扇形区域以一定间隔进行旋转,将统计的小波特征总和最大值的扇形方向作为该特征点的主方向;
步骤2-4)在特征点周围取一个20s的正方形框,将其拆分为16个子区域,并在每个子区域中统计25个像素的水平方向和垂直方向Haar的小波特征V4,所述小波特征V4根据式(1)计算;
V4=(∑dx,∑|dx|,∑dy,∑|dy|) (1)
其中,∑dx表示水平方向值之和,∑|dx|表示水平方向绝对值之和,∑dy表示垂直方向值之和,∑|dy|表示垂直方向绝对值之和。
步骤3)中通过K均值聚类算法减少特征点的数量,并筛选出最佳的匹配点具体包括如下步骤:
步骤3-1)步骤3-1)从即将进行匹配的两幅图中各自特征点集合S1和S2中随机选择K个特征点作为初始聚类中心,所述K个特征点分别为A1,A2,A3,…,Ak
步骤3-2)根据公式(2)获得从每个特征点到聚类中心的距离,分成不同的集群;
Figure GDA0003492470590000061
其中,{q1,q2,...,qm}是一个训练集,其中每个输入qi∈Rn,1≤j≤k;步骤3-3)根据公式(3)和公式(4),重新计算每个聚类的聚类中心,并且重复步骤2-b)和步骤2-c),直到距离中心点的聚类元素不大于λ,本实施例中λ=10-5m;
Figure GDA0003492470590000062
Figure GDA0003492470590000063
步骤3-4)根据获得的聚类中心,根据式(5)选择一个方形区域点Ai(x,y)作为中心:
Ai(x±Δx,y±Δy)∈Z(n) (5)
步骤3-5)遍历所有特征点,将所有特征点进行了聚类划分,同一聚类里的特征点相似度较高,不同聚类的特征点相似度较小。
由于K的值直接影响聚类效率和有效特征点的提取,同时所选取的聚类的数量不少于真实聚类的和数量,因此通过大量的实验,本实施例将最佳聚类效果的K值为4。
为了验证特征点的提取效率和配准精度,进行了以下两个对比试验:
首先进行提取特征点的数量和时间的比较,在不同算法中提取特征点的数量和时间的比较结果如图5、图6以及表1所示。
表1比较不同算法下的特征点数量和时间(时间单位为毫秒)
Figure GDA0003492470590000071
结合图5、图6以及表1,与传统的SURF算法相比,FAST-SURF算法具有FAST算法提取速快,SURF算法特征描述准确的优点,因此提取时间更短,最后通过K-Means算法获得最佳配准点的特征点。
根据Recall和precision评估标准评估了两个重要的评估指标拒绝率(Rj)和精度(Pr),分别如式(6)、式(7):
Figure GDA0003492470590000072
Figure GDA0003492470590000073
在公式中:FP是提取到的特征点数量,TP是匹配的特征点数量,TR是正确匹配的特征点数量。在此基础上,该算法与SURF+RASANC算法在拒绝率和准确率方面进行了比较,结果如表2所示:
表2特征点筛选算法比较
Figure GDA0003492470590000074
结合图7与表2,该算法不仅在特征点拒绝率上高于SURF+RANSAC,而且大幅度提高了匹配准确率。因此该算法可以满足PCB电路板配准的实时要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (3)

1.一种印刷电路板检测中的图像特征点快速匹配方法,其特征在于包括如下步骤:
步骤1)使用FAST算法快速提取大量特征点;
步骤2)通过SURF算法进行特征点的矢量描述;
步骤3)通过K均值聚类算法减少特征点的数量获得最佳匹配点;
所述步骤1)包括如下步骤:
步骤1-1)从图片中选取一个像素P,将该像素P的亮度值设置为Ip,并且选择一个阈值t;
步骤1-2)以该像素P为中心选取一个离散的Bresenham圆,在该圆边界上有16个像素,若在这个16个像素的圆上有n个连续的像素点的像素值比Ip+t大,或者比Ip-t小,则判定满足条件的像素点为特征点;
步骤1-3)计算每个特征点对应的响应值V,V设定为像素点P以及相邻的16个像素点的绝对偏差的和,并比较相邻特征点的V值,将V值较低的对应的特征点删除;
所述步骤2)中通过SURF算法进行矢量描述具体包括:
步骤2-1)将特征点作为中心点,并在半径为6s的邻域内聚合Haar小波响应,其中s表示该中心点所在的尺度,根据所述响应值分配加权系数,平衡因使用盒式滤波器代替高斯滤波器所带来的误差;
步骤2-2)在该特征点周围,统计60度扇形内所有点的水平Haar小波特征和垂直Haar小波特征总和;
步骤2-3)将60度扇形区域以一定间隔进行旋转,将统计的小波特征总和最大值的扇形方向作为该特征点的主方向;
步骤2-4)在特征点周围取一个20s的正方形框,将其拆分为16个子区域,并在每个子区域中统计25个像素的水平方向和垂直方向Haar的小波特征V4,所述小波特征V4根据式(1)计算;
V4=(∑dx,∑|dx|,∑dy,∑|dy|) (1)
其中,∑dx表示水平方向值之和,∑|dx|表示水平方向绝对值之和,∑dy表示垂直方向值之和,∑|dy|表示垂直方向绝对值之和;
所述步骤3)中通过K均值聚类算法减少特征点的数量,并筛选出最佳的匹配点具体包括如下步骤:
步骤3-1)从即将进行匹配的两幅图中各自特征点集合S1和S2中随机选择K个特征点作为初始聚类中心,所述K个特征点分别为A1,A2,A3,…,Ak
步骤3-2)根据公式(2)获得从每个特征点到聚类中心的距离,分成不同的集群;
Figure FDA0003492470580000021
{q1,q2,...,qm}
qi∈Rn
{A1,A2,...Ak}
1≤j≤k (2)
其中,{q1,q2,...,qm}是一个训练集,其中每个输入qi∈Rn
步骤3-3)根据公式(3)和公式(4),重新计算每个聚类的聚类中心,并且重复步骤3-1)和步骤3-2),直到距离中心点的聚类元素不大于λ;
Figure FDA0003492470580000022
Figure FDA0003492470580000023
步骤3-4)根据获得的聚类中心,根据式(5)选择一个方形区域点Ai(x,y)作为中心:
Ai(x±Δx,y±Δy)∈Z(n) (5)
步骤3-5)遍历所有特征点,将所有特征点进行了聚类划分。
2.根据权利要求1所述的印刷电路板检测中的图像特征点快速匹配方法,其特征在于所述步骤1)在特征点提取与步骤2)的特征点描述过程中使用64维向量进行SURF描述子的构造,SURF描述子的构造过程为:通过计算特征点的设定领域内的水平haar小波特征和垂直haar小波特征来确定形成64维特征向量。
3.根据权利要求1所述的印刷电路板检测中的图像特征点快速匹配方法,其特征在于K的值设定为4。
CN201811137926.XA 2018-09-27 2018-09-27 一种印刷电路板检测中的图像特征点快速匹配方法 Active CN109472770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811137926.XA CN109472770B (zh) 2018-09-27 2018-09-27 一种印刷电路板检测中的图像特征点快速匹配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811137926.XA CN109472770B (zh) 2018-09-27 2018-09-27 一种印刷电路板检测中的图像特征点快速匹配方法

Publications (2)

Publication Number Publication Date
CN109472770A CN109472770A (zh) 2019-03-15
CN109472770B true CN109472770B (zh) 2022-04-08

Family

ID=65664738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811137926.XA Active CN109472770B (zh) 2018-09-27 2018-09-27 一种印刷电路板检测中的图像特征点快速匹配方法

Country Status (1)

Country Link
CN (1) CN109472770B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120117A (zh) * 2019-03-21 2019-08-13 江苏国光信息产业股份有限公司 一种纸质基材的撕痕式防伪方法
CN110503633A (zh) * 2019-07-29 2019-11-26 西安理工大学 一种基于图像差分的贴花陶瓷盘表面缺陷检测方法
CN113920117B (zh) * 2021-12-14 2022-02-22 成都数联云算科技有限公司 一种面板缺陷区域检测方法、装置、电子设备及存储介质
CN115082722B (zh) * 2022-08-22 2022-11-01 四川金信石信息技术有限公司 基于正向样本的设备缺陷检测方法、系统、终端及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678307A (zh) * 2016-01-11 2016-06-15 河海大学 基于fast-surf的移动端实时特征检测匹配方法
CN106683127A (zh) * 2017-01-05 2017-05-17 南京觅踪电子科技有限公司 一种基于surf算法的多模态医学图像配准方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678307A (zh) * 2016-01-11 2016-06-15 河海大学 基于fast-surf的移动端实时特征检测匹配方法
CN106683127A (zh) * 2017-01-05 2017-05-17 南京觅踪电子科技有限公司 一种基于surf算法的多模态医学图像配准方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于FAST检测及SIFT描述的特征检测算法;常旭剑 等;《计算机工程与设计》;20151016;第36卷(第10期);2749-2753 *
基于FAST特征的快速图像拼接系统研究;张懿 等;《计算机工程与应用》;20150914;第52卷(第10期);167-170 *

Also Published As

Publication number Publication date
CN109472770A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109472770B (zh) 一种印刷电路板检测中的图像特征点快速匹配方法
Chen et al. Improved saliency detection in RGB-D images using two-phase depth estimation and selective deep fusion
CN111340701B (zh) 一种基于聚类法筛选匹配点的电路板图像拼接方法
CN103400384B (zh) 结合区域匹配和点匹配的大视角图像匹配方法
CN110490913B (zh) 基于角点与单线段编组的特征描述算子进行影像匹配方法
WO2017181892A1 (zh) 前景分割方法及装置
CN104537376B (zh) 一种识别台标的方法及相关设备、系统
CN103473551A (zh) 基于sift算子的台标识别方法及系统
CN108509925B (zh) 一种基于视觉词袋模型的行人重识别方法
Wang et al. Airport detection in remote sensing images based on visual attention
CN110738216A (zh) 基于改进surf算法的药品识别方法
CN104123554A (zh) 基于mmtd的sift图像特征提取方法
CN110930411A (zh) 一种基于深度相机的人体分割方法及系统
KR101753360B1 (ko) 시점 변화에 강인한 특징점 정합 방법
CN111199245A (zh) 油菜害虫识别方法
Lecca et al. Comprehensive evaluation of image enhancement for unsupervised image description and matching
CN109508674B (zh) 基于区域划分的机载下视异构图像匹配方法
CN106934395B (zh) 一种采用surf特征和颜色特征相融合的刚体目标跟踪方法
CN103336964A (zh) 一种基于模值差镜像不变性的sift图像匹配方法
CN111191659B (zh) 服装生产系统多形状衣架识别方法
US20030044067A1 (en) Apparatus and methods for pattern recognition based on transform aggregation
CN110705569A (zh) 一种基于纹理特征的图像局部特征描述子提取方法
CN115311327A (zh) 融合共现统计与fhog梯度特征的目标跟踪方法及系统
CN111311657B (zh) 一种基于改进角点主方向分配的红外图像同源配准方法
CN103617616A (zh) 一种仿射不变的图像匹配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant