CN109472717A - 基于水权交易的水资源分配方法 - Google Patents

基于水权交易的水资源分配方法 Download PDF

Info

Publication number
CN109472717A
CN109472717A CN201811345418.0A CN201811345418A CN109472717A CN 109472717 A CN109472717 A CN 109472717A CN 201811345418 A CN201811345418 A CN 201811345418A CN 109472717 A CN109472717 A CN 109472717A
Authority
CN
China
Prior art keywords
water
department
crops
objective function
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811345418.0A
Other languages
English (en)
Inventor
姚黎明
徐忠雯
周晓阳
陈旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201811345418.0A priority Critical patent/CN109472717A/zh
Publication of CN109472717A publication Critical patent/CN109472717A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出一种基于基于水权交易的水资源分配方法,属于水资源分配领域。本发明技术方案要点为:首先,判断可用水量是否大于等于需求用水量,若是则将需求用水量作为分配水量进行分配,否则设定假设条件、辅助变量、上层决策变量及下层决策变量,并建立双层多目标分配模型,所述双层多目标模型包括上层目标函数及下层目标函数;然后,基于破产理论和遗传算法分别对上层目标函数及下层目标函数进行求解。本发明考虑了蓝水虚拟水交易对水资源管理系统的促进作用,目的是明确水资源管理系统的内部结构,分析水务局和各用水部门的博弈关系,构建斯坦伯格‑纳什‑海萨尼均衡模型,设计智能求解算法,从而获取满意的水资源分配方案。

Description

基于水权交易的水资源分配方法
技术领域
本发明涉及水安全技术领域,特别涉及基于水权交易的水资源分配的领域。
背景技术
水资源与人类活动的开展密不可分,对于水需求主要来自四个部门:城镇居民、农业、工业和生态用水。随着社会经济的快速发展,人们日益增长的对水资源的需求,与气候变化导致的水资源量逐渐减少之间的矛盾日益显著。面对水资源需求的不断增加,以及各部门之间水资源使用的竞争关系,水资源合理分配显得尤为重要。数据显示,发展农业灌溉技术降低了农业对水资源的需求,但一些省份,主要位于中国北方,在一年的7个月里,仍然严重的缺水。即便如此,中国北方的净虚拟水出口水平相对较高,新疆、黑龙江、广西、湖南、河北和内蒙古出口了大量的农作物。面对中国北方严重缺水这一问题,南水北调工程是缓解许多地区缺水的一种短期方法,然而,它的代价是巨大的,可能导致生态环境被破坏。
因此,在不断变化的环境下,迫切需要一种水资源分配优化管理的软路径帮助解决这一问题。近年来,各种数学规划方法成功应用于水资源规划与管理活动中,如随机动态规划模型,多目标规划模型等;然而,已有的研究没有完整地描述水资源管理系统的内部决策结构,忽略了多个追随者的竞争博弈关系,事实上,由于决策主体不同,多目标规划理论不适用多个决策者的情况,而是要充分考虑博弈结构,来搭建数学模型。其次,学者们也提出过虚拟水交易、水权交易理论。但是,大多没有将其运用于解决未来某一规划年的实际水分配问题方面,多数是对过去一个时间段发生的行为进行定性分析。
发明内容
本发明的目的是提供一种基于水权交易的水资源分配方法,明确水资源管理系统的内部结构,分析水务局和各用水部门的博弈关系,构建斯坦伯格-纳什-海萨尼均衡模型,设计智能求解算法,从而获取满意的水资源分配方案。
本发明解决其技术问题,采用的技术方案是:基于水权交易的水资源分配方法,包括如下步骤:
步骤1、判断可用水量是否大于等于需求用水量,若是则将需求用水量作为分配水量进行分配,否则进入步骤2;
步骤2、设定假设条件、辅助变量、上层决策变量及下层决策变量,并建立双层多目标分配模型,所述双层多目标模型包括上层目标函数及下层目标函数;
步骤3、基于破产理论和遗传算法分别对上层目标函数及下层目标函数进行求解。
具体地,步骤2中,上层目标函数的主体为水资源管理部分,下层目标函数的主体为各区用水部门,所述用水部门包括农业用水部门、工业用水部分、生活用水部分及生态用水部门。
进一步地,步骤2中,所述假设条件包括:
各地区获得的初始水权用于当前地区的使用,或在水市场进行交易,价格不得低于用水部门获取初始水权的最低价格,也不能高于用水部门获取初始水权的最高价格;
农作物用于跨区域交易,或跨国家交易。
具体地,步骤2中,所述辅助变量包括:
AW:该地区当前年份引黄河水最大量,pi:水务局对各个用水部门制定的水价,ERWi:单位水收益,ERWk:单位农产品收益,ck:单位农产品的进口单价,PTI:将农业用水卖给工业用水部门的价格,PTD:将农业用水卖给生活用水部门的价格,TC:水市场中水交易的运输成本,μ:灌溉系数,反映灌溉水的利用系数,wk:对农作物k灌溉的水量,Wk:农作物k所含的水量,yk:单位面积农作物k的产量,lk:农作物k的总产量,di:用水部门的需水量,d1k:用水部门的需水量,VWk:农作物k的虚拟水含量,Ak:农作物k的种植面积,φpop:人均可支配收入,φind:工业生产总值,Rk:有效降雨量,POP:研究区域总人口,研究区域单位人口消耗农作物k的量;
其中,i:用水部门,i=1,农业用水部门,i=2,工业用水部门,i=3,生活用水部门,i=4,生态用水部门,k:农作物的种类,k=1,代表小麦,k=2,代表玉米,k=3,代表向日葵籽。
再进一步地,步骤2中,所述上层决策变量包括:Xi:初始水权分配量,EMk:农作物k的出口量,IMk:农作物k的进口量。
具体地,步骤2中,所述下层决策变量包括:WTI:从农业用水部门到工业用水部门的蓝水交易量,WTD:从农业用水部门到生活用水部门的蓝水交易量,x1k:灌溉农作物k的水量,其中,
再进一步地,步骤2中,上层目标函数为最大化用水效率,其公式为:
其中,Eff为用水效率,Re为经济收益,经济效益既包括了农业用水部门、工业用水部门和生活用水部门的用水净收益,又考虑了蓝水交易的运输成本,以及进口农产品的直接成本,Cons为水消耗量,水消耗量包括农作物灌溉用水,工业用水部门、生活用水部门实际用水量;
其中,
其中,上层目标函数的约束条件包括可分配水约束、价格约束、生态用水约束及进出口约束,具体为:
可分配水约束:可以分配给每个地区的水量完全受限于这一时期水库中的可用水:
价格约束:蓝水交易的价格不能超过当前部门获得初始水权的价格:
p1<PTI<p2
p1<PTD<p3
生态用水约束:为了保障研究区域的可持续发展,生态用水部门的水需求首先被满足:
X4≥e
进出口约束:农作物k出口的量加上研究区域对于农作物k的消费量,要小于进口量和生产量:
具体地,步骤2中,下层目标函数为最小化各个用水部门的脆弱性函数,脆弱性与该用水部门水需求的相关,包括两个部分:一个是分配量超过水需求的惩罚函数,另一个是不能满足水需求时的惩罚函数,利用加权求和的方式综合考虑这两个目标,其中ωDDEL表示决策者赋予这两个惩罚函数的权重。
再进一步地,步骤2中,脆弱性函数包括最小化农业用水部门的脆弱性函数、最小化工业用水部门的脆弱性函数及最小化生活用水部门的脆弱性,分别为:
最小化农业用水部门的脆弱性函数:
约束条件包括种植面积约束及决策变量约束,具体为:
种植面积约束:所有农作物所占的种植面积要小于研究区域的农业可用面积:
决策变量约束:
x1k>0
最小化工业用水部门的脆弱性函数:
约束条件为决策变量约束:
X2>0
最小化生活用水部门的脆弱性:
约束条件为决策变量约束:
X3>0。
具体地,步骤3中,所述求解的步骤具体为:
步骤301、设置输入值:上下层目标函数的容忍值,终止进化的代数;
步骤302、根据上层目标函数确定适应度函数,初始化可行解,交叉、变异和选择,迭代直到终止迭代次数,即输出上层决策变量的最优解,传递到下层,跳转到步骤303,否则继续进行交叉、变异和选择等迭代过程;
步骤303、基于步骤302的最优解,求解下层目标函数最优解,然后建立辅助函数,确定下层决策的适应度函数,交叉、变异和选择,迭代直到终止迭代次数,即输出下层决策变量的最优解反馈到上层,检查是否依然满足条件:下层容忍值优于上层容忍值,是则结束算法,否则重复步骤302。
本发明的有益效果是,通过上述基于水权交易的水资源分配方法,量化农产品进出口量、蓝水交易量,为决策者未来在水资源分配、使用和交易等方面做决策提供理论支持。
附图说明
图1为水资源管理系统的结构框图。
图2为水资源管理系统的二层优化框架。
具体实施方式
下面结合实施例及附图,详细描述本发明的技术方案。
本发明所述基于水权交易的水资源分配方法,包括如下步骤:
步骤1、判断可用水量是否大于等于需求用水量,若是则将需求用水量作为分配水量进行分配,否则进入步骤2;
步骤2、设定假设条件、辅助变量、上层决策变量及下层决策变量,并建立双层多目标分配模型,所述双层多目标模型包括上层目标函数及下层目标函数;
步骤3、基于破产理论和遗传算法分别对上层目标函数及下层目标函数进行求解。
其中,水资源管理系统的结构框图参见图1,水资源管理系统的二层优化框架参见图2,在这个框架中,涉及水务局和各用水部门,两类管理者。考虑到市场地位,水务局(上层决策者)具有优先决定初始水权分配的权利,并且不直接干预各用水部门(下层决策者们)的水使用和交易行为,而是通过分配初始水权和征收水资源费等调控手段来影响下层的决策。下层决策者们根据自己需求的情况决定对水权水权量或直接使用。这种相互制约,相互影响,存在主从关系的形式就是简单的双层优化模式。除此之外,上层决策者还需要在优化中决定农产品进出口量。
实际应用时,首先,设置基本假设:
1.各地区获得的初始水权不仅仅可以用于当前地区的使用,也能在水市场进行交易,价格不得低于用水部门获取初始水权的最低价格,也不能高于用水部门获取初始水权的最高价格。
2.农作物可以跨区域交易,也可以跨国家交易。
辅助变量包括:
AW:该地区当前年份引黄河水最大量,pi:水务局对各个用水部门制定的水价,ERWi:单位水收益,ERWk:单位农产品收益,ck:单位农产品的进口单价,PTI:将农业用水卖给工业用水部门的价格,PTD:将农业用水卖给生活用水部门的价格,TC:水市场中水交易的运输成本,μ:灌溉系数,反映灌溉水的利用系数,wk:对农作物k灌溉的水量,Wk:农作物k所含的水量,yk:单位面积农作物k的产量,lk:农作物k的总产量,di:用水部门的需水量,d1k:用水部门的需水量,VWk:农作物k的虚拟水含量,Ak:农作物k的种植面积,φpop:人均可支配收入,φind:工业生产总值,Rk:有效降雨量,POP:研究区域总人口,研究区域单位人口消耗农作物k的量;
其中,i:用水部门,i=1,农业用水部门,i=2,工业用水部门,i=3,生活用水部门,i=4,生态用水部门,k:农作物的种类,k=1,代表小麦,k=2,代表玉米,k=3,代表向日葵籽。
决策变量:
Xi:初始水权分配量,为上层决策变量;
EMk:农作物k的出口量,为上层决策变量;
IMk:农作物k的进口量,为上层决策变量;
WTI:蓝水交易量(从农业用水部门到工业用水部门),为下层决策变量;
WTD:蓝水交易量(从农业用水部门到生活用水部门),为下层决策变量;
x1k:灌溉农作物k的水量,额下层决策变量
上层决策过程:
目标函数:最大化用水效率
用水效率能够反映单位水消耗获取的经济收益,既能够节约用水,又能够提高经济收益。在计算系统总的经济收益的时候,考虑到两个决策问题“进出口多少农作物有利于提高经济收益”,“当允许的蓝水交易量为多少时,能够最大化经济收益”。于是,本发明用Re表示经济收益,既包括了三个用水部门(分别是农业、工业和生活)的用水净收益,又考虑了蓝水交易的运输成本,以及进口农产品的直接成本。水消耗量由Cons表示,包括农作物灌溉用水,工业、生活部门实际用水量(初始水权+蓝水交易量)。
约束条件:
(1)可分配水约束:可以分配给每个地区的水量完全受限于这一时期水库中的可用水。
(2)价格约束:蓝水交易的价格不能超过当前部门获得初始水权的价格。
p1<PTI<p2
p1<PTD<p3
(3)生态用水约束。为了保障研究区域的可持续发展,生态用水部门的水需求首先被满足。
X4≥e
(4)进出口约束。农作物k出口的量加上研究区域对于农作物k的消费量,要小于进口量和生产量。
下层决策过程:
脆弱性与该用水部门水需求的相关,主要由两个部分组成:一个是分配量超过水需求的惩罚函数;另一个是不能满足水需求时的惩罚函数。利用加权求和的方式综合考虑这两个目标,其中ωDDEL表示决策者赋予这两个惩罚函数的权重。
目标函数:最小化农业用水部门的脆弱性函数:
约束条件:
(1)种植面积约束。所有农作物所占的种植面积要小于研究区域的农业可用面积。
(2)决策变量约束
x1k>0
目标函数:最小化工业用水部门的脆弱性函数:
约束条件:
(1)决策变量约束
X2>0
目标函数:最小化生活用水部门的脆弱性
约束条件
(1)决策变量约束:
X3>0。
实施例
本实施例中,以内蒙古河套灌区进行说明,其位于巴彦淖尔市的南部,东至包头,西接乌兰布和沙漠,南临黄河,北依阴山山脉的狼山,灌区包括巴彦淖尔市的七个旗县、临河市和包头市郊区部分地区。河套灌区东西长约250公里,南北宽约50公里,土地面积约1.12*106公顷,是中国“三大灌区”之一。
首先,进行数据收集:
根据实地调研和相关资料查阅(文献、巴彦淖尔市年鉴、中国统计年鉴),输入变量如下。
表格1各用水部门2020年水需求及总的可用水量m3
表格2各用水部门2020年获取初始水权的价格,以及蓝水交易价格RMB/m3
表格3农业部门2020年预计给三种农作物的耕种面积与总面积hm2
表格42020年单位消耗水在各个部门的经济收益RMB/m3
表格5农作物需水量与虚拟水含量以及单位种植面积的产量
小麦 玉米 向日葵籽
W<sub>k</sub>(m<sup>3</sup>/hm<sup>2</sup>) 4980 4500 5210
ET<sub>k</sub>(mm) 498.0 450.0 521.0
R<sub>k</sub>(mm) 71.0 125.2 134.5
ω<sub>k</sub>(mm) 876.80 666.94 793.63
y<sub>k</sub>(mm) 5351.7 13824.6 2582.7
VW<sub>k</sub>(m<sup>3</sup>/kg) 0.93 0.33 2.02
然后,优化结果:
由MATLAB编程求解得到一组满意解。
本发明所建立的模型满足各用水部门水需求程度是不同的,即在最大化用水效率的前提下,降低各用水部门的脆弱性。结果表明(表格6),在蓝水交易之前,农业用水部门获得最多的初始水权,即3047229583m3,其次是生活用水部门,最后是工业用水部门。农作物的进口伴随着虚拟水的引入,随即农业用水部门将多余的蓝水使用权转卖给工业和生活用水部门,使得四个部门最终的水消耗量是:1961259326m3,15189977m3,1384296772m3,164000000m3。其中三种农作物的水消耗量分别是:299594051m3,820909131m3,840756144m3
表格7计算了小麦,玉米和向日葵籽当地的产量,进口所含虚拟水量。通过反映的模型优化前后农作物种植情况对比,可以看出,农作物占地面积可以减少16.7%,并且可以更多地种植小麦和玉米,同时通过进口的方式获得向日葵籽。
表格6决策变量的值
决策变量 满意解
X<sub>1</sub> 3047229583
X<sub>2</sub> 15189977
X<sub>3</sub> 1384296772
X<sub>4</sub> 164000000
WTI 13552598
WTD 1072417659
X<sub>11</sub> 299594051
X<sub>12</sub> 820909131
X<sub>13</sub> 840756144
EM<sub>1</sub> 780867611
EM<sub>2</sub> 730155988
EM<sub>3</sub> 207803560
IM<sub>1</sub> 1297550744
IM<sub>2</sub> 326672407
IM<sub>3</sub> 1407191390
表格7进口农作物的虚拟水含量以及当地种植情况
为了探究是哪个用水部门导致了这个地区的用水压力,本发明提出了一个水消耗压力分级表(表格10),通过公式(19)-(21)可以分别计算农业、工业、生活用水部门的水消耗压力。结果显示(表格11),生活用水是导致研究区域用水压力的直接原因;并且,在农业用水部门,玉米和向日葵籽的用水压力大于小麦的用水压力。
表格10水消耗压力分级表
类别 水消耗压力值
<0.07
低-中 0.07-0.15
0.15-0.30
>0.30
表格11水消耗压力
类别
BWS<sub>11</sub> 0.031023
BWS<sub>12</sub> 0.085006 低-中
BWS<sub>13</sub> 0.087061 低-中
BSW<sub>1</sub> 0.067697
BWS<sub>2</sub> 0.002976
BWS<sub>3</sub> 0.254396
然后,对比分析:
为了突出考虑虚拟水交易和蓝水交易的优势,本节额外考虑两种情形,并依次求解。
情景1:在研究区域不进行虚拟水交易;
情景2:在研究区域不进行蓝水交易;
参照组:上述优化结果中求得的优化解。
结果表明(表格12),对比情景1,参照组在相对较高的水资源利用效率的结果下,农业和工业用水部门的脆弱性得到了该晒,并通过减少蓝水交易,在一定程度上避免了水运输途中的浪费,降低了生态危机。对比情景2,工业和生活用水部门的脆弱性得到了降低;农作物生产、进出口的结构改变了,其中小麦和向日葵籽的进口量明显增大,玉米的进口量在减少;同时,小麦的出口量增加,而其他两种农作物在减少。综上,考虑了虚拟水交易和蓝水交易有利于提高水资源利用效率,降低各用水部门的脆弱性。
表格12在不同情境下模型的解
情景1 情景2 参照组
决策变量
X<sub>1</sub> 3207801351 2171516527 3047229583
X<sub>2</sub> 24211343 40419735 15189977
X<sub>3</sub> 1315678369 2115601441 1384296772
WTI 18466614 0 13552598
WTD 1107654291 0 1072417659
EM<sub>1</sub> 0 260039225 780867611
EM<sub>2</sub> 0 1114440656 730155988
EM<sub>3</sub> 0 632587066 207803560
IM<sub>1</sub> 0 1135941665 1297550744
IM<sub>2</sub> 0 798724570 326672407
IM<sub>3</sub> 0 1042083172 1407191390
目标函数值
下层
F<sub>1</sub> 0.1306 0.1002 0.1138
F<sub>2</sub> 0.0000 0.0011 0.0001
F<sub>3</sub> 0.0056 0.1071 0.0092
上层
Eff 71.95 66.66 74.40
除此之外,本发明对比了三种情景下的水消耗压力,结果表明(表格13),考虑蓝水交易有利于降低农业和工业用水部门的水消耗压力;考虑虚拟水交易能够有效降低三个用水部门的水消耗压力。总之,考虑蓝水和虚拟水交易有利于水资源的可持续利用和发展。
表格13水消耗压力对比
情景1 情景2 参照组
BSW<sub>1</sub> 0.5832 0.1758 0.0677
BWS<sub>2</sub> 0.0078 0.0033 0.0030
BWSD<sub>3</sub> 0.4406 0.2370 0.2544
BSW 0.8269 0.3504 0.4605

Claims (10)

1.基于水权交易的水资源分配方法,其特征在于,包括如下步骤:
步骤1、判断可用水量是否大于等于需求用水量,若是则将需求用水量作为分配水量进行分配,否则进入步骤2;
步骤2、设定假设条件、辅助变量、上层决策变量及下层决策变量,并建立双层多目标分配模型,所述双层多目标模型包括上层目标函数及下层目标函数;
步骤3、基于破产理论和遗传算法分别对上层目标函数及下层目标函数进行求解。
2.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,上层目标函数的主体为水资源管理部分,下层目标函数的主体为各区用水部门,所述用水部门包括农业用水部门、工业用水部分、生活用水部分及生态用水部门。
3.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,所述假设条件包括:
各地区获得的初始水权用于当前地区的使用,或在水市场进行交易,价格不得低于用水部门获取初始水权的最低价格,也不能高于用水部门获取初始水权的最高价格;
农作物用于跨区域交易,或跨国家交易。
4.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,所述辅助变量包括:
AW:该地区当前年份引黄河水最大量,pi:水务局对各个用水部门制定的水价,ERWi:单位水收益,ERWk:单位农产品收益,ck:单位农产品的进口单价,PTI:将农业用水卖给工业用水部门的价格,PTD:将农业用水卖给生活用水部门的价格,TC:水市场中水交易的运输成本,μ:灌溉系数,反映灌溉水的利用系数,wk:对农作物k灌溉的水量,Wk:农作物k所含的水量,yk:单位面积农作物k的产量,lk:农作物k的总产量,di:用水部门的需水量,d1k:用水部门的需水量,VWk:农作物k的虚拟水含量,Ak:农作物k的种植面积,φpop:人均可支配收入,φind:工业生产总值,Rk:有效降雨量,POP:研究区域总人口,研究区域单位人口消耗农作物k的量;
其中,i:用水部门,i=1,农业用水部门,i=2,工业用水部门,i=3,生活用水部门,i=4,生态用水部门,k:农作物的种类,k=1,代表小麦,k=2,代表玉米,k=3,代表向日葵籽。
5.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,所述上层决策变量包括:Xi:初始水权分配量,EMk:农作物k的出口量,IMk:农作物k的进口量。
6.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,所述下层决策变量包括:WTI:从农业用水部门到工业用水部门的蓝水交易量,WTD:从农业用水部门到生活用水部门的蓝水交易量,x1k:灌溉农作物k的水量,其中,
7.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,上层目标函数为最大化用水效率,其公式为:
其中,Eff为用水效率,Re为经济收益,经济效益既包括了农业用水部门、工业用水部门和生活用水部门的用水净收益,又考虑了蓝水交易的运输成本,以及进口农产品的直接成本,Cons为水消耗量,水消耗量包括农作物灌溉用水,工业用水部门、生活用水部门实际用水量;
其中,
其中,上层目标函数的约束条件包括可分配水约束、价格约束、生态用水约束及进出口约束,具体为:
可分配水约束:可以分配给每个地区的水量完全受限于这一时期水库中的可用水:
价格约束:蓝水交易的价格不能超过当前部门获得初始水权的价格:
p1<PTI<p2
p1<PTD<p3
生态用水约束:为了保障研究区域的可持续发展,生态用水部门的水需求首先被满足:
X4≥e
进出口约束:农作物k出口的量加上研究区域对于农作物k的消费量,要小于进口量和生产量:
8.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,下层目标函数为最小化各个用水部门的脆弱性函数,脆弱性与该用水部门水需求的相关,包括两个部分:一个是分配量超过水需求的惩罚函数,另一个是不能满足水需求时的惩罚函数,利用加权求和的方式综合考虑这两个目标,其中ωDDEL表示决策者赋予这两个惩罚函数的权重。
9.根据权利要求8所述的基于水权交易的水资源分配方法,其特征在于,步骤2中,脆弱性函数包括最小化农业用水部门的脆弱性函数、最小化工业用水部门的脆弱性函数及最小化生活用水部门的脆弱性,分别为:
最小化农业用水部门的脆弱性函数:
约束条件包括种植面积约束及决策变量约束,具体为:
种植面积约束:所有农作物所占的种植面积要小于研究区域的农业可用面积:
决策变量约束:
x1k>0
最小化工业用水部门的脆弱性函数:
约束条件为决策变量约束:
X2>0
最小化生活用水部门的脆弱性:
约束条件为决策变量约束:
X3>0。
10.根据权利要求1所述的基于水权交易的水资源分配方法,其特征在于,步骤3中,所述求解的步骤具体为:
步骤301、设置输入值:上下层目标函数的容忍值,终止进化的代数;
步骤302、根据上层目标函数确定适应度函数,初始化可行解,交叉、变异和选择,迭代直到终止迭代次数,即输出上层决策变量的最优解,传递到下层,跳转到步骤303,否则继续进行交叉、变异和选择等迭代过程;
步骤303、基于步骤302的最优解,求解下层目标函数最优解,然后建立辅助函数,确定下层决策的适应度函数,交叉、变异和选择,迭代直到终止迭代次数,即输出下层决策变量的最优解反馈到上层,检查是否依然满足条件:下层容忍值优于上层容忍值,是则结束算法,否则重复步骤302。
CN201811345418.0A 2018-11-13 2018-11-13 基于水权交易的水资源分配方法 Pending CN109472717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811345418.0A CN109472717A (zh) 2018-11-13 2018-11-13 基于水权交易的水资源分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811345418.0A CN109472717A (zh) 2018-11-13 2018-11-13 基于水权交易的水资源分配方法

Publications (1)

Publication Number Publication Date
CN109472717A true CN109472717A (zh) 2019-03-15

Family

ID=65672334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811345418.0A Pending CN109472717A (zh) 2018-11-13 2018-11-13 基于水权交易的水资源分配方法

Country Status (1)

Country Link
CN (1) CN109472717A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084569A (zh) * 2019-04-30 2019-08-02 兰州环境能源交易中心有限公司 一种水权交易服务平台
CN110210744A (zh) * 2019-05-24 2019-09-06 河海大学 一种基于两阶段非对称纳什-主从博弈模型的跨区域水资源分配方法
CN110533346A (zh) * 2019-09-09 2019-12-03 中国科学院地理科学与资源研究所 一种粮食生产的水资源安全评估方法
CN110909990A (zh) * 2019-11-08 2020-03-24 四川大学 一种基于节点弧方法的流域二层水资源优化配置方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084569A (zh) * 2019-04-30 2019-08-02 兰州环境能源交易中心有限公司 一种水权交易服务平台
CN110210744A (zh) * 2019-05-24 2019-09-06 河海大学 一种基于两阶段非对称纳什-主从博弈模型的跨区域水资源分配方法
CN110210744B (zh) * 2019-05-24 2022-02-11 河海大学 一种基于两阶段非对称纳什-主从博弈模型的跨区域水资源分配方法
CN110533346A (zh) * 2019-09-09 2019-12-03 中国科学院地理科学与资源研究所 一种粮食生产的水资源安全评估方法
CN110909990A (zh) * 2019-11-08 2020-03-24 四川大学 一种基于节点弧方法的流域二层水资源优化配置方法
CN110909990B (zh) * 2019-11-08 2023-04-07 四川大学 一种基于节点弧方法的流域二层水资源优化配置方法

Similar Documents

Publication Publication Date Title
Long et al. Multifunctional rural development in China: Pattern, process and mechanism
CN109472717A (zh) 基于水权交易的水资源分配方法
Yao et al. A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin
Zuo et al. Optimization of uncertain agricultural management considering the framework of water, energy and food
Zhang et al. A copula-based stochastic fractional programming method for optimizing water-food-energy nexus system under uncertainty in the Aral Sea basin
Wu et al. Green efficiency of water resources in Northwest China: Spatial-temporal heterogeneity and convergence trends
Zhao et al. Ecosystem services assessment based on land use simulation: A case study in the Heihe River Basin, China
CN102254237A (zh) 区域水资源供需态势预测及动态调控方法
Tian et al. Using the IPAT identity and decoupling analysis to estimate water footprint variations for five major food crops in China from 1978 to 2010
Pei et al. Study on the optimization of staple crops spatial distribution in China under the influence of natural disasters
Guo et al. Land carrying capacity in rural settlements of three gorges reservoir based on the system dynamic model
Xu et al. Forecast and optimal allocation of production, living and ecology water consumption in Zhangye, China
Zhang et al. Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization
Jiang et al. Multifunctional rural transition along China’s Yangtze River Transect: Spatial differentiation and economic relevance
Marjanizadeh et al. Food and water scenarios for the Karkheh River Basin, Iran
Wang et al. Interactive quantitative modeling and cost optimization of regional sustainable development based on water-energy-food nexus
Li et al. Ecological-economic coordination in the Yellow River basin: spatial and temporal evolution and driving mechanisms
Cao et al. Assessing the contribution of China's grain production during 2005–2020 from the perspective of the crop-water-land nexus
Wang et al. Quantifying carbon sequestration service flow associated with human activities based on network model on the Qinghai-Tibetan Plateau
Ouyang et al. China: designing policies to enhance ecosystem services
Wang et al. How can the sustainable goal of cultivated land use in the Qinghai-Tibet Plateau be realized?—based on a research framework of cultivated land use patterns
Bao et al. Ecological impact assessment of green virtual water flow in inter-provincial crop commutation within China
Lu et al. Optimal water and land resource allocation in pastoral areas based on a water–land forage–livestock balance: a case study of Otog Front Banner, Inner Mongolia, China
Li et al. Method for modelling ecological competition based on Pareto optimality: A case study of coastal wetlands in Jiangsu Province, China
Bao et al. Mutual optimization of water utilization structure and industrial structure in arid inland river basins of Northwest China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190315

RJ01 Rejection of invention patent application after publication