CN109458337B - Method for controlling rotating speed of single-rotor compressor - Google Patents
Method for controlling rotating speed of single-rotor compressor Download PDFInfo
- Publication number
- CN109458337B CN109458337B CN201811528178.8A CN201811528178A CN109458337B CN 109458337 B CN109458337 B CN 109458337B CN 201811528178 A CN201811528178 A CN 201811528178A CN 109458337 B CN109458337 B CN 109458337B
- Authority
- CN
- China
- Prior art keywords
- angular velocity
- harmonic
- filtering
- axis
- fluctuation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000001914 filtration Methods 0.000 claims abstract description 117
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000000605 extraction Methods 0.000 claims description 26
- 230000036961 partial effect Effects 0.000 claims description 25
- 230000014509 gene expression Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 14
- 238000012937 correction Methods 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/08—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Feedback Control In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
The invention discloses a method for controlling the rotating speed of a single-rotor compressor, which comprises the process of controlling the compressor according to real-time angular speed and moment; the process of controlling the compressor according to the real-time angular velocity includes: filtering the shaft error to obtain an angular velocity compensation quantity; compensating the angular velocity compensation quantity into the output angular velocity of the phase-locked loop regulator to obtain the compensated angular velocity output quantity; correcting the real-time angular velocity according to the compensated angular velocity output quantity, and controlling a compressor according to the corrected real-time angular velocity; the process of controlling the compressor according to the torque includes: calculating the difference between the target angular velocity fluctuation amount and the compensated angular velocity output amount to obtain a first angular velocity difference value; filtering the first angular velocity difference to obtain a filtered angular velocity; inputting the filtering angular speed to a speed loop regulator to obtain an output torque; and controlling the compressor according to the output torque. By applying the invention, the effectiveness of inhibiting the fluctuation of the rotating speed of the compressor can be improved.
Description
Technical Field
The invention belongs to the technical field of motor control, particularly relates to a compressor control technology, and more particularly relates to a method for controlling the rotating speed of a single-rotor compressor.
Background
When the single-rotor compressor used by the air conditioner runs, the single-rotor compressor is influenced by the working principle and the control technology of the air conditioner serving as a load, so that the load torque of the compressor is extremely unstable, large rotation speed fluctuation is easily caused, and the running of the compressor is not stable. The unstable operation of the compressor can cause the unstable operation of the whole air conditioner system, resulting in various adverse effects. And unstable operation can also produce great operating noise, can not satisfy relevant noise standard requirement, influences air conditioner and uses the travelling comfort. This phenomenon is particularly serious in a single-rotor compressor.
Although the prior art also has a method for controlling the rotating speed of the compressor, the effect of inhibiting the rotating speed fluctuation is not ideal enough, and the problem of the rotating speed fluctuation of the compressor cannot be fundamentally solved.
Disclosure of Invention
The invention aims to provide a method for controlling the rotating speed of a single-rotor compressor, which improves the effectiveness of the fluctuation suppression of the rotating speed of the compressor.
In order to realize the purpose of the invention, the invention is realized by adopting the following technical scheme:
a method of controlling a rotation speed of a single rotor compressor, the method comprising a process of controlling the compressor according to a real-time angular speed and a process of controlling the compressor according to a torque;
the process of controlling the compressor according to the real-time angular velocity includes:
acquiring a shaft error Delta theta reflecting the deviation of the actual position and the estimated position of the compressor rotor;
filtering the shaft error delta theta to obtain a corrected shaft error delta theta 'and an angular speed compensation quantity P _ out corresponding to the corrected shaft error delta theta' after at least part of shaft error fluctuation is filtered;
compensating the angular velocity compensation quantity P _ out into an output angular velocity delta omega _ PLL of a phase-locked loop regulator in the phase-locked loop for controlling the compressor to obtain compensated angular velocity output quantity delta omega ', and obtaining delta omega' ═ P _ out + delta omega _ PLL;
correcting the real-time angular speed omega 1 for controlling the compressor according to the compensated angular speed output quantity delta omega', and controlling the compressor according to the corrected real-time angular speed omega 1;
the filtering processing of the axis error Δ θ specifically includes:
performing Fourier series expansion on the axis error delta theta to obtain the mechanical angle theta of the axis errormThe functional expression of (a);
the function expressions are respectively related to cos (theta)mn+θshift-Pn) And-sin (theta)mn+θshift-Pn) After multiplication, extracting d-axis components and q-axis components of n-th harmonic waves of delta theta through a low-pass filter or an integrator; thetamn、θshift-PnRespectively a mechanical angle of the nth harmonic and a phase compensation angle of the nth harmonic;
filtering out at least a d-axis component and a q-axis component of partial harmonic waves to realize filtering processing of the axis error delta theta;
the process of controlling the compressor according to the torque includes:
calculating the difference between the target angular velocity fluctuation amount and the compensated angular velocity output amount to obtain a first angular velocity difference value;
filtering the first angular velocity difference to obtain a filtered angular velocity at least filtering part of angular velocity fluctuation;
inputting the filter angular velocity as an input quantity to a speed ring regulator in a speed ring for controlling a compressor, and obtaining an output torque of the speed ring regulator;
controlling the compressor according to the output torque;
the filtering the first angular velocity difference to obtain a filtered angular velocity at least after filtering part of angular velocity fluctuation, specifically comprising:
and extracting partial angular velocity fluctuation in the first angular velocity difference by adopting a velocity fluctuation extraction algorithm, extracting a direct current component of the partial angular velocity fluctuation, calculating a difference between the first angular velocity difference and the direct current component of the partial angular velocity fluctuation, and determining the difference as the filtering angular velocity.
Compared with the prior art, the invention has the advantages and positive effects that: the invention provides a method for controlling the rotating speed of a single-rotor compressor, which comprises the steps of performing fluctuation filtering on a shaft error delta theta reflecting the deviation between the actual position and the estimated position of a compressor rotor, compensating an angular speed compensation quantity corresponding to a corrected shaft error after at least part of shaft error fluctuation is filtered into the output angular speed of a phase-locked loop regulator to obtain a compensated angular speed output quantity, correcting the real-time angular speed of the compressor according to the compensated angular speed output quantity, and enabling the variation quantity and the phase of a target rotating speed to be close to the variation quantity and the phase of the actual rotating speed when the compressor is controlled by the corrected real-time angular speed so as to enable the operation of the compressor to tend to be stable; moreover, because the fluctuation of the shaft error is a front end direct factor causing speed fluctuation, the periodical fluctuation of the shaft error is reduced by filtering the fluctuation of the shaft error at the front end, the speed fluctuation can be directly and quickly inhibited, and the effectiveness of speed control is improved. On the other hand, when extracting the harmonic component in the axis error Δ θ, the phase compensation angle is used to adjust the phase of the harmonic component, and the phase characteristics of the phase-locked loop are changed, so that the fluctuation suppression effect during the full-frequency-domain operation of the compressor can be improved, and the stability of the full-frequency-domain operation can be improved. In addition, the difference value between the compensated angular speed output quantity and the target angular speed fluctuation quantity is subjected to filtering processing, and the filtered angular speed at least part of which is filtered out of the angular speed fluctuation is input into the speed loop regulator as an input quantity, so that the fluctuation of the output torque of the speed loop regulator can be reduced, and when the compressor is controlled according to the output torque, the fluctuation of the rotating speed of the compressor can be reduced, and the running of the compressor is more stable; the compressor operates stably, and the effects of energy conservation and vibration reduction can be achieved.
Other features and advantages of the present invention will become more apparent from the following detailed description of the invention when taken in conjunction with the accompanying drawings.
Drawings
FIG. 1 is a partial flow chart of one embodiment of a method for controlling the speed of a single rotor compressor in accordance with the present invention;
FIG. 2 is another partial flow chart of an embodiment of a method for controlling the speed of a single rotor compressor according to the present invention;
FIG. 3 is a control block diagram based on the method embodiment of FIGS. 1 and 2;
FIG. 4 is a logic block diagram of a specific example of the axis error fluctuation filtering algorithm of FIG. 3;
FIG. 5 is a logic block diagram of a specific example of the speed fluctuation extraction algorithm of FIG. 3.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in further detail with reference to the accompanying drawings and examples.
Fig. 1 and 2 are partial flowcharts illustrating an embodiment of a method for controlling a rotational speed of a single rotor compressor according to the present invention, respectively. Specifically, the rotational speed control method of the embodiment includes two processes: one is a process for controlling the compressor according to the real-time angular velocity, and the flow chart is shown in fig. 1; one is a process of controlling the compressor according to the torque, and the flowchart is shown in fig. 2. Specific implementations of these two processes are described below based on a control block diagram shown in fig. 1 and 2 in conjunction with fig. 3.
Referring to fig. 1, a partial flowchart of an embodiment of a method for suppressing rotation speed fluctuation of a single-rotor compressor according to the present invention, specifically a flowchart for controlling a compressor according to a real-time angular velocity, is shown, and the embodiment employs a process including the following steps to control the compressor according to the real-time angular velocity:
step 11: a shaft error Delta theta reflecting a deviation between an actual position and an estimated position of a compressor rotor is obtained.
In the control of the compressor, the phase of the compressor rotor can be locked to the target phase by a phase-locked loop (PLL) control technique, the control block of which is shown in fig. 3. In the prior art, the method has the defects that,the compressor phase-locked loop includes a phase-locked loop regulator, typically a proportional integral regulator, see K of FIG. 3P_PLLAnd KI_PLLand/S. Wherein, KP_PLL、KI_PLLIs the closed loop gain parameter of the phase locked loop. The axis error Δ θ is used as an input of the PLL regulator, and specifically, the axis error Δ θ is subtracted from a target angular fluctuation amount (0 shown in fig. 3), and the difference is input to the PLL regulator, and the output of the PLL regulator is an output angular velocity Δ ω _ PLL. Based on the output angular velocity Δ ω _ PLL of the phase-locked loop regulator, the phase-locked loop outputs a real-time angular velocity ω 1 for compressor control, and the rotor position is controlled using the real-time angular velocity ω 1.
The shaft error Δ θ, which reflects the deviation between the actual position and the estimated position of the compressor rotor, can be calculated by the following equation:
in the formula, the first step is that,andrespectively a d-axis voltage set value and a q-axis voltage set value of the compressor, IdAnd IqReal-time d-axis current and real-time q-axis current, r, of the compressor, respectively*Is the resistance of the motor of the compressor,is the q-axis inductance, omega, of the compressor1Is the real-time angular frequency of the compressor. Among the parameters, Id、IqAnd ω1The detection is carried out in real time by the detection means in the prior art, and other parameter values are known values.
Step 12: and filtering the axis error delta theta to obtain a corrected axis error delta theta' after at least part of axis error fluctuation is filtered.
Since the shaft error is used as an input to the phase locked loop, the real-time angular velocity of the compressor at the output of the phase locked loop is affected. If the shaft error fluctuation is large, the real-time angular speed output by the phase-locked loop is unstable, so that the rotor phase locking is unstable, and further, the compressor has faults of overcurrent, step loss and the like.
After the axial error Δ θ is obtained in step 11, filtering is performed on the axial error Δ θ to filter at least a part of fluctuation components, and a corrected axial error Δ θ' after at least a part of axial error fluctuation is filtered is obtained.
Wherein, the filtering processing is carried out on the shaft error delta theta, and the method specifically comprises the following steps:
firstly, Fourier series expansion is carried out on the axis error delta theta to obtain the mechanical angle theta of the axis errormIs used for the functional expression of (1).
Then, the functional expressions are respectively related to cos (theta)mn+θshift-Pn) And-sin (theta)mn+θshift-Pn) After multiplication, extracting d-axis components and q-axis components of n-th harmonic waves of delta theta through a low-pass filter or an integrator; thetamn、θshift-PnRespectively the mechanical angle of the nth harmonic and the phase compensation angle of the nth harmonic.
And at least filtering d-axis components and q-axis components of partial harmonic waves, and realizing filtering processing on axis errors delta theta.
The more detailed filtering process is described in detail later with reference to fig. 3.
Step 13: an angular velocity compensation amount P _ out is obtained from the corrected axis error Deltatheta'.
This step can be implemented in a manner of obtaining the angular velocity according to the angle in the prior art. The more preferable processing manner is described in the following preferable embodiment.
The implementation of the above step 12 and step 13 is reflected in the control block diagram of fig. 3, and an axis error Δ θ fluctuation filtering algorithm is adopted to obtain the angular velocity compensation amount P _ out.
Step 14: the angular velocity compensation amount P _ out is compensated to the output angular velocity delta omega _ PLL of the phase-locked loop regulator in the phase-locked loop for controlling the compressor, and the compensated angular velocity output amount delta omega' is obtained. Specifically, the compensated angular velocity output amount Δ ω' ═ P _ out + Δ ω _ PLL.
Step 15: and correcting the real-time angular speed omega 1 for controlling the compressor according to the compensated angular speed output quantity, and controlling the compressor according to the corrected real-time angular speed omega 1.
Specifically, the method of determining the real-time angular velocity corresponding to the target angular velocity fluctuation amount of 0 in the following velocity loop control is: referring to fig. 3, the compensated angular velocity output amount Δ ω' is added to the angular velocity command ω × in, and the real-time angular velocity ω 1 for controlling the compressor is output. The angular velocity command ω _ in is a given angular velocity value of the compressor control system, and the determination method of the value of the given angular velocity command ω _ in is implemented by using the prior art. The target angular velocity fluctuation quantity of the speed loop is 0, and the real-time angular velocity is determined based on the output angular velocity delta omega _ PLL of the phase-locked loop regulator and the given angular velocity command omega _ in, so that the compressor is controlled more accurately and stably.
Referring to fig. 2, a partial flowchart of an embodiment of a method for controlling a rotational speed of a single-rotor compressor according to the present invention, specifically a flowchart for controlling a compressor according to a torque, is shown, and the embodiment employs a process including the following steps:
step 21: and calculating the difference between the target angular velocity fluctuation amount and the compensated angular velocity output amount to obtain a first angular velocity difference value.
In compressor control, the rotational speed of the compressor rotor can be controlled to approach a set rotational speed by a speed loop (ASR) control technique. Referring to the block diagram of FIG. 3, the speed loop includes a speed loop regulator, typically a proportional integral regulator, see K of FIG. 3P_ASRAnd KI_ASR/S。
In this step, a compensated output amount of angular velocity Δ ω'; then, a difference between the target angular velocity fluctuation amount and the compensated angular velocity output amount Δ ω' is calculated, and a difference therebetween is determined as a first angular velocity difference Δ ω 2. Here, the target angular velocity fluctuation amount is a desired angular velocity fluctuation amount and is a known input amount. As a preferred embodiment, in this example, the target angular velocity fluctuation amount is 0.
Step 22: and performing filtering processing on the first angular velocity difference to obtain a filtered angular velocity after at least part of angular velocity fluctuation is filtered.
The first angular velocity difference is used as an input to the velocity loop regulator to affect the output torque at the velocity loop output. If the first angular speed difference value fluctuates greatly, the fluctuation of the output torque is large, and further the fluctuation of the rotating speed of the compressor is large. After the first angular velocity difference is obtained in step 21, filtering is performed on the first angular velocity difference to filter out at least part of the angular velocity fluctuation component, so as to obtain a filtered angular velocity Δ ω _ K. .
Specifically, as shown in the block diagram of fig. 3, the filtering processing is performed on the first angular velocity difference Δ ω 2 to obtain a filtered angular velocity Δ ω _ K after at least part of the angular velocity fluctuation is filtered, and the filtering processing specifically includes: extracting partial angular velocity fluctuation K _ out in the first angular velocity difference delta omega 2 by adopting a velocity fluctuation extraction algorithm, and extracting a direct current component K _ DC of the partial angular velocity fluctuation K _ out; then, a difference between the first angular velocity difference Δ ω 2 and the direct current component K _ DC of the partial angular velocity fluctuation is calculated, and the difference is determined as a filtered angular velocity Δ ω _ K. The extraction of the DC component K _ DC of the partial angular velocity fluctuation K _ out can be realized by using the existing technology of extracting the DC component, for example, by using a low-pass filter to extract the DC component K _ DC of the partial angular velocity fluctuation K _ out. For a more preferable filtering processing manner, refer to the description of the following preferred embodiments.
Step 23: inputting the angular speed of the filter as input quantity to a speed loop regulator in a speed loop for controlling the compressor to obtain the output torque tau of the speed loop regulatorM。
Step 24: and controlling the air conditioner compressor according to the output torque. The specific control process refers to the prior art.
By adopting the method of the embodiment formed by the above-mentioned fig. 1 and fig. 2, the double loop control of the speed loop and the phase-locked loop of the compressor is realized. In addition, in the phase-locked loop control, the fluctuation filtering is carried out on the shaft error delta theta reflecting the deviation between the actual position and the estimated position of the compressor rotor, the angular speed compensation quantity corresponding to the corrected shaft error after at least part of the shaft error fluctuation is filtered is compensated to the output angular speed of the phase-locked loop regulator, the compensated angular speed output quantity is obtained, the real-time angular speed of the compressor is corrected according to the compensated angular speed output quantity, and when the compressor is controlled by the corrected real-time angular speed, the variation quantity and the phase of the target rotating speed can be close to the variation quantity and the phase of the actual rotating speed, so that the operation of the compressor tends to be stable. Moreover, because the fluctuation of the shaft error is a front end direct factor causing speed fluctuation, the periodical fluctuation of the shaft error is reduced by filtering the fluctuation of the shaft error at the front end, the speed fluctuation can be directly and quickly inhibited, and the effectiveness of speed control is improved. In the control of the speed ring, the difference value between the compensated angular speed output quantity and the target angular speed fluctuation quantity is subjected to filtering treatment, and the filtered angular speed with at least part of angular speed fluctuation filtered out is input into the speed ring regulator as an input quantity, so that the fluctuation of the output torque of the speed ring regulator can be reduced, and when the compressor is controlled according to the output torque, the fluctuation of the rotating speed of the compressor can be reduced, and the running of the compressor is more stable; the compressor operates stably, and the effects of energy conservation and vibration reduction can be achieved.
In some other embodiments, the filtering process is performed on the axis error Δ θ to obtain a corrected axis error Δ θ' after at least part of the axis error fluctuation is filtered, and specifically includes: and performing filtering processing on the axis error delta theta, at least filtering d-axis components and q-axis components of first harmonic in the delta theta, realizing filtering of first harmonic components of the delta theta, and obtaining a corrected axis error delta theta' of which at least the first harmonic components are filtered. As a more preferable embodiment, the method for obtaining the corrected axis error Δ θ' after filtering at least part of the axis error fluctuation by filtering the axis error Δ θ further includes: and filtering d-axis components and q-axis components of second harmonic in the delta theta, realizing filtering of first harmonic components and second harmonic components of the delta theta, and obtaining corrected axis errors delta theta' for filtering the first harmonic components and the second harmonic components. Most of fluctuation components in the delta theta can be filtered out by filtering out the first harmonic component or the first harmonic component and the second harmonic component, the calculated amount is moderate, and the filtering speed is high.
Fig. 4 is a logic diagram showing a specific example of the axis error fluctuation filtering algorithm in fig. 3, specifically, a logic diagram showing a specific example of obtaining the angular velocity compensation amount P _ out corresponding to the corrected axis error Δ θ' after filtering the first harmonic component and the second harmonic component in the axis error Δ θ. According to the logic diagram shown in fig. 3, the specific process of the angular velocity compensation amount P _ out corresponding to the corrected axis error Δ θ' after filtering the first harmonic component and the second harmonic component in the axis error Δ θ is as follows:
firstly, Fourier series expansion is carried out on the axis error delta theta to obtain the axis error delta theta relative to the mechanical angle thetamIs used for the functional expression of (1). The method comprises the following specific steps:
wherein, Delta thetaDCIs the direct component of the axis error, θd_n=θpeak_ncosφn,θq_n=θpeak_nsinφn,△θpeak_nFor the n harmonic axis error fluctuation amplitude, thetam1、θm2Is the first harmonic mechanical angle. And second harmonic mechanical angle thetam2Expressed as: thetam2=2θm1。
And then, extracting a first harmonic component and a second harmonic component from the function expression, and filtering the first harmonic component and the second harmonic component by adopting an integrator to obtain a filtering result.
Specifically, the first harmonic component and the second harmonic component can be extracted from the functional expression by a low-pass filtering method or an integration method. In FIG. 4, the functional expressions are respectively related to cos (θ)m1+θshift-P1) And cos (θ)m2+θshift-P2) After multiplication, a low-pass filter is used for filtering or an integrator is used for taking an integral average value in a period, and a d-axis component of a first harmonic and a d-axis component of a second harmonic of an axis error delta theta are extracted; respectively comparing the function expressions with-sin (theta)m1+θshift-P1) And-sin (theta)m2+θshift-P2) After multiplication, the q-axis component of the first harmonic and the q-axis component of the second harmonic of the axis error delta theta are extracted by filtering through a low-pass filter or taking an integral average value in a period through an integrator. Then, the d-axis component and the q-axis component of the first harmonic and the d-axis component and the q-axis component of the second harmonic are respectively subtracted from 0, and the resultant is input to an integrator KI_PAnd performing integral filtering treatment in the/S, filtering d-axis components and q-axis components of the first harmonic and d-axis components and q-axis components of the second harmonic, obtaining filtering results of the first harmonic component and the second harmonic component, and realizing filtering treatment on the axis error delta theta. Also, the filtering result becomes an angular velocity. Wherein, thetashift-P1And thetashift-P2The phase compensation angle of the first harmonic and the phase compensation angle of the second harmonic are respectively. The angle numbers of the two phase compensation angles can be equal or unequal preset fixed values, and can also be variable angle values.
As a preferred embodiment, two phase compensation angles θshift-P1And thetashift-P2Equal and according to the closed-loop gain parameter K of the phase-locked loopP_PLL、KI_PLLAnd determining the angular speed command omega _ in of the phase-locked loop. Furthermore, it is necessary to satisfy: thetashift-Pn=(aKP_PLL+bKI-PLL+cKP_PLL/KI_PLL+ d ω in) pi. Wherein a, b, c and d are constant coefficients, and the constant coefficients are determined for a determined control system.
Then, each filtering result is subjected to inverse Fourier transform, and an angular velocity compensation amount P _ out corresponding to the correction axis error Delta theta' of the first harmonic component and the second harmonic component which are filtered is obtained. Specifically, the filtering result of the d-axis component for filtering the first harmonic and the filtering result of the q-axis component for filtering the first harmonic are respectively subjected to the sum of results after inverse fourier transform, so as to form an angular velocity compensation quantity P _ out1 corresponding to the correction axis error for filtering the first harmonic component; the filtering result of the d-axis component for filtering the second harmonic and the filtering result of the q-axis component for filtering the second harmonic are respectively subjected to the sum of results after Fourier inverse transformation, and an angular velocity compensation quantity P _ out2 corresponding to the correction axis error for filtering the second harmonic component is formed; the sum of the two angular velocity compensation amounts forms an angular velocity compensation amount P _ out of P _ out1+ P _ out2 corresponding to the correction axis error Δ θ' from which the first harmonic component and the second harmonic component are filtered out.
As a preferred embodiment, the control of harmonic filtering can also be achieved by adding an enable switch. Specifically, in the block diagram of fig. 4, Gain _1 and Gain _2 are enable switches for determining whether to turn on/off the filtering algorithm function. When the enable switch states of Gain _1 and Gain _2 are the functions of filtering the first harmonic and filtering the second harmonic, the angular velocity compensation amount P _ out corresponding to the correction axis error Δ θ' of filtering the first harmonic component and the second harmonic component is obtained as P _ out1+ P _ out 2. If the enable switch states of Gain _1 and Gain _2 are the functions of filtering the first harmonic and the second harmonic, the whole axis error filtering function is turned off, and the angular velocity compensation amount P _ out cannot be output. If one of the enable switches is in the state of turning on the filtering algorithm function, and the other enable switch is in the state of turning off the filtering algorithm function, the obtained angular velocity compensation quantity P _ out is only the angular velocity compensation quantity for filtering the first harmonic (the Gain _1 enable switch is in the state of turning on the filtering first harmonic function, and the Gain _2 enable switch is in the state of turning off the filtering second harmonic function), or is only the angular velocity compensation quantity for filtering the second harmonic (the Gain _1 enable switch is in the state of turning off the filtering first harmonic function, and the Gain _2 enable switch is in the state of turning on the filtering second harmonic function).
In the embodiment of filtering only the first harmonic component, the process of extracting the first harmonic component and filtering the first harmonic component in fig. 4 may be directly adopted. Of course, in the embodiment of filtering only the first harmonic component, the control of filtering the first harmonic component may also be implemented by adding an enable switch, and the specific implementation manner is also referred to fig. 4 and will not be repeated herein.
In some other preferred embodiments, the extracting, by using a speed fluctuation extraction algorithm, a part of the angular velocity fluctuation in the first angular velocity difference specifically includes: and extracting at least a first harmonic component in the first angular velocity difference value by adopting a velocity fluctuation extraction algorithm to serve as a part of angular velocity fluctuation. As a more preferable embodiment, the extracting, by using a speed fluctuation extraction algorithm, part of the angular speed fluctuation in the first angular speed difference includes: and extracting a first harmonic component and a second harmonic component in the first angular velocity difference value by adopting a velocity fluctuation extraction algorithm, and taking the sum of the first harmonic component and the second harmonic component as part of angular velocity fluctuation. After the difference value is obtained between the first angular velocity difference value and the first harmonic component, most of fluctuation components in the first angular velocity difference value can be filtered, the calculated amount is moderate, and the filtering speed is high.
Fig. 5 is a logic block diagram showing a specific example of the speed fluctuation extraction algorithm in fig. 3, specifically, a logic block diagram showing a specific example of extracting the first harmonic component and the second harmonic component from the first angular velocity difference value to form a partial angular velocity fluctuation. Referring to fig. 5, this specific example obtains a partial angular velocity fluctuation containing a first harmonic component and a second harmonic component by the following method:
firstly, a Fourier series expansion is carried out on the first angular velocity difference delta omega 2 to obtain the first angular velocity difference delta omega 2 relative to the mechanical angle thetamIs used for the functional expression of (1). This process can be implemented using existing technology and is not described in detail here.
Then, the first harmonic component and the second harmonic component are extracted from the functional expression, respectively.
Specifically, as shown in FIG. 5, the functional expression is related to cos θm1After multiplication, pass through a low-pass filterFiltering, and performing inverse Fourier transform on a filtering result to obtain a d-axis component of the first harmonic; multiplying the functional expression by-sin θm1After multiplication, pass through a low-pass filterFiltering, performing inverse Fourier transform on the filtering result,obtaining a q-axis component of the first harmonic; then, the d-axis component and the q-axis component of the first harmonic are added to obtain a first harmonic component K _ out1 in the first angular velocity difference. Similarly, the functional expression is related to cos θm2After multiplication, pass through a low-pass filterFiltering, and performing inverse Fourier transform on a filtering result to obtain a d-axis component of a second harmonic; multiplying the functional expression by-sin θm2After multiplication, pass through a low-pass filterFiltering, and performing inverse Fourier transform on a filtering result to obtain a q-axis component of a second harmonic; then, the d-axis component and the q-axis component of the second harmonic are added to obtain a second harmonic component K _ out2 in the first angular velocity difference. Finally, the first harmonic component K _ out1 is added to the second harmonic component K _ out2, and the resulting sum forms part of the angular velocity fluctuation K _ out. Wherein, thetam1Mechanical angle of first harmonic, theta, in a functional expression developed as a Fourier seriesm2Mechanical angle of the second harmonic in a functional expression developed as a Fourier series, and θm2=2θm1,T_PD_filterIs the time constant of the low pass filter.
After obtaining a part of angular velocity fluctuation K _ out including a first harmonic component and a second harmonic component, calculating a difference between the first angular velocity difference Δ ω 2 and the part of angular velocity fluctuation K _ out as a filtered angular velocity Δ ω _ K, where the filtered angular velocity Δ ω _ K is the filtered angular velocity after the first harmonic component and the second harmonic component are filtered out.
As a preferred embodiment, the control of the harmonic extraction can also be achieved by adding an enable switch. Specifically, in the block diagram of fig. 5, Gain _1 and Gain _2 are enable switches for determining whether to turn on/off the extraction algorithm function. Under the condition that the enabling switch states of the Gain _1 and the Gain _2 are on, the functions of extracting the first harmonic and extracting the second harmonic are obtained, and partial angular velocity fluctuation formed by the first harmonic component and the second harmonic component is obtained: k _ out is K _ out1+ K _ out 2. If the enable switch states of Gain _1 and Gain _2 are the functions of extracting the first harmonic and extracting the second harmonic, the whole speed fluctuation extraction algorithm function is turned off, and part of the angular speed fluctuation is 0. If one of the enable switches is in the state of opening the extraction algorithm function, and the other enable switch is in the state of closing the extraction algorithm function, the obtained part of the angular speed fluctuation is only a first harmonic component in the first angular speed difference (the state of the Gain _1 enable switch is in the state of opening the extraction first harmonic function, and the state of the Gain _2 enable switch is in the state of closing the extraction second harmonic function) or only a second harmonic component in the first angular speed difference (the state of the Gain _1 enable switch is in the state of closing the extraction first harmonic function, and the state of the Gain _2 enable switch is in the state of opening the extraction second harmonic function).
In the embodiment of extracting only the first harmonic component, the process of extracting the first harmonic component in fig. 5 may be directly employed; of course, the control of the first harmonic extraction may also be implemented by adding an enable switch, and the specific implementation manner is also shown in fig. 5, which is not repeated herein.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions.
Claims (10)
1. A method for controlling the rotation speed of a single-rotor compressor is characterized by comprising a process of controlling the compressor according to a real-time angular speed and a process of controlling the compressor according to a moment;
the process of controlling the compressor according to the real-time angular velocity includes:
acquiring a shaft error Delta theta reflecting the deviation of the actual position and the estimated position of the compressor rotor;
filtering the shaft error delta theta to obtain a corrected shaft error delta theta 'and an angular speed compensation quantity P _ out corresponding to the corrected shaft error delta theta' after at least part of shaft error fluctuation is filtered;
compensating the angular velocity compensation quantity P _ out into an output angular velocity delta omega _ PLL of a phase-locked loop regulator in the phase-locked loop for controlling the compressor to obtain compensated angular velocity output quantity delta omega ', and obtaining delta omega' ═ P _ out + delta omega _ PLL;
correcting the real-time angular speed omega 1 for controlling the compressor according to the compensated angular speed output quantity delta omega', and controlling the compressor according to the corrected real-time angular speed omega 1;
the filtering processing of the axis error Δ θ specifically includes:
performing Fourier series expansion on the axis error delta theta to obtain the mechanical angle theta of the axis errormThe functional expression of (a);
the function expressions are respectively related to cos (theta)mn+θshift-Pn) And-sin (theta)mn+θshift-Pn) After multiplication, extracting d-axis components and q-axis components of n-th harmonic waves of delta theta through a low-pass filter or an integrator; thetamn、θshift-PnRespectively a mechanical angle of the nth harmonic and a phase compensation angle of the nth harmonic;
filtering out at least a d-axis component and a q-axis component of partial harmonic waves to realize filtering processing of the axis error delta theta;
the process of controlling the compressor according to the torque includes:
calculating the difference between the target angular velocity fluctuation amount and the compensated angular velocity output amount to obtain a first angular velocity difference value;
filtering the first angular velocity difference to obtain a filtered angular velocity at least filtering part of angular velocity fluctuation;
inputting the filter angular velocity as an input quantity to a speed ring regulator in a speed ring for controlling a compressor, and obtaining an output torque of the speed ring regulator;
controlling the compressor according to the output torque;
the filtering the first angular velocity difference to obtain a filtered angular velocity at least after filtering part of angular velocity fluctuation, specifically comprising:
and extracting partial angular velocity fluctuation in the first angular velocity difference by adopting a velocity fluctuation extraction algorithm, extracting a direct current component of the partial angular velocity fluctuation, calculating a difference between the first angular velocity difference and the direct current component of the partial angular velocity fluctuation, and determining the difference as the filtering angular velocity.
2. The method according to claim 1, wherein the filtering the axis error Δ θ to obtain a corrected axis error Δ θ' after filtering at least part of the axis error fluctuation, specifically comprises:
and filtering the axis error delta theta to at least filter a d-axis component and a q-axis component of a first harmonic in the delta theta, so as to filter a first harmonic component of the delta theta and obtain a corrected axis error delta theta' in which the first harmonic component is at least filtered.
3. The method according to claim 2, wherein said filtering said axis error Δ θ to obtain a corrected axis error Δ θ' after filtering out at least a portion of the axis error fluctuation, further comprises: and filtering d-axis components and q-axis components of second harmonic in the delta theta, realizing filtering of first harmonic components and second harmonic components of the delta theta, and obtaining corrected axis errors delta theta' for filtering the first harmonic components and the second harmonic components.
4. The method according to claim 1, wherein the filtering at least a part of d-axis components and q-axis components of the harmonic to implement the filtering process for the axis error Δ θ includes:
filtering d-axis components and q-axis components of partial harmonic waves by using an integrator to obtain a filtering result, and realizing filtering processing on the axis error delta theta;
the method further comprises the following steps:
and performing inverse Fourier transform on the filtering result to obtain an angular velocity compensation quantity P _ out corresponding to the correction axis error delta theta' of the part of the harmonic components to be filtered.
5. The method of claim 1, wherein the nth harmonic phase is compensated by an angle θshift-PnAccording to the closed loop gain parameter K of the phase-locked loopP_PLL、KI_PLLAnd the angular speed command ω _ in of the phase-locked loop is determined and satisfies:
θshift-Pn=(aKP_PLL+bKI_PLL+cKP_PLL/KI_PLL+ d ω _ in) × pi, a, b, c, d are constant coefficients.
6. The method according to any one of claims 1 to 5, wherein the extracting a part of angular velocity fluctuations in the first angular velocity difference value by using a velocity fluctuation extraction algorithm specifically comprises:
and extracting at least a first harmonic component in the first angular velocity difference value by adopting a velocity fluctuation extraction algorithm to serve as the partial angular velocity fluctuation.
7. The method according to claim 6, wherein the extracting the first harmonic component from the first angular velocity difference value by using a velocity fluctuation extraction algorithm specifically comprises:
performing Fourier series expansion on the first angular velocity difference to obtain a mechanical angle thetamThe functional expression of (a);
extracting a d-axis component and a q-axis component of the first harmonic from the function expression respectively;
and adding the d-axis component and the q-axis component of the first harmonic to obtain a first harmonic component in the first angular velocity difference.
8. The method of claim 6, wherein the extracting a portion of angular velocity fluctuations in the first angular velocity difference using a velocity fluctuation extraction algorithm further comprises: and extracting a second harmonic component in the first angular velocity difference by adopting a velocity fluctuation extraction algorithm, and taking the sum of the first harmonic component and the second harmonic component as the partial angular velocity fluctuation.
9. The method according to claim 8, wherein the extracting the second harmonic component from the first angular velocity difference value by using a velocity fluctuation extraction algorithm specifically comprises:
performing Fourier series expansion on the first angular velocity difference to obtain a mechanical angle thetamThe functional expression of (a);
extracting a d-axis component and a q-axis component of the second harmonic from the function expression respectively;
and adding the d-axis component and the q-axis component of the second harmonic to obtain a second harmonic component in the first angular velocity difference.
10. The method according to claim 1, wherein the target angular velocity fluctuation amount is 0; the correcting the real-time angular velocity ω 1 for controlling the compressor according to the compensated angular velocity output Δ ω', and controlling the compressor according to the corrected real-time angular velocity ω 1 specifically includes: and adding the compensated angular speed output quantity delta omega' to a given angular speed command, determining the result of the addition as the corrected real-time angular speed omega 1, and controlling the compressor according to the corrected real-time angular speed omega 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811528178.8A CN109458337B (en) | 2018-12-13 | 2018-12-13 | Method for controlling rotating speed of single-rotor compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811528178.8A CN109458337B (en) | 2018-12-13 | 2018-12-13 | Method for controlling rotating speed of single-rotor compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109458337A CN109458337A (en) | 2019-03-12 |
CN109458337B true CN109458337B (en) | 2021-10-29 |
Family
ID=65613235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811528178.8A Active CN109458337B (en) | 2018-12-13 | 2018-12-13 | Method for controlling rotating speed of single-rotor compressor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109458337B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3972124B2 (en) * | 2002-07-10 | 2007-09-05 | 株式会社日立製作所 | Synchronous motor speed control device |
JP4834129B2 (en) * | 2009-05-29 | 2011-12-14 | 東芝シュネデール・インバータ株式会社 | Speed sensorless vector controller |
CN103967794B (en) * | 2013-02-05 | 2016-01-20 | 广东美的制冷设备有限公司 | A kind of method for compensating vibration of single-rotor compressor and controller |
JP5882246B2 (en) * | 2013-03-07 | 2016-03-09 | 日立アプライアンス株式会社 | Motor control device |
CN106788071B (en) * | 2017-01-06 | 2019-01-29 | 南京航空航天大学 | A method of improving permanent-magnet synchronous motor rotor position estimated accuracy |
-
2018
- 2018-12-13 CN CN201811528178.8A patent/CN109458337B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109458337A (en) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109724297B (en) | Method for controlling fluctuation of rotating speed of compressor | |
CN109586643B (en) | Method for controlling speed fluctuation of single-rotor compressor | |
CN109458336B (en) | Method for controlling rotation speed of single-rotor compressor | |
CN109510553B (en) | Method for controlling fluctuation of rotating speed of air conditioner compressor | |
CN109698647B (en) | Method for inhibiting fluctuation of rotating speed of air conditioner compressor | |
CN109724308B (en) | Compressor rotating speed control method | |
CN109724300B (en) | Method for controlling rotational speed of compressor | |
CN109458339B (en) | Method for controlling rotating speed of single-rotor compressor | |
CN109458338B (en) | Method for controlling rotating speed of single-rotor compressor | |
CN109469613B (en) | Method for suppressing fluctuation of rotational speed of compressor | |
CN109724312B (en) | Air conditioner compressor rotating speed control method | |
CN109724306B (en) | Compressor rotation speed control method | |
CN109742996B (en) | Method for controlling fluctuation of rotating speed of air conditioner compressor | |
CN109404284B (en) | Method and device for inhibiting rotating speed fluctuation of air conditioner single-rotor compressor | |
CN109724325B (en) | Method for controlling rotation speed of air conditioner compressor | |
CN109742994B (en) | Method for inhibiting rotating speed fluctuation of single-rotor compressor | |
CN109713963B (en) | Method for suppressing fluctuation of rotation speed of air conditioner compressor | |
CN109458337B (en) | Method for controlling rotating speed of single-rotor compressor | |
CN109724307B (en) | Method for controlling fluctuation of rotational speed of compressor | |
CN109724301B (en) | Method for inhibiting fluctuation of rotating speed of compressor | |
CN109724299B (en) | Method for controlling fluctuation of rotating speed of compressor | |
CN109724304B (en) | Method for controlling rotation speed of compressor | |
CN109724309B (en) | Method for controlling fluctuation of rotating speed of compressor | |
CN109742995B (en) | Method for controlling fluctuation of rotating speed of single-rotor compressor | |
CN109469614B (en) | Method for controlling rotating speed of single-rotor compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20211009 Address after: 266101 Haier Industrial Park, No. 1 Haier Road, Laoshan District, Qingdao, Shandong Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. Applicant after: Haier Smart Home Co., Ltd. Address before: 266101 Haier Industrial Park, No. 1 Haier Road, Laoshan District, Qingdao, Shandong Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |