CN109467806A - 一种复合型微发泡材料的制备方法 - Google Patents

一种复合型微发泡材料的制备方法 Download PDF

Info

Publication number
CN109467806A
CN109467806A CN201811176975.4A CN201811176975A CN109467806A CN 109467806 A CN109467806 A CN 109467806A CN 201811176975 A CN201811176975 A CN 201811176975A CN 109467806 A CN109467806 A CN 109467806A
Authority
CN
China
Prior art keywords
areas
carbon nanotube
mixture
polypropylene
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811176975.4A
Other languages
English (en)
Inventor
韩潇蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Lexiang Integrated Home Co Ltd
Original Assignee
Jiaxing Lexiang Integrated Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Lexiang Integrated Home Co Ltd filed Critical Jiaxing Lexiang Integrated Home Co Ltd
Priority to CN201811176975.4A priority Critical patent/CN109467806A/zh
Publication of CN109467806A publication Critical patent/CN109467806A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种复合型微发泡材料的制备方法,属于发泡材料技术领域。包括以下步骤:S1:将聚丙烯、相容剂、碳纳米管和其他添加剂按所述重量比例放入高速混合机中混合4‑6min,获得以上组分均匀混合物;S2:上述组分混合物由料斗加入双螺杆挤出机,进行挤出造粒;S3:将步骤(2)所得碳纳米管增强聚丙烯复合材料和发泡剂母粒按比例放入混合机中混合,获得二者混合物;S4:将所述混合物加入到注塑机中,注塑成型得到高性能碳纳米管增强聚丙烯微发泡材料。本发明不仅节约了原材料成本,还获得了泡孔细小,均匀致密,力学性能较好的聚丙烯微发泡复合材料。

Description

一种复合型微发泡材料的制备方法
技术领域
本发明属于发泡材料技术领域,具体涉及一种复合型微发泡材料的制备方法。
背景技术
当前汽车行业轻量化的趋势日益高涨的前提下,聚丙烯微发泡复合材料成为轻量化复合材料的理想选择之一。聚丙烯属于线性结晶聚合物,在熔点以下几乎不流动,熔点以上粘度急剧下降,因此很难支撑气泡的生长,容易导致泡孔塌陷、破裂现象的发生,此外,聚丙烯比热容较大,这使它从熔融态转变成结晶态时会放出大量的热量,会进一步降低熔体的粘度,这些都不利于优良泡孔结构的形成,更会影响发泡制品的力学性能,限制其广泛应用。在聚丙烯中引入纳米粒子(如蒙脱土、碳纳米管、富勒烯等)已成为聚丙烯改性和高性能化的重要途径。以纳米尺度分散于聚烯烃基体中的无机刚性粒子在填充量很少(通常低于10%)的情况下就可显著改善或提高聚丙烯的力学性能。Dubois等研究发现碳纳米管阻燃聚丙烯时发现碳纳米管能够捕捉自由基,形成交联结构,有利于提高聚丙烯的熔体强度。
发明内容
本发明针对现有技术的状况,克服上述缺陷,提供一种复合型微发泡材料的制备方法。
本发明采用以下技术方案,所述一种复合型微发泡材料的制备方法,包括以下步骤:
原料:聚丙烯94份,相容剂5份,碳纳米管0.5份,抗氧剂0.5份;
S1:将聚丙烯、相容剂、碳纳米管和其他添加剂按所述重量比例放入高速混合机中混合4-6min,获得以上组分均匀混合物;
S2:上述组分混合物由料斗加入双螺杆挤出机,进行挤出造粒,得到碳纳米管增强聚丙烯复合材料;其中一区180~200℃,二区230~250℃,三区210~220℃,四区210~220℃,五区215~225℃,六区215~225℃,七区215~225℃,机头温度210~220℃,压力12~18MPa,物料在挤出机中停留1~2min;
S3:将步骤(2)所得碳纳米管增强聚丙烯复合材料和发泡剂母粒按比例放入混合机中混合,获得二者混合物;
S4:将所述混合物加入到注塑机中,注塑成型得到高性能碳纳米管增强聚丙烯微发泡材料,注塑机各段温度如下:一区165~175℃,二区190~200℃,三区200~210℃,四区190~200℃,五区175~185℃。
本发明公开的一种复合型微发泡材料的制备方法,其有益效果在于,利用碳纳米管对自由基的捕捉能力,形成微交联结构,提高聚丙烯熔体强度,易于获得均匀致密的微孔。相比未填充聚丙烯微发泡材料,碳纳米管增强与微孔发泡技术相结合进一步减轻材料重量的同时,大幅度提高拉伸强度、模量等力学性能。本发明中,随着碳纳米管的加入,泡孔直径逐渐减小,泡孔密度增加,拉伸强度明显提高。本发明不仅节约了原材料成本,还获得了泡孔细小,均匀致密,力学性能较好的聚丙烯微发泡复合材料。
具体实施方式
本发明公开了一种复合型微发泡材料的制备方法,下面结合优选实施例,对本发明的具体实施方式作进一步描述。
所述一种复合型微发泡材料的制备方法,包括以下步骤:
原料:聚丙烯94份,相容剂5份,碳纳米管0.5份,抗氧剂0.5份;
S1:将聚丙烯、相容剂、碳纳米管和其他添加剂按所述重量比例放入高速混合机中混合4-6min,获得以上组分均匀混合物;
S2:上述组分混合物由料斗加入双螺杆挤出机,进行挤出造粒,得到碳纳米管增强聚丙烯复合材料;其中一区180~200℃,二区230~250℃,三区210~220℃,四区210~220℃,五区215~225℃,六区215~225℃,七区215~225℃,机头温度210~220℃,压力12~18MPa,物料在挤出机中停留1~2min;
S3:将步骤(2)所得碳纳米管增强聚丙烯复合材料和发泡剂母粒按比例放入混合机中混合,获得二者混合物;
S4:将所述混合物加入到注塑机中,注塑成型得到高性能碳纳米管增强聚丙烯微发泡材料,注塑机各段温度如下:一区165~175℃,二区190~200℃,三区200~210℃,四区190~200℃,五区175~185℃。
对于本领域的技术人员而言,依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (1)

1.一种复合型微发泡材料的制备方法,其特征在于,包括以下步骤:
原料:聚丙烯94份,相容剂5份,碳纳米管0.5份,抗氧剂0.5份;
S1:将聚丙烯、相容剂、碳纳米管和其他添加剂按所述重量比例放入高速混合机中混合4-6min,获得以上组分均匀混合物;
S2:上述组分混合物由料斗加入双螺杆挤出机,进行挤出造粒,得到碳纳米管增强聚丙烯复合材料;其中一区180~200℃,二区230~250℃,三区210~220℃,四区210~220℃,五区215~225℃,六区215~225℃,七区215~225℃,机头温度210~220℃,压力12~18MPa,物料在挤出机中停留1~2min;
S3:将步骤(2)所得碳纳米管增强聚丙烯复合材料和发泡剂母粒按比例放入混合机中混合,获得二者混合物;
S4:将所述混合物加入到注塑机中,注塑成型得到高性能碳纳米管增强聚丙烯微发泡材料,注塑机各段温度如下:一区165~175℃,二区190~200℃,三区200~210℃,四区190~200℃,五区175~185℃。
CN201811176975.4A 2018-10-09 2018-10-09 一种复合型微发泡材料的制备方法 Pending CN109467806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811176975.4A CN109467806A (zh) 2018-10-09 2018-10-09 一种复合型微发泡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811176975.4A CN109467806A (zh) 2018-10-09 2018-10-09 一种复合型微发泡材料的制备方法

Publications (1)

Publication Number Publication Date
CN109467806A true CN109467806A (zh) 2019-03-15

Family

ID=65664523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811176975.4A Pending CN109467806A (zh) 2018-10-09 2018-10-09 一种复合型微发泡材料的制备方法

Country Status (1)

Country Link
CN (1) CN109467806A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138799A (zh) * 2019-12-30 2020-05-12 浙江普利特新材料有限公司 一种低气味低散发高性能环保微发泡abs复合材料及其制备方法
CN111253677A (zh) * 2020-02-28 2020-06-09 山东大学 一种低密度聚丙烯珠粒泡沫、其制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138799A (zh) * 2019-12-30 2020-05-12 浙江普利特新材料有限公司 一种低气味低散发高性能环保微发泡abs复合材料及其制备方法
CN111253677A (zh) * 2020-02-28 2020-06-09 山东大学 一种低密度聚丙烯珠粒泡沫、其制备方法及应用
CN111253677B (zh) * 2020-02-28 2021-03-16 山东大学 一种低密度聚丙烯珠粒泡沫、其制备方法及应用

Similar Documents

Publication Publication Date Title
CN102952336B (zh) 一种活性碱式硫酸镁晶须改性聚丙烯复合材料及其制备方法
AU2013232474B2 (en) Light weight articles, composite compositions, and processes for making the same
CN102218879B (zh) 一种废旧聚丙烯改性发泡板材及其制造方法
CN101962455B (zh) 注塑型微发泡木塑复合材料及制备方法
CN103834097B (zh) 一种聚丙烯微颗粒及制法和由其制备聚丙烯发泡珠粒的方法及产品
CN102516663A (zh) 一种高强度、超高韧性聚丙烯纳米复合材料及其制备方法
WO2012061041A1 (en) Nucleating agent for polyethylenes
CN1944515A (zh) 一种β-晶型聚丙烯组合物及其制备方法
CN102558736A (zh) 一种汽车仪表板用聚丙烯复合材料及其制备方法
CN112029190B (zh) 一种微发泡聚丙烯材料及其制备方法
CN110229372A (zh) 一种低成型能耗聚丙烯发泡粒子及其制备方法
CN107722577B (zh) 一种耐高温的微孔液晶聚合物组合物的制备方法
CN109467806A (zh) 一种复合型微发泡材料的制备方法
CN107057194A (zh) 一种碳纳米管增强聚丙烯微发泡材料及其制备方法
Lee et al. Optimization of dispersion of nanosilica particles in a PP matrix and their effect on foaming
CN106633412A (zh) 一种高断裂伸长率聚丙烯组合物及其制备方法
Huang et al. Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends
CN108047581B (zh) 一种高强度的石墨聚苯板及其制备方法
CN113652029A (zh) 一种微发泡聚丙烯组合物及其制备方法和应用
TW202108696A (zh) 發泡成形用聚醯胺樹脂組成物及發泡成形體
CN106117741A (zh) 一种聚乙烯复合泡沫材料及其制备方法
KR101200679B1 (ko) 폴리프로필렌 복합수지를 이용한 자동차 내장재용 경질발포 기재
CN110128741B (zh) 聚烯烃发泡材料及其制备方法
CN104513430A (zh) 一种仿藤条聚丙烯发泡材料及其制备方法
CN104479165B (zh) 一种制备聚丙烯低温固相发泡珠粒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190315

WD01 Invention patent application deemed withdrawn after publication