CN109461474B - 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法 - Google Patents

一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法 Download PDF

Info

Publication number
CN109461474B
CN109461474B CN201811361065.3A CN201811361065A CN109461474B CN 109461474 B CN109461474 B CN 109461474B CN 201811361065 A CN201811361065 A CN 201811361065A CN 109461474 B CN109461474 B CN 109461474B
Authority
CN
China
Prior art keywords
screening
molecules
sting
screened
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811361065.3A
Other languages
English (en)
Other versions
CN109461474A (zh
Inventor
郭晶晶
王玉宁
董文佩
王洁
许嘉琪
刘小潘
池彦伟
陈长坡
张倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201811361065.3A priority Critical patent/CN109461474B/zh
Publication of CN109461474A publication Critical patent/CN109461474A/zh
Application granted granted Critical
Publication of CN109461474B publication Critical patent/CN109461474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明提供了一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法,包括以下步骤:(1)STING结构准备:从Protein Data Bank数据库中获取STING蛋白晶体结构并进行结构优化;(2)设定活性口袋:以STING蛋白晶体结构中的配体小分子为中心,设定活性口袋;(3)建立待筛选化合物库:从ZINC化合物库选定待筛选小分子,进行3D结构转化和优化,建立多构象的待筛选化合物库;(4)化合物虚拟筛选:物将待筛选化合物库中的化合对接至活性口袋,进行对接打分排序,层层过滤筛选后进行MM/GBSA计算、去重处理和聚类分析,筛选出具有潜在活性的候选化合物。本发明提供的虚拟筛选方法具有快速、高效、低成本等有优点,可缩药物短研发周期,降低经济成本。

Description

一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选 方法
技术领域
本发明属于计算机辅助药物设计技术领域,具体涉及一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法。
背景技术
自身免疫病是一类原因复杂、临床表现多样、严重危害人类健康的疾病,其主要是由于机体的正常结构成分被相应的抗体或具有免疫效应细胞作用后引起的器质性、功能性障碍疾病,多为慢性病,如系统性红斑狼疮(SLE)、类风湿性关节炎(RA)等。病毒感染诱导Ⅰ型干扰素表达的过程一直是细胞抗病毒天然免疫研究的热点。宿主细胞通过自身的模式识别受体(pattern recognition receptors,PRRs)识别病原微生物的病原相关分子模式(pathogen-associated molecular patterns,PAMPs),从而启动下游信号级联反应,诱导Ⅰ型干扰素(typeⅠinterferons)、促炎症细胞因子(proinflammatory cytokines)和趋化因子等的产生。干扰素刺激因子STING(stimulator of interferon genes)是近年来发现的RIG-I样受体(RIG-I like receptors,RLRs)介导的抗病毒信号转导中一个重要的接头蛋白,STING蛋白被2',3'-环鸟苷酸腺苷酸(2',3'-cGAMP)激活后,可以促进TBK1对IRF3的磷酸化激活,从而介导Ⅰ型干扰素的表达(图1)。
恶性肿瘤、自身免疫性疾病和感染性疾病一直都是“新药创制”重大专项创新药物研发的重点,而STING信号的控制(激活或抑制),对这些疾病的治疗均有重大潜在的应用价值。具体来说,针对感染性疾病和恶性肿瘤,需要加强STING通路的激活,而对于自身免疫性疾病则需抑制STING介导的免疫信号。对于治疗肿瘤、免疫疾病药物的发现一直是研究的热点问题。尽管取得了很大的成绩,但许多问题仍然需要进一步的研究。
随着计算机技术的深入发展,药物设计迎来了虚拟筛选时代。虚拟筛选利用计算机上的分子对接软件模拟目标靶点与候选药物之间的相互作用,计算两者之间的亲和力大小,从而预测可能的潜在药物。通过虚拟筛选,药物设计者免去了传统实验筛选带来的财力、精力、时间上的消耗,缩小了药物研发的周期和投入。虚拟筛选技术已经成为当今药物研发的重要手段。相对于传统药物筛选方法,虚拟筛选不仅可以缩短药物开发的周期,并且能降低药物开发的成本。因此,近年来虚拟筛选方法发展和在新药研究中的应用受到了广泛重视。于是建立一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的高效、快速筛选方法成为当务之急。
发明内容
本发明的目的在于提供一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的快速,高效的筛选方法。
本发明的设计构思是:
首先在Protein Data Bank数据库中获取STING蛋白晶体结构,并对其进行优化;然后以STING蛋白晶体结构中的配体小分子为中心,设定结合口袋;然后在ZINC数据库中下载对接用小分子数据库,并进行处理;将准备好的小分子数据库中的小分子配体一一对接至结合口袋,采用不同精度的对接方式,对小分子进行层层过滤;对最终筛选出来的小分子聚类分析,挑选结果好的小分子作为命中化合物。
基于上述设计构思,本发明采用如下技术方案:
一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法,其特征在于,包括以下步骤:
(1)STING结构准备:从Protein Data Bank数据库中获取STING蛋白晶体结构,根据质子化/电荷分配情况进行结构优化;
(2)设定活性口袋:以STING蛋白晶体结构中的配体小分子为中心,设定活性口袋;
(3)建立待筛选化合物库:从ZINC化合物库选定待筛选小分子,根据原子/键类归属情况,进行3D结构转化和优化,建立多构象的待筛选化合物库;
(4)化合物筛选:将待筛选化合物库中的化合物对接至活性口袋,进行对接打分排序筛选,层层过滤筛选后进行MM/GBSA计算、去重处理和聚类分析,筛选出具有潜在活性的候选化合物。
作为优选方案,步骤(1)中,从Protein Data Bank数据库中获取的STING蛋白晶体结构为STING蛋白与内源性配体2’3’-cGAMP复合物的晶体结构,结构优化利用
Figure BDA0001867345760000031
中Protein Preparation Wizard模块进行,具体包括加氢、补全缺失的残基和侧链、删除水分子及极性氨基酸的质子化处理。
作为优选方案,步骤(2)中,活性口袋的设立利用
Figure BDA0001867345760000032
中Receptor GridGeneration模块进行,以STING蛋白晶体结构中的配体小分子2’3’-cGAMP为中心设立活性口袋。
作为优选方案,步骤(3)中,待筛选化合物选自ZINC化合物库中的天然产物化合物库(Specs、Princeton、Indofine、IBS、TCM database@Taiwan)、FDA已经批准上市的药物化合物库、Maybridge化合物库,总共近22万个小分子化合物,利用LigPrep模块对选出的化合物进行3D结构转化和优化,产生共计近82个构象分子。
作为优选方案,步骤(4)中,化合物筛选过程中,对接筛选利用
Figure BDA0001867345760000033
软件包中的Glide程序进行,使用Virtual Screening Workflow模块进行三轮基于分子对接的虚拟筛选,第一轮为高通量筛选(high throughput virtual screening,HTVS),主要滤去一些与受体分子的活性口袋有明显碰撞的小分子,其中Maybridge数据库保留前50000个构象分子,天然产物数据库保留前30%的构象分子,FDA数据库保留前5000个构象分子;第二轮为标准精度(standard precision,SP)筛选,主要是获取配体分子的合理对接构象,其中Maybridge数据库保留前5000个构象分子,天然产物数据库保留前50%的构象分子,FDA数据库保留前2000个构象分子;第三轮为高精度(extra precision,XP)筛选,主要是去除可能存在的假阳性分子,其中Maybridge数据库保留前50%的构象分子,天然产物数据库保留前2000个构象分子,FDA数据库保留前50%个构象分子。
作为优选方案,步骤(4)中,对接筛选出的化合物的MM/GBSA的计算利用Prime-MM/GBSA进行。
作为优选方案,步骤(4)中,去重处理方法为利用glide_sort程序基于Glidescore排序进行去重处理,保留同名分子中打分最好的构象。
作为优选方案,步骤(4)中,聚类分析方法为利用Canvas程序中的Hierarchicalclustering方法进行聚类分析,其中,二进制指纹(Binary Fingerprint)选择线性(Linear)。
本发明所达到的有益效果为:本发明首次建立了以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法,通过该方法可以在短时间内获得活性化合物的线索,将研究目标从数十万个化合物集中到数十个化合物,大大提高了筛选化合物的速度和效率,缩短新药研究的周期。
附图说明
图1是STING依赖的I型干扰素的产生过程图;
图2是本发明的筛流程图;
图3是STING蛋白与内源性配体2’3’-cGAMP复合物的三维晶体结构;
图4是化合物对接筛选流程图。
具体实施方式
下面通过具体实施例对本发明进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明的保护范围。
实施例1:
(1)STING结构准备
从Protein Data Bank数据库中获取STING蛋白与内源性配体2’3’-cGAMP复合物的晶体结构(PDB ID:4F5D),并通过
Figure BDA0001867345760000041
软件中的Protein Preparation Wizard模块对晶体结构进行优化处理,具体包括加氢、补全缺失的残基和侧链、删除水分子及极性氨基酸的质子化处理(即对受体进行pH滴定的操作,保证活性口袋处的氨基酸的正确质子化状态)等。
(2)设定活性口袋
运用
Figure BDA0001867345760000051
中Receptor Grid Generation模块,以STING蛋白晶体结构中的配体小分子2’3’-cGAMP为中心,按软件默认设置设定可容纳内源性底物大小分子的立方体活性口袋。
(3)建立待筛选化合物库
从ZINC化合物库中选择天然产物化合物库(Specs、Princeton、Indofine、IBS、TCMdatabase@Taiwan)、FDA已经批准上市的药物化合物库、Maybridge化合物库,总共近22万个小分子化合物,利用LigPrep模块对选出的化合物进行3D结构转化和优化,产生共计近82个构象分子,作为筛选的化合物库。
(4)化合物虚拟筛选
A.对接筛选
利用
Figure BDA0001867345760000052
软件包中的Glide程序将待筛选化合库中的化合物一一对接到活性口袋,使用Virtual Screening Workflow模块进行三轮基于分子对接的虚拟筛选,第一轮为高通量筛选(high throughput virtual screening,HTVS),主要滤去一些与受体分子的活性口袋有明显碰撞的小分子,其中Maybridge数据库保留前50000个构象分子,天然产物数据库保留前30%的构象分子,FDA数据库保留前5000个构象分子;第二轮为标准精度(standard precision,SP)筛选,主要是获取配体分子的合理对接构象,其中Maybridge数据库保留前5000个构象分子,天然产物数据库保留前50%的构象分子,FDA数据库保留前2000个构象分子;第三轮为高精度(extra precision,XP)筛选,主要是去除可能存在的假阳性分子,其中Maybridge数据库保留前50%的构象分子,天然产物数据库保留前2000个构象分子,FDA数据库保留前50%个构象分子。
B.MM/GBSA计算
利用Prime-MM/GBSA对对接选出的化合物进行MM/GBSA计算。参数设置包括VSGB溶剂化模型和OPLS_2005力场,同时允许小分子
Figure BDA0001867345760000061
以内的残基进行构象优化。
C.去重处理
利用glide_sort程序,基于Glide score排序对筛选出的化合物进行去重处理,保留同名分子中打分最好的构象。
D.聚类分析
利用Canvas程序中的Hierarchical clustering对筛选出的化合物进行聚类分析,其中二进制指纹(Binary Fingerprint)选择线性(Linear)。
E.确定候选化合物
根据对接筛选结果、MM/GBSA高低和聚类分析结果,筛选出具有潜在活性的候选化合物。筛选出的部分候选化合物如表1所示:
表1部分候选化合物
Figure BDA0001867345760000062
Figure BDA0001867345760000071
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所有的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种以STING为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法,其特征在于,包括以下步骤:
(1)STING结构准备:从Protein Data Bank数据库中获取STING蛋白晶体结构,根据质子化/电荷分配情况进行结构优化;
(2)设定活性口袋:以STING蛋白晶体结构中的配体小分子为中心,设定活性口袋;
(3)建立待筛选化合物库:从ZINC化合物库选定待筛选小分子,根据原子/键类归属情况,进行3D结构转化和优化,建立多构象的待筛选化合物库;
(4)化合物虚拟筛选:将待筛选化合物库中的化合物对接至活性口袋,进行对接打分排序筛选,层层过滤筛选后进行MM/GBSA计算、去重处理和聚类分析,筛选出具有潜在活性的候选化合物。
2.如权利要求1所述的筛选方法,其特征在于,步骤(1)中,从Protein Data Bank数据库中获取的STING蛋白晶体结构为STING蛋白与内源性配体2’3’-cGAMP复合物的晶体结构,结构优化利用
Figure FDA0001867345750000011
中Protein Preparation Wizard模块进行,具体包括加氢、补全缺失的残基和侧链、删除水分子及极性氨基酸的质子化处理。
3.如权利要求1所述的筛选方法,其特征在于,步骤(2)中,活性口袋的设立利用
Figure FDA0001867345750000012
中Receptor Grid Generation模块进行,以STING蛋白晶体结构中的配体小分子2’3’-cGAMP为中心设立活性口袋。
4.如权利要求1所述的筛选方法,其特征在于,步骤(3)中,待筛选化合物选自ZINC化合物库中的天然产物化合物库(Specs、Princeton、Indofine、IBS、TCM database@Taiwan)、FDA已经批准上市的药物化合物库、Maybridge化合物库,总共近22万个小分子化合物,利用LigPrep模块对选出的化合物进行3D结构转化和优化,产生共计近82个构象分子。
5.如权利要求1所述的筛选方法,其特征在于,步骤(4)中,化合物筛选过程中,对接筛选利用
Figure FDA0001867345750000021
软件包中的Glide程序进行,使用Virtual Screening Workflow模块进行三轮基于分子对接的虚拟筛选,第一轮为高通量筛选(high throughput virtualscreening,HTVS),主要滤去一些与受体分子的活性口袋有明显碰撞的小分子,其中Maybridge数据库保留前50000个构象分子,天然产物数据库保留前30%的构象分子,FDA数据库保留前5000个构象分子;第二轮为标准精度(standard precision,SP)筛选,主要是获取配体分子的合理对接构象,其中Maybridge数据库保留前5000个构象分子,天然产物数据库保留前50%的构象分子,FDA数据库保留前2000个构象分子;第三轮为高精度(extraprecision,XP)筛选,主要是去除可能存在的假阳性分子,其中Maybridge数据库保留前50%的构象分子,天然产物数据库保留前2000个构象分子,FDA数据库保留前50%个构象分子。
6.如权利要求1所述的筛选方法,其特征在于,步骤(4)中,对接筛选出的化合物的MM/GBSA的计算利用Prime-MM/GBSA进行。
7.如权利要求1所述的筛选方法,其特征在于,步骤(4)中,去重处理方法为利用glide_sort程序基于Glide score排序进行去重处理,保留同名分子中打分最好的构象。
8.如权利要求1所述的筛选方法,其特征在于,步骤(4)中,聚类分析方法为利用Canvas程序中的Hierarchical clustering方法进行聚类分析,其中,二进制指纹(BinaryFingerprint)选择线性(Linear)。
CN201811361065.3A 2018-11-15 2018-11-15 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法 Active CN109461474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811361065.3A CN109461474B (zh) 2018-11-15 2018-11-15 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811361065.3A CN109461474B (zh) 2018-11-15 2018-11-15 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法

Publications (2)

Publication Number Publication Date
CN109461474A CN109461474A (zh) 2019-03-12
CN109461474B true CN109461474B (zh) 2022-10-04

Family

ID=65610666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811361065.3A Active CN109461474B (zh) 2018-11-15 2018-11-15 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法

Country Status (1)

Country Link
CN (1) CN109461474B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444250A (zh) * 2019-03-26 2019-11-12 广东省微生物研究所(广东省微生物分析检测中心) 基于分子指纹和深度学习的高通量药物虚拟筛选系统
CN110534165B (zh) * 2019-09-02 2024-02-20 广州费米子科技有限责任公司 一种药物分子活性的虚拟筛选系统及其方法
CN112057443B (zh) * 2019-10-12 2022-10-14 中国药科大学 苯磺酰胺类化合物的医药用途及其药物组合物
CN114300039A (zh) * 2021-12-31 2022-04-08 中国医学科学院医学实验动物研究所 一种基于病毒结构蛋白的生物活性成分筛选系统
CN117024407A (zh) * 2022-05-11 2023-11-10 上海傲图智药生物医药有限公司 一种tead小分子抑制剂及在tead受体相关癌症药物中的用途
CN115631785B (zh) * 2022-11-09 2023-08-18 成都诺和晟泰生物科技有限公司 一种先导化合物筛选模型的构建方法及应用
CN117746975B (zh) * 2023-12-22 2024-08-30 徐州医科大学 一种基于trim35和sting的计算机辅助药物筛选方法、系统及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031343A2 (pt) * 2010-09-08 2012-03-15 Emresa Brasileira De Pesquisa Agropecuária - Embrapa Identificação de alvos terapêuticos para desenho computacional de drogas contra bactérias dotadas da protéina pilt
CN107346379A (zh) * 2016-05-07 2017-11-14 复旦大学 一种以组织蛋白酶d为靶点的小分子抑制剂的筛选方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031343A2 (pt) * 2010-09-08 2012-03-15 Emresa Brasileira De Pesquisa Agropecuária - Embrapa Identificação de alvos terapêuticos para desenho computacional de drogas contra bactérias dotadas da protéina pilt
CN107346379A (zh) * 2016-05-07 2017-11-14 复旦大学 一种以组织蛋白酶d为靶点的小分子抑制剂的筛选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苦参黄酮类化合物中GLUT4转运蛋白激动剂的虚拟筛选;黄佩南等;《药学研究》;20180515(第05期);全文 *

Also Published As

Publication number Publication date
CN109461474A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109461474B (zh) 一种以sting为靶点的抗炎、抗肿瘤、抗免疫药物的虚拟筛选方法
Yao et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation
Pritykin et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection
Werner Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data
Wang et al. Molecular dissection of CD8+ T-cell dysfunction
Gong et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication
CN105678112A (zh) 一种计算机辅助筛选小分子化合物靶标适配体的实现方法
US20150302167A1 (en) System and method for development of therapeutic solutions
CN107119120A (zh) 一种基于染色质3d构象技术的关键作用分子检测方法
Mallik et al. WeCoMXP: Weighted connectivity measure integrating Co-methylation, Co-expression and protein-protein interactions for gene-module detection
CN116504302B (zh) 基于生成模型与计算化学的新型乙肝病毒衣壳组装调节剂从头设计与虚拟筛选方法
Kim et al. FusionAI: predicting fusion breakpoint from DNA sequence with deep learning
Chang et al. Construction of a Macrophage Infiltration Regulatory Network and Related Prognostic Model of High‐Grade Serous Ovarian Cancer
He et al. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically
Ananya et al. Novel approach to find the various stages of chronic myeloid leukemia using dynamic short distance pattern matching algorithm
Liu et al. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells
Aleotti et al. The origin, evolution, and molecular diversity of the chemokine system
Sutanto et al. Assessing global-local secondary structure fingerprints to classify RNA sequences with deep learning
Afolayan et al. Network pharmacology-based findings of the immunomodulatory activity of phytocompounds from Withania somnifera and Aloe barbadensis. INNOSC Theranostics and Pharmacological Sciences
Chen et al. Using the TCGA database to predict and analyze tumor microenvironment genes related to poor prognosis of colon cancer
Lu et al. Cytotoxic T‐lymphocytes in acute myeloid leukemia: Monitoring prognosis and guiding treatment choice
Sharif et al. Identification of Potential HUB Genes and Associated Transcription Factors in Rheumatoid Arthritis
CN108959852A (zh) 基于氨基酸-核苷酸成对偏好性信息的蛋白质上与rna结合模块的预测方法
Baba et al. A dataset of chromosomal instability gene signature scores in normal and cancer cells from the human breast
Srinivasan Drug Repurposing Approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant